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Introduction: Soybean root rot (SRR), caused by Fusarium oxysporum, is a severe 
soil-borne disease in soybean production worldwide, which adversely impacts 
the yield and quality of soybean. The most effective method for managing crop 
soil-borne diseases and decreasing reliance on chemical fungicides, such as 
Bacillus spp., is via microbial biocontrol agents.

Methods and Results: In this study, a soil-isolated strain BVE7 was identified as B. 
velezensis, exhibiting broad-spectrum activity against various pathogens causing 
soybean root rot. BVE7 sterile filtrate, at a concentration of 10%, demonstrated 
significant antifungal activity by inhibiting the conidial germination, production, 
and mycelial growth of F. oxysporum by 61.11%, 73.44%, and 85.42%, respectively, 
causing hyphal malformations. The antifungal compound produced by BVE7 
demonstrated adaptability to a standard environment. The pot experiment showed 
that BVE7 suspension could effectively control soybean root rot, with the highest 
control efficiency of 75.13%. Furthermore, it considerably enhanced the activity of 
catalase, phenylalanine ammonia lyase, superoxide dismutase, and peroxidase in 
soybean roots, while also preventing an increase in malondialdehyde activity. By 
improving the host resistance towards pathogens, the damage caused by fungi 
and the severity of soybean root rot have been reduced.

Discussion: This study presents the innovative utilization of B. velezensis, isolated 
from soybean roots in cold conditions, for effectively controlling soybean root 
rot caused by F. oxysporum. The findings highlight the remarkable regional 
and adaptive characteristics of this strain, making it an excellent candidate for 
combating soybean root rot in diverse environments. In conclusion, B. velezensis 
BVE7 demonstrated potential in effectively reducing SRR incidence and can be 
considered as a viable option for SRR management.
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1. Introduction

Soybean is a significant food crop that provides a sustainable source of protein, oil, 
vitamins, and other essential nutrients for human consumption globally (Hu et al., 2016; 
Yang et al., 2023). As the primary soybean-producing region in China, Northeast China 
accounts for 50% of the country’s total soybean production (source: China National Data, 
https://data.stats.gov.cn/). It is crucial to reduce disease damage during soybean planting to 
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enhance yields (Dorrance et al., 2003). In the early spring, when 
soybean seeding occurs, the damp environment is conducive to 
pathogen invasion, which can cause soybean root rot at different 
temperatures (Zitnick-Anderson and Nelson, 2015). Fusarium spp. 
including F. redolens in Minnesota (Bienapfl et  al., 2010), 
F. oxysporum, F. graminearum, F. solani, F. avenaceum, F. tricinctum, 
F. sporotrichioides, F. equiseti, and F. poaein and F. proliferatum 
Ontario, Canada (Zhang et  al., 2009, 2013; Chang et  al., 2015), 
F. commune, F. solani, F. tricinctum and F. fujikuroi in the 
United States (Ellis et al., 2013; Detranaltes et al., 2021; Yan and 
Nelson, 2021), F. oxysporum, F. brachygibbosum and F. fujikuroi in 
China (Li et al., 2018; Zhao et al., 2020; Wang et al., 2021), cause 
soybean root rot (SRR), a soil-borne disease with a high risk of 
infection, significantly impacting soybean emergence, seedling 
growth, plant vigor, and yield losses (Nelson et al., 1999; Han et al., 
2021). F. oxysporum is the dominant strain reported in the 
United  States (Nelson et  al., 1999; Cruz Jimenez et  al., 2018), 
Northeast China (Li et al., 2018), and Ontario, Canada (Wang et al., 
2004; Zhang et al., 2013).

SRR, caused by F. oxysporum, is a common soil-borne disease. 
Conventional methods for controlling root rot, such as seed 
dressing and leaf-spraying with chemical fungicides in the field, 
have been utilized to manage some Fusarium diseases (Zhang et al., 
2000). However, given the impact of chemical fungicides on the 
ecological environment, human health, and pathogen resistance, 
there has been increased attention on the limitations of chemical 
control. Crop rotation with non-host plants is an effective measure 
for controlling SRR. Buhre and Kluth (2009) employed crop 
rotation of maize and beet to manage the incidence of beet root rot. 
Nonetheless, there are few land resources and accumulated 
temperatures in Northeast China, this measure may not 
be applicable in areas with continuous soybean cropping due to 
specific climatic conditions and economic considerations (Li et al., 
2010). Therefore, there is an urgent need to identify a harmless and 
feasible strategy for suppressing the development of Fusarium root 
rot on soybean.

