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The composition of resident microbes in the human body is linked to various 
diseases and their treatment outcomes. Although studies have identified 
pancreatic ductal adenocarcinoma (PDAC)-associated bacterial communities in 
the oral and gut samples, herein, we hypothesize that the prevalence of microbiota 
in pancreatic tumor tissues is different as compared with their matched adjacent, 
histologically normal appearing tissues, and these microbial molecular signatures 
can be highly useful for PDAC diagnosis/prognosis. In this study, we performed 
comparative profiling of bacterial populations in pancreatic tumors and their 
respective adjacent normal tissues using 16S rRNA-based metagenomics analysis. 
This study revealed a higher abundance of Proteobacteria and Actinomycetota 
in tumor tissues compared with adjacent normal tissues. Interestingly, the linear 
discriminant analysis (LDA) scores unambiguously revealed an enrichment of 
Delftia in tumor tissues, whereas Sphingomonas, Streptococcus, and Citrobacter 
exhibited a depletion in tumor tissues. Furthermore, we analyzed the microbial 
composition between different groups of patients with different tumor 
differentiation stages. The bacterial genera, Delftia and Staphylococcus, were very 
high at the G1 stages (well differentiated) compared with G2 (well to moderate/
moderately differentiated) and G3/G4 (poorly differentiated) stages. However, the 
abundance of Actinobacter and Cloacibacterium was found to be very high in G2 
and G3, respectively. Additionally, we evaluated the correlation of programmed 
death-ligand (PDL1) expression with the abundance of bacterial genera in 
tumor lesions. Our results indicated that three genera such as Streptomyces, 
Cutibacterium, and Delftia have a positive correlation with PD-L1 expression. 
Collectively, these findings demonstrate that PDAC lesions harbor relatively 
different microbiota compared with their normal tumor adjacent tissues, and this 
information may be helpful for the diagnosis and prognosis of PADC patients.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal 
disease (Riquelme et al., 2019), and a minor subset of patients survive 
more than 5 years after surgery (Dal Molin et al., 2015); the factors that 
determine such enigmatic long-term survival are unknown. 
Management of PDAC is exceptionally difficult due to late diagnosis, 
anatomical location, vague and non-specific symptoms, lack of 
sensitive and specific biomarkers, poor response to available 
therapeutic modalities, and drug resistance. No specific molecular 
markers and/or imaging technologies have the sensitivity or specificity 
to identify patients at an early stage of the disease or with a high risk 
of developing PDAC and regard them as candidates for early surgical 
intervention. Therefore, there is a need to develop discriminatory, 
non-invasive molecular markers for identifying early-stage PDAC and 
its precursor lesions, pancreatic intraepithelial neoplasia-II-III 
(PanIN-II-III), and mucinous pancreatic cystic neoplasms (IPMNs/
MCNs). Recent studies suggest a critical role of microbiome in cancer 
progression (Yatsunenko et  al., 2012; Davenport et  al., 2015) and 
prevention (Bultman, 2016). Typically, the microbiome constitutes 
approximately 3% of the total body weight (Sender et al., 2016), and 
alterations in microbial species can be a significant indicator of the 
diseased stage and disease progression. Human gut microbiota varies 
extensively between individuals (Turnbaugh et al., 2009; Qin et al., 
2010; Huse et al., 2012), which frequently associates with diet (Muegge 
et al., 2011; Wu et al., 2011; David et al., 2014), age (Yatsunenko et al., 
2012; Davenport et al., 2015), sex (Fierer et al., 2008; Davenport et al., 
2015), body mass index (BMI) (Turnbaugh et al., 2009; Structure, 
2012), and disease presentation (Zackular et al., 2013; Walters et al., 
2014) and can influence the balance between beneficial and pathogenic 
bacterial species (Almeida et al., 2006). The microbiome in bodily 
fluids and organs is altered with diverse health outcomes, including 
transformed immunity, obesity, cancer, and diabetes (Ley, 2010; Kau 
et al., 2011). However, the connection between microbial infection, 
oral health, and PDAC in the realm of disease dynamics is not 
well studied.

Recently, the microbiome composition has emerged as a potential 
driving force for identifying early cancer biomarkers (Kostic et al., 
2012; Zambirinis et al., 2014). Altered gut and oral microbiota have 
been recently studied to determine the association of microbiome 
with the pathogenesis of PDAC. Studies have reported their 
involvement in mediating tumor responses to chemotherapy and 
immunotherapy in patients with melanoma and lung cancers 
(Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al., 2018). 
A recent study found the presence of Fusobacterium species in 
formalin-fixed, paraffin-embedded (FFPE) tissue specimens of PDAC 
patients (Mitsuhashi et al., 2015). Previous studies have reported the 
associations between periodontal disease pathogens and pancreatic 
cancer risk, especially Porphyromonas gingivalis (Liu et  al., 2019). 
Periampullary and PDAC cancers were found to have reduced 
Lactobacillus spp. compared with healthy pancreas or bearing 
pancreatic cysts (Del Castillo et al., 2019). Another very broad study 
using specimens from the pancreas, bile, and jejunum was 
conducted  in pancreatic cancer patients who underwent 
pancreaticoduodenectomy and pancreatic cysts. Bacterial taxa that 
were present in the pancreatic ducts and the bile duct are Prevotella, 
Haemophilus, Aggregatibacter, and Fusobacterium (Rogers et  al., 
2017). Bifidobacterium spp. and L. acidophilus downregulated the 