Soil is a living natural resource on which the sustainability of 
agricultural systems depends. Soil quality is attributed to multiple 
interactions between physical, chemical, and biological components, 
with microbial communities playing a crucial role in soil 
functionality (Janvier et al., 2007). In addition, the complexity of 
ecosystems is directly involved in the performance of soil system 
functions, determining its quality (Vezzani and Mielniczuk, 2009). 
Biological control of plant diseases using plant-associated bacteria 
or natural compounds of biological origin is now recognized as one 
of the most promising alternatives to the use of chemical fungicides 
(Etesami et al., 2023). Employing beneficial microorganisms for 
biological control is a noteworthy strategy that has significant 
potential for managing Fusarium root rot on soybean. Currently, 
chemical control remains the main approach for preventing and 
treating crop root rot. Yuan et al. (2011) effectively managed wheat 
root rot using difenoconazole. Tanni et  al. (2016) successfully 
controlled the root rot of chickpea through the use of Bavistin 70 
WP. Naqvi (2005) controlled root rot (Phytophthora nicotianae) in 
citrus soils with foselyl-Al and Metalaxyl. However, chemical 
control methods have negative impacts on ecological environment 
and human health, and are not conducive to the sustainability of 

agriculture. In comparison to the application of chemical agents, 
biological control measures can be  both cost-effective and 
environmentally friendly, and can significantly inhibit the activity 
of soil-borne pathogens and induce plant resistance due to the 
natural and pathogenic origins of their biological control agents 
(BCAs) (Zhang et al., 2009; Amin et al., 2015; Raza et al., 2019). 
Furthermore, biological control provides long-lasting and 
sustainable effects in reducing the incidence and severity of root rot, 
ensuring the healthy growth of current and subsequent crops. 
Huang et al. (2013) found that the rhizosphere soil of healthy plants 
that survive in plots infected by plant pathogens is a good source 
for the isolation of BCAs. In recent years, numerous BCAs have 
been successfully isolated from rhizosphere soil, including Bacillus 
spp. (Xu et  al., 2020), Pseudomonas spp. (Liu et  al., 2019), 
Trichoderma spp. (Saravanakumar et al., 2017), and Streptomyces 
spp. (Faheem et al., 2015). Among these promising BCAs, Bacillus 
spp. produces stress-resistant spores and exhibits resistance to 
extreme conditions, fast reproduction, and strong colonization 
ability. It is amenable to artificial large-scale fermentation and 
cultivation, making it an ideal candidate for use as a biocontrol 
bacterium (Santoyo et al., 2012; Shafi et al., 2017; Fira et al., 2018). 
Bacillus spp., among the various biotic components, is a 
predominant bacterial genus with tremendous metabolic and 
genetic diversity, which enables it to play a crucial role in the soil 
ecosystem. Many Bacillus species have been found in different 
ecological niches. Globally developed and distributed commercial 
Bacillus-based preparations contain B. amyloliquefaciens, B. cereus, 
B. licheniformis, B. megaterium, B. pumilus, B. subtilis, 
B. thuringiensis, and B. velezensis species (Mazzola and Freilich, 
2017; Etesami et al., 2023). Bacillus spp. populations can coexist 
with other bacterial populations in the soil and rhizosphere without 
any negative effects (Vardharajula et al., 2011; Radhakrishnan et al., 
2017). Zhang et al. (2009) utilized Bacillus subtilis strains through 
seed and soil treatments to manage soybean root rot induced by 
F. oxysporum and F. graminearum. Therefore, Bacillus species were 
chosen as an alternative biocontrol factor for preventing and 
managing SRR caused by F. oxysporumin in this paper.

The research aimed to achieve the following objectives: (i) to 
screen and identify biocontrol bacteria for the management of SRR, 
(ii) to analyze the antifungal mechanisms of B. velezensis, a potential 
biological control bacterium, (iii) to investigate the impact of 
biocontrol bacteria on defense-related enzymes in soybean, and (iv) 
to evaluate the efficacy of employing biocontrol bacteria in the 
management of SRR.

2. Materials and methods

2.1. Isolation of bacterial strains

Three hundred and twenty-four bacterial strains were isolated 
from the rhizosphere soil of soybean fields located in Harbin (126.93° 
E, 45.77° N), China, using the soil dilution method (Li et al., 2020). 
Following a 72-h incubation period at 28°C, a single bacterial colony 
was selected and purified via repeated streaking on beef extract 
peptone medium (BPM) (Beijing Aoboxing Biology Technology Co., 
Ltd.) plates.
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2.2. Screening of biological control 
bacteria against SRR

The targeted pathogen, Fusarium oxysporum isolate BLD3, was 
isolated and preserved by our team and eventually emerged as the 
primary population of SRR-causing pathogens in Northeast China, 
emerging as the predominant pathogen responsible for SRR in the 
area. Initial screening of antagonistic bacteria was accomplished 
using the confrontational approach (Birber et  al., 1998). After 
incubating the bacterial strains on a nutrient agar medium (NA) 
plate for 48 h at a temperature of 28°C, a center of a potato dextrose 
agar (PDA) plate with a diameter of 9 cm was inoculated using the 
parallel streak method positioned at a distance of 3 cm. Following 
this, a disk of F. oxysporum with a diameter of 0.7 cm was inserted 
in the center of the PDA plate. Cultivating for 5 days at a temperature 
of 26°C with three replicates, measurements were taken for the 
maximum and minimum radii of F. oxysporum colonies to 
determine the antagonistic activity of the tested bacterial strains 
(Wang et al., 2020). Strains that displayed the most significant ratio 
of the longest-to-shortest radius were selected for further 
in-depth study.

2.3. Identification of biocontrol bacterium 
BVE7

The morphological features of BVE7 were observed on nutrient 
agar (NA), while the physiological and biochemical characteristics 
were measured based on standard protocols by Schaad et al. (2001), 
Buchanan (1984), and Dong and Cai (2001). Based on the 
aforementioned references, we had chosen these physiological and 
biochemical parameters to assist in the identification of the genus and 
species of biocontrol bacteria, including tests for gram stain, lactose 
utilization, catalase activity, sucrose utilization, aerobism, mannitol 
fermentation, glucose fermentation, V.P. test, fructose fermentation, 
gelatin liquefaction, arabinose utilization, mannose fermentation, 
xylose utilization, casein hydrolysis, sorbitol utilization, 
phaseomannite utilization, starch hydrolysis, malonate utilization, 
cellobiose fermentation, rhamnose utilization, M.R. test, maltose 
fermentation, galactose fermentation, and nitrate reduction using 
commercially available physiological and biochemical test kits 
(Guangdong Huankai Microbial Sci.&Tech. Co., Ltd., 
Guangdong, China).

To identify BVE7, genomic DNA was extracted using a Tiangen 
Genome Extraction Kit (Tiangen Biotech, Beijing, China). Bacterial 
universal primers, 27F (5′-AGAGTTGATCCTGGCTCAG-3′) and 
1492R (5′-GGTTACCTTGTTACGACTT-3′), were employed to 
amplify partial sequences of the 16S rRNA gene. The genomic 
template was amplified by PCR in a 50-μl reaction volume consisting 
of 25-μl PCR Master Mix (2X) (Invitrogen, Carlsbad, CA, 
United  States), 2.0 μL of 10 mM forward primer, 2.0 μL of 10 mM 
reverse primer, 2 μL of template DNA, and 19 μL of nuclease-free 
water. The PCR program consisted of an initial denaturation at 94°C 
for 5 min, followed by 36 cycles of denaturation at 94°C for 1 min, 
annealing at 58°C for 1 min, and extension at 72°C for 1.5 min; and a 
final extension at 72°C for 10 min. The amplified product was 
sequenced by Shanghai Biological Engineering Co., Ltd. (Shanghai, 
China). Phylogenetic trees of BVE7 were constructed using Mega 6.0 

software (Mega Limited, Auckland, New  Zealand) based on the 
neighbour-joining (NJ) method (Nei and Kumar, 2000).

2.4. Antifungal spectrum

Using the described confrontation technique, the antifungal 
efficacy of BVE7 against 10 strains of SRR-causing pathogenic fungi, 
including F. tricinctum, Diaporthe longicolla, F. acuminatum, 
Bipolaris zeicola, Chaetomium globosum, F. verticillioides, Botrytis 
cinerea, F. solani, Clonostachys rosea, F. chlamydosporum, was 
assessed. These pathogenic fungi were obtained from the plant 
pathology laboratory of Northeast Agricultural University in China. 
The measurement and evaluation techniques were identical to those 
outlined in Section 2.2.

2.5. Determination of antagonistic 
mechanism of BVE7

BVE7 was activated at 28°C for 24 h with agitation at 180 rpm 
and subsequently inoculated into Luria-Bertani (LB) liquid medium 
with a liquid loading of 200 mL·L − 1 in a 500-mL Erlenmeyer flask 
under identical conditions for six days. The aseptic filtrate of BVE7 
was obtained through an aseptically sterilized bacterial filter with a 
pore size of 0.22 μm (YY3014236, Millipore, United  States) (Li 
et al., 2020).

An aseptically filtered solution of BVE7 was added to Potato 
Dextrose Agar (PDA) medium at final concentrations of 1, 5, and 
10%, with three replicates each. An equivalent volume of liquid 
Luria-Bertani (LB) medium was added as a control. This experiment 
was conducted twice. A 7 mm diameter disc of F. oxysporum 
mycelium grown on PDA medium for 120 h was transferred to the 
center of the PDA plate and incubated for another 120 h at 
26°C. The diameter of F. oxysporum colonies was measured to 
evaluate the inhibitory effect of BVE7 on its growth.

Fusarium oxysporum was cultivated on PDA plates at 26°C until 
the colony reached a diameter of 4 cm. The medium without hyphae 
was discarded, and then 20 mL of aseptic BVE7 filtrate was added 
to the PDA plates with the colony at concentrations of 1, 5, and 
10%. 20 mL of LB liquid medium was used as a control with three 
replicates. After a 20-min incubation period, the mycelium was 
carefully removed. Following 72 h of incubation at 26°C, 20 mL of 
sterile water was poured into the plates to wash the conidia, and 
conidia concentration was recorded using a haemocytometer (Li 
et  al., 2020). The experiments were repeated twice to 
ensure accuracy.

Fusarium oxysporum was cultivated on PDA media at 26°C for 
5 days followed by washing with sterile distilled water (SDW) to obtain 
conidia. A haemocytometer was used to adjust the conidial suspension 
to 1 × 108 conidia/mL. BVE7 filtrate was then added to the conidial 
suspension at concentrations of 1, 5, and 10%, which was prepared 
using the same method as described earlier. For the control, conidial 
suspension amended with an equal volume of LB liquid medium was 
used. Each treatment was subjected to three replicates. The conidial 
suspensions were incubated at 25°C. Conidia germination (100 spores 
per treatment) was counted when the control’s conidial germination 
rate exceeded 60%.
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Fusarium oxysporum was inoculated onto PDA plates and 
incubated at 26°C for 12 h. Fresh hyphae were then scraped and 
immersed in aseptic BVE7 filtrate at concentrations of 1, 5, and 
10%. After 24 h, the morphology of the hyphae was observed under 
an optical microscope (Nikon 90i, Japan) in order to obtain 
precise results.

2.6. Stability of antifungal substances

Aseptic filtrates of BVE7, obtained through procedures outlined 
in section 2.5, were subjected to incubation in a water bath at 
temperatures of 20, 40, 60, 80, and 100°C, and 121°C. The effects of 
aseptic filtrates treated at varying temperatures were evaluated on 
the mycelial growth of F. oxysporum at a concentration of 5%.

The pH of the aseptic BVE7 filtrate was adjusted in increments 
of 1 unit from 3.0 to 12.0 using 0.1 M HCl or NaOH. The impacts 
of different pH treatments on BVE7 were determined by using the 
mycelial growth rate method.

The aseptic BVE7 filtrate was exposed to UV light at a distance 
of 1 cm and at a wavelength of 100 W/cm2 for 30, 60, and 90 min. 
The effects of the UV light exposure on BVE7 were evaluated 
utilizing the aforementioned method.

2.7. Evaluation of biological control 
efficacy of BVE7 under pot conditions

The specific procedures were carried out as follows: the biocontrol 
bacteria BVE7 were cultured in liquid LB medium for 48 h and 
subsequently diluted to a concentration of 1 × 108 CFU/mL (where an 
OD of 0.1 at 600 nm is equivalent to 108 CFU/mL) using 0.9% normal 
saline solution as a diluent for storage. Inoculum of F. oxysporum was 
prepared by inoculating sorghum seeds following the protocol 
described in our previous research (Li et  al., 2018). The study 
included six treatments, each with three replicates. i was the control 
group with no treatment. Iiwas only inoculated with F. oxysporum iii 
involved irrigating 0.5 mL of bacterial suspension to the roots and 
F. oxysporum on the day of planting and 7 days later. iv used 1 mL of 
bacterial suspension per plant and F. oxysporum, while v used 1.5 mL 
per plantand F. oxysporum. vi involved spraying seeds with 43% 
tebuconazole at 0.14 mg/mL. The pots were placed in a greenhouse 
with a temperature of 23 ± 3°C. A total of fifty plants were inoculated 
with three repetitions, and after inoculation, conventional methods 
were utilized in managing the seeds (cv. Dongnong 52). The 
occurrence of SRR was then evaluated after 20 days.

The severity of the disease was evaluated by assessing the 
growth status of soybean roots using a scale ranging from 0 to 9 
(Li et al., 2018): Where 0 = no symptoms; 1 = slightly darkening 
fibrous root, the aboveground portion grew well; 3 = slightly 
darkening taproot, the aboveground portion grew well; 5 = severe 
darkening taproot or hypocotyls erosion, the aboveground portion 
grew poorly; and 7 = root necrotized and infected plant dead. The 
experiment was conducted twice under identical conditions. 
Disease index (DI) for SRR was calculated, as follows:

 

DI number of diseased plants at each level number of relati= ∑ × vve ratings

total number of surveyed plants highest numb

( )
×/ eer of diseased levels( )×100.

2.8. Analysis of defense-related enzymes in 
soybean seedlings treated by the 
biocontrol bacterial strain BVE7

Soybean seedlings (10 plants per pot) grown for 15 days were 
inoculated with a suspension of BVE7 spores at a concentration of 
1 × 108 cfu/mL by root irrigation, with 1.5 mL per plant, while an equal 
amount of sterile water was used as a blank control. Each treatment was 
replicated three times. The treated plants were placed in a constant-
temperature incubator maintained at 25°C, with a light/dark regime of 
12/12 h and 85–95% relative humidity (RH). After 0, 12, 24, 48, 72 and 
96 h of incubation, root tissues from the treated soybean were collected 
and analyzed for defense-related enzyme activity. The enzyme activities 
of catalase (CAT), malondialdehyde (MDA), phenylalanine ammonia-
lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) were 
determined using appropriate kits (Suzhou Grace Biotechnology Co., 
Ltd., Suzhou, China) and calculated according to the fresh weight of the 
sample in units per kilogram (U kg-1).

2.9. Data analysis

All experiments were replicated twice under identical conditions. 
Statistical analysis was performed using SPSS Statistics 19.0 software 
(IBM Corporation, Armonk, NY, United States), and results were 
evaluated using ANOVA. Subsequently, statistically significant 
differences were observed between the means of the treatments using 
Duncan’s multiple range test (p < 0.05).

3. Results

3.1. Isolation and screening of biological 
control bacteria

A total of 324 strains extracted from the rhizosphere soil of soybean 
plants were screened for their antagonistic activity against F. oxysporum, 
the causal agent of SRR. Out of all the tested strains, a total of 24 
demonstrated superior antagonistic activity in comparison to the 
remaining strains, with the BVE7 strain exhibiting the most prominent 
effect (Table 1) and was identified as a potential biocontrol agent with 
an average ratio of 2.50. Further evaluation of BVE7 in potted soybean 
plants demonstrated its excellent control efficacy against 
SRR. Accordingly, BVE7 was selected for subsequent experiments. 
Additionally, BVE7 displayed remarkable antagonistic activity against 
various pathogenic fungi causing SRR (Table 2 and Figure 1), including 
Diaporthe longicolla, Clonostachys rosea, Bipolaris zeicola, Chaetomium 
globosum, F. solani, F. tricinctum, and F. verticillioides.

3.2. Identification of isolate BVE7

BVE7 was a gram-positive, rod-shaped bacterium, measuring 0.4 
to 0.8 μm in diameter and 1.5 to 3.4 μm in length, with round cell ends 
(Figure 2) and usually no fold and forms milky-white colonies on LB 
agar plates. With aging, the colony margins of BVE7 exhibited a folded 
morphology with a depressed surface. It was aerobic, and could 
produce nitrate reductase and hydrolyze starch and casein. M.R., 
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amylum hydrolase and V-P tests were positive. BVE7 could utilize a 
variety of sugars, including sucrose, glucose, arabinose, mannitol, 
seminose lactose, xylose, phaseomannite, galactose, maltose, 
rhamnose, cellobiose and fructose, but not malonate. The bacterium 

did not produce hydrogen sulfide and catalase. The 16 s rRNA gene 
sequence of BVE7 showed 99.9% similarity to B. velezensis strain 
Bv-HR6-1 (accession no. MF192765.1) and was deposited in GenBank 
(accession no. OP905633.1). A phylogenetic tree based on the 16 s 

TABLE 1 Twenty-four bacterial strains screened for their strong antagonistic effects against Fusarium oxysporum causing root rot in soybeans.

Antagonistic Strains No.
Maximum/Minimum 

radiusa Antagonistic Strains No.
Maximum/Minimum 

radiusa

BVE7 2.50 B-13 2.01

F3 2.47 12–2 2.01

107 2.47 24 2.00

H-18 2.41 A27 1.99

B6 2.35 26 1.97

21 2.35 22 1.97

18 2.35 23 1.94

F5 2.13 25 1.76

19 2.09 94 1.76

30 2.07 S2 1.75

91 2.06 12 1.67

13 2.04 11 1.54

aValues in the column indicate mean of the maximum/ minimum radius of the pathogens.

TABLE 2 Determination of antagonistic fungal spectrum suppressed by biological bacteria BVE7 in vitro.

Strains No. Mean ± SEa Strains No. Mean ± SEa

Diaporthe longicolla 2.67 ± 0.08a Fusarium acuminatum 1.47 ± 0.09 g

Clonostachys rosea 2.18 ± 0.11bcd F. solani 2.10 ± 0.04cde

Bipolaris zeicola 2.00 ± 0.10de F. tricinctum 2.31 ± 0.05b

Chaetomium globosum 2.01 ± 0.13de F. chlamydosporum 1.93 ± 0.12ef

Botrytis cinerea 1.82 ± 0.09f F. verticillioides 2.31 ± 0.05b

aValues in the column indicate mean ± standard error (SE) of the maximum/ minimum radius of the pathogens on the fifth day after inoculation.
Values followed by different letters are significantly different according to Duncan’s multiple range tests (p < 0.05).

FIGURE 1

Antagonistic effect of biological bacteria BVE7 on the mycelial growth of pathogenic fungi on the fifth day after inoculation. 1. Diaporthe longicolla; 2. 
Clonostachys rosea; 3. Bipolaris zeicola; 4. Chaetomium globosum; 5. Botrytis cinerea; 6. Fusarium acuminatum; 7. F. Solani; 8. F. tricinctum; 9. F. 
chlamydosporum; 10. F. verticillioides.
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rRNA gene sequence comparison indicated that BVE7 belonged to the 
B. velezensis (Figure 3).

3.3. Effect of BVE7 on hyphal and conidia 
of Fusarium oxysporum

The antagonistic active components of BVE7, administered at 
varied concentrations, significantly inhibited the conidial production, 
germination, and hyphal growth of F. oxysporum (Figures 4, 5). At a 

concentration of 10%, BVE7 demonstrated a 61.1% inhibition rate on 
spore germination, 73.4% on spore production, and 85.42% on hyphal 
growth. Additionally, treatment with the BVE7 filtrate resulted in 
protoplasmic aggregation, swelling deformation, and folding of the 
F. oxysporum mycelium (Figure 6). As the concentration of BVE7 
filtrate increased, these effects became more prominent.

3.4. Stability of the antifungal substances of 
BVE7

The antifungal substances in BVE7 were found to be unaffected 
by temperatures up to 60°C, but were significantly weakened at 
temperatures exceeding 80°C, though some antifungal activity 
persisted (Figure 7A). The antifungal substances were also observed 
to be pH-sensitive, with maximal activity at a pH of 7.0 (Figure 7B). 
Prolonged exposure to UV radiation was observed to enhance the 
antagonistic effect (Figure 7C).

3.5. Reduction SRR following application of 
BVE7

As shown in Table 3, the disease index of SRR when inoculated 
solely with F. oxysporum was around 70. When applied to a bacterial 
suspension of 1 mL per plant and 0.5 mL per plant, the control efficacy 
of SRR surpassed 65%. However, when treated with BVE7 at a 
bacterial suspension of 1.5 mL/plant, the control efficacy of SRR 
exceeded 75% when compared to the control group, which was 
equivalent to that of chemical fungicides.

FIGURE 2

Scanning electron micrograph depicting the cellular morphology of 
Bacillus velezensis BVE7 cultivated for 24 h at 30°C on nutrient agar 
medium.
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FIGURE 3

Phylogenetic tree depicting the identification of Bacillus velezensis isolate BVE7 based on 16S rRNA gene sequencing. The bootstrap values on the 
branching nodes were calculated on 1,000 replications.
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3.6. Effects of BVE7 treatment on the 
activities of defense enzymes in soybean 
root tissues

The efficacy of five major defense-associated enzymes in soybean 
roots treated with BVE7 was evaluated. The results showed that that CAT, 
SOD, and PAL activities exhibited an initial increase within 24 to 48 h, 
followed by a subsequent decline. Notably, treatment with BVE7 resulted 
in significantly higher activity levels than those observed in the control 
group (Figures 8A–C). Within 96 h, POD demonstrated a consistent 
upward trend, surpassing that of the control group by a significant margin 
(Figure 8D). MDA demonstrated slight fluctuations over a span of 96 h, 
yet remained significantly lower than the control group (Figure 8E).

In conclusion, soybean root treated by BVE7 activated the defense 
enzyme system to improve the disease-resistance.

4. Discussion

SRR, caused by Fusarium oxysporum, is the most important soil-
borne disease in various soybean growing regions around the world, 

seriously affecting the yield and quality of soybeans. The Northeast 
Black Soil Region in China is one of the “Four Great Black Soil 
Regions of the World” and the “Three Great Cold Region Black Soil 
Regions.” The climate characteristics of this region are also one of the 
important reasons for the serious occurrence of SRR. At the same 
time, the cold environment results in significant differences in 
microbial species and biological control compared to other regions. 
Therefore, this study, based on isolation and application under cold 
conditions, has greater practical value for the prevention and control 
of SRR in the northern cold regions.

Biological control has attracted extensive attention due to its 
safety, environmental friendliness, and sustainability (Wei et al., 2023). 
Most of the Bacillus spp. reported as effective biocontrol agents have 
been isolated from the rhizosphere, and occasionally from the 
phyllosphere, and are classified as members of the B. subtilis complex 
(Cawoy et al., 2011), which form populations on plant tissues and can 
colonize roots of different monocot and dicot plant species (Fan et al., 
2011). Therefore, this study obtained a soil-isolated strain B. velezensis 
BVE7, which a good antagonistic effect on the dominant strain 
F. oxysporum causing SRR and also had a good broad-spectrum 
against various pathogens causing SRR. B. velezensis has been widely 
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Effect of BVE7 filtrate on conidial germination, production and mycelial growth of Fusarium oxysporum. BVE7 filtrate was applied at concentrations of 
1, 5, and 10%. Error bars indicate standard errors of the mean of two repeated experiments. Different letters above the bars indicate a significant 
difference within each group (i.e., conidial germination, conidial production, and mycelial growth) as determined by Duncan’s multiple range test 
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FIGURE 5

Effect of sterile fermented broth from BVE7 on Fusarium oxysporum mycelial growth on the fifth day after inoculation.
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FIGURE 6

Effect of BVE7 filtrate on the mycelial morphology of Fusarium oxysporum (at a magnification of 400x). (A), Non-treated control; (B–D) denote 
different concentrations (1, 5 and 10%, respectively) of treatment.
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used in the prevention and control of soil borne diseases in crops, 
including B. velezensis against F. oxysporum causing Panax ginseng 
root rot (Wei et al., 2023), F. oxysproum caused strawberry fusarium 
wilt (Hong et al., 2022), F. oxysproum caused root rot in Polygonatum 
cyrtonema (Chi et  al., 2019), late blight of potato caused by 
Phytophthora infestans (Mahendra et  al., 2022). Therefore, the 
application value of B. velezensis BVE7 in controlling soil-borne SRR 
is significant.

In this study, we discovered that the BVE7 sterile filtrate at a 10% 
concentration effectively inhibited the spore germination, production, 
and mycelial growth of F. oxysporum, with rates of 61.11, 73.44, and 
85.42%, respectively, while also inducing hyphal malformations.

Cuellar-Gaviria et  al. (2021) demonstrated that B. tequilensis 
EA-CB0015 had the capacity to colonize banana leaf surfaces and 
produce lipopeptides that could significantly reduce the severity of 
black sigatoka disease. Wu et al. (2014) determined that both the 
fermentation broth and cell suspension of B. amyloliquefaciens 
NJZJSB3 were capable of fully protecting detached leaves of canola 
(Brassica napus L.) from Sclerotinia sclerotiorum infection, while also 
exhibiting effective antifugal properties through their toluene, phenol, 
and benzothiazole volatiles. Wei et al. (2023) inferred that B. velezensis 
YW17 inhibited F. oxysporum by secreting antifungal lipopeptides, 
proteins, and volatile substances, thereby indirectly protecting ginseng 
from pathogenic fungal infections. Furthermore, B. amyloliquefaciens 
FZB42, reclassified as B. velezensis, produced surfactin, fengycin, and 
bacillomycin D in the lettuce rhizosphere, enhancing the lettuce’s 
defense response against fungal pathogens (Chowdhury et al., 2015). 
Tahir et al. (2017) found that the volatile organic compounds (VOCs) 
produced by B. subtilis SYST2 significantly inhibited the growth and 
spore germination of plant fungal pathogens. Myo et al. (2019) found 
that B. velezensis NKG-2 produced VOCs that negatively impacted the 
growth of several plant fungal pathogens, including Fusarium spp., 
Botrytis cinerea, and Alternaria alternata. Some VOCs produced by 
BCAs could also promote plant growth and induce plant systemic 
resistance (Gao et al., 2017; Wu et al., 2019). B. amyloliquefaciens 
FZB42 exhibited antagonistic interactions with F. graminearum, a 
plant-pathogenic fungus that threatened the production and quality 

of wheat and barley globally (Gu et  al., 2017). Among these, 
bacillomycin-D and fengycin were found to effectively inhibit the 
growth of F. oxysporum (Koumoutsi et  al., 2004) and induce 
morphological changes in the plasma membranes and cell walls of 
F. graminearum hyphae and conidia (Gu et al., 2017). Culture filtrates 
from two strains of B. velezensis CE 100 not only induced abnormal 
mycelial development with reduction in pigment, but also caused 
hyphal deformations with swelling and bulging of the fungal pathogen. 
In addition, an antifungal dipeptide [cyclo(prolyl-valyl)], isolated 
from the culture of CE 100, exhibited concentration-dependent 
inhibition of conidial germination in F. oxysporum f. sp. Lycopersici 
and prolonged incubation periods, which resulted in irregular hyphal 
morphologies with swollen septa and disorganized cell contents in 
treatments with the dipeptide (Hwang et al., 2022). These findings are 
consistent with our research outcomes and indicate the need for future 
isolation and identification of antifungal compounds. Additionally, 
we will conduct further analysis on the fungicidal agents found in 
BVE7. The results of this study will provide a theoretical foundation 
for the development of more efficient, safe, and reliable 
biological agents.

Bacteria inhabiting the rhizosphere, which can colonize plant 
roots and confer advantageous outcomes on plant growth, are 
known as plant growth-promoting rhizobacteria (PGPR) 
(Karthikeyan et al., 2010). The colonization of the rhizosphere by 
PGPR enhances their ability to promote plant growth and health. 
PGPR possess the potential to promote plant growth, enhance 
legume plant nodulation with Rhizobium spp., and inhibit the 
growth of plant pathogens. Rhizobial inoculants have been utilized 
for disease management in peanut caused by A. flavus or A. niger 
(Ahmad et al., 2008; Moretti et al., 2008). These PGPR have the 
ability to synthesize a diverse array of antibiotics which are 
commonly linked to their efficacy in inhibiting the growth of plant 
pathogens. Meanwhile, a number of PGPRs are capable of producing 
enzymes, including chitinases, cellulases, glucanases, proteases, and 
lipases, which can hydrolyze portions of the cell walls of various 
pathogenic fungi (Remans et al., 2008; Majeed et al., 2015). Within 
the rhizosphere microbial communities, the predominant PGPR 

TABLE 3 Evaluation of the efficacy of biological bacteria BVE7 suspension preventing soybean root rot caused by Fusarium oxysporum in pot 
experiments.

No. Treatment Disease index (%)a Disease reduction (%)

1

i Ck 0.0 ± 0.0e –

ii F. oxysporum only 70.8 ± 2.9a –

iii BVE7 suspension (0.5 mL/plant) 22.2 ± 1.2 b 68.3

iv BVE7 suspension (1 mL/plant) 20.1 ± 1.0c 71.2

v BVE7 suspension (1.5 mL/plant) 17.4 ± 1.3d 75.1

vi 43% prochloraz(0.14 mg/mL) 18.2 ± 1.1d 74.0

2

i Ck 0.0 ± 0.0e –

ii F. oxysporum only 68.9 ± 1.8a –

iii BVE7 suspension (0.5 mL/plant) 21.6 ± 0.9b 68.7

iv BVE7 suspension (1 mL/plant) 18.4 ± 1.1c 73.3

v BVE7 suspension (1.5 mL/plant) 16.2 ± 0.9d 76.5

vi 43% prochloraz(0.14 mg/mL) 16.8 ± 1.2d 75.6

aValues in the column indicate Mean ± standard error (SE).
Values followed by different letters were significantly different according to Duncan’s multiple range tests (p < 0.05).

https://doi.org/10.3389/fmicb.2023.1275986
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fmicb.2023.1275986

Frontiers in Microbiology 10 frontiersin.org

strains require investigation to determine their mechanisms for 
promoting growth, which can subsequently be utilized to develop 
and enhance related agricultural products (Wang et  al., 2022). 

B. velezensis L-1 caused abnormal growth of the Botryosphaeria 
berengeriana mycelium, inciting defense-related enzyme expression 
in pears. Its inhibitory percentage of pear ring rot was observed to 
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Effect of BVE7 on (A), catalase (CAT), (B), superoxide dismutase (SOD), (C), phenylalanine ammonia-lyase (PAL), (D), peroxidase (POD), (E), 
malondialdehyde (MDA). Two treatments with 3 replicates were included: i, 3 mL of sterile water as a control; ii, 1.5 mL suspension (1 × 108 CFU/mL) of 
BVE7/each plant. Error bars indicate standard errors of the means of two repeated experiments. Different letters above the bars indicate significant 
differences (p < 0.05).
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be 76.55% after 11 days post inoculation (Sun et al., 2017). Gao et al. 
(2017) found that B. velezensis provided protection to tomato plants 
against fungal pathogens, such as Alternaria solani and Botrytis 
cinerea. The study showed that BVE7 significantly reduced the 
disease index of SRR, exhibiting a control efficacy of over 75% at a 
bacterial suspension of 1.5 mL/plant in the pot experiments. 
Moreover, BVE7 aided in improving the activities of CAT, PAL, 
POD, and SOD while concurrently reducing MDA activity. Multiple 
studies have demonstrated that elevated levels of ROS-scavenging 
enzymes, antioxidant enzymes, and defense enzymes are indicative 
of increased disease resistance (Warabieda et al., 2020). Augmented 
levels of POD and PALserve to protect plant cells against pathogenic 
infection (Zhang et al., 2016; Zhu et al., 2021). CAT is considered an 
important antioxidant enzyme that prevents cellular damage by the 
action of free radicals(Gebicka and Krych-Madej, 2019). SOD is a 
crucial cellular antioxidant enzyme that converts superoxide free 
radicals into oxygen and hydrogen peroxide (H2O2), thereby 
protecting cells from oxidative damage (Singh, 2022). Meanwhile, 
MDA, a widely-used indicator of oxidative stress, provides insights 
into the degree of lipid peroxidation in plant membranes. Therefore, 
the BVE7 is able to effectively enhance the level of defense enzymes 
in soybean roots, resisting the invasion of Fusarium oxysporum to 
protect the roots and mitigate the severity of root rot.

Therefore, we conducted a thorough assessment of BVE7’s efficacy 
in managing SRR, indicating its potential utility as a means of 
controlling SRR in soybean cultivation.

5. Conclusion

In this study, a soil-isolated strain BVE7 was identified as 
B. velezensis, which exhibited broad-spectrum activity against various 
pathogens responsible for SRR. The BVE7 sterile filtrate, at a 
concentration of 10%, demonstrated significant antifungal activity, 
effectively inhibiting the conidial germination, production, and 
mycelial growth of F. oxysporum by 61.11, 73.44, and 85.42%, 
respectively, leading to hyphal malformations. The antifungal 
compound produced by BVE7 showed adaptability to a normal 
environment. In a pot experiment, the BVE7 suspension effectively 
controlled SRR, with the highest control efficiency of 75.13%. 
Furthermore, BVE7 can effectively stimulate the activation of soybean 
root’s plant protection defense enzymes to reduce the damage caused 
by fungi and the severity of SRR. In the next step, we will conduct 
in-depth research on the antimicrobial substances in BVE7 and longer 
growth stage test instead of just the seedling stage, aiming to provide 
materials for the development of new biocontrol agents against fungi 
causing SRR and strengthen applied research.
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