expression of oncomiRs (miR-155 and miR-221) and reduced KRAS 
mutations in the liver tissue (Pushalkar et al., 2018). These studies 
provide an understanding of the potential bacterial translocation from 
the intestinal tract into the peritumoral milieu, which is more relevant 
to disease development. However, the analysis of microbial 
communities in gut or oral samples may reflect a disease state, without 
fully reflecting the tumor microenvironment, tissue-adhering bacteria, 
and topology of the diseased pancreas. Thus, the relevance of 
microbiota composition found in the human PDAC can only 
be  studied by comparing it with the surrounding non-malignant 
tissues of the pancreas from the same patient. Microbiota composition 
is important to understand what microbial genera/species are required 
to investigate for their favorable or adverse contribution to the natural 
history of pancreatic cancer, which remains incompletely studied.

The breakthrough success of anti–PD-1/PD-L1 immune-
checkpoint inhibitor (ICI) treatment has been witnessed in various 
cancers such as advanced-stage melanoma, non-small cell lung cancer 
(NSCLC), and renal cell cancer (RCC) (Hargadon et al., 2018). Despite 
this, only a minority of patients (10–40%); (Topalian et  al., 2012; 
Borghaei et al., 2015; Motzer et al., 2015) experience the benefits of 
ICI therapy. The downregulation of PD-L1 expression is believed to 
be a key factor contributing to the limited effectiveness of anti-PD-L1 
ICIs in PDAC treatment. Emerging evidence underscores the pivotal 
role of the gut microbiota in supporting ICI treatment in advanced 
melanoma, NSCLC, RCC, and urothelial cancer (Chaput et al., 2017; 
Routy et  al., 2018). The identification of specific bacterial taxa 
associated with PD-L1 expression in cancers holds immense potential 
for developing a microbiome-based combinatory treatment strategy. 
This approach aims to enhance the overall response rate to anti–PD-1/
PD-L1 treatment. Certain bacterial genera/species, such as 
Akkermansia [NSCLC, RCC (Routy et al., 2018; Zheng et al., 2019), 
and hepatocellular carcinoma (Zheng et  al., 2019), Clostridiales 
[melanoma; (Zheng et al., 2019)] and Alistipes putredinis [NSCLC; (Jin 
et al., 2019)] have been found to be enriched in patients with favorable 
clinical outcomes. Recent studies demonstrate that fecal microbiota 
transplantation (FMT) modulated the tumor microbiome and affected 
tumor growth as well as tumor immune infiltration in a PDAC mice 
model (Thomas et  al., 2018; Riquelme et  al., 2019). This offers a 
therapeutic opportunity to manipulate the microbiome and potentially 
improve the life expectancy of PDAC patients with limited treatment 
options. However, the comprehensive understanding of bacteria 
clinically beneficial to ICI therapy remains incomplete, particularly in 
the context of pancreatic cancer. Further exploration is needed to 
identify and leverage specific bacteria that can optimize the efficacy of 
anti-PD-1/PD-L1 treatment in pancreatic cancer as explored in 
this article.

Therefore, the current study investigates the status of microbiota 
harbored by PDAC tissues. It demonstrates how the tumor tissue-
harbored bacteria invaded potentially from other locations and their 
possible transmission to understand the effect of tissue microbiome 
on disease development. The study is focused on investigating the 
significance of tissue-associated microbiota, which could reflect the 
tumor state, topology, and overall tumor microenvironmental 
influence on the disease. These data reveal the complex relationship 
between individual tumor-inhabited microbial colonization that may 
help to develop strategies to improve patient outcomes. Therefore, 
we have investigated the enrichment of microbes highly localized at 
the tumor site. This is important to understand basic pathogenetic 
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mechanisms that are driven by tissue-adhering bacteria in the 
progression from normal to PDAC, affecting the topology of 
pancreatic tissues to attain malignancy.

2 Methods

2.1 Patient sample collection

Archived pancreatic ductal adenocarcinoma tissues along with 
matched adjacent normal tissue samples were collected from Baptist 
Memorial Hospital, Memphis, TN, after appropriate institutional IRB 
approval and informed consent. Before being received at the research 
laboratory, the tissues were deidentified to block all patient personal 
information (Supplementary Table S1).

2.2 Sampling condition and processing for 
DNA extraction

Upon surgical resection, both pancreatic cancer and matched 
adjacent normal tissue samples were immediately placed in a sterile 
vial on dry ice until transferred to −80°C for DNA extraction. The 
samples were homogenized in sterile PBS using a homogenizer at 
28,000 rpm. Considering the weight of the tissue, the final 
concentration of tissue in the PBS was 0.4 g/mL. DNA extraction from 
all the specimens was performed using the DNA extraction kit (MoBio 
Laboratories Inc.), following the manufacturer’s instructions. In brief, 
tissue samples were added to a bead beating tube for rapid and 
thorough homogenization. Cell lysis was performed by mechanical 
and chemical methods. Total genomic DNA was captured on a silica 
membrane in a spin column format. DNA was washed and eluted. 
This was followed by PCR analysis and other downstream applications. 
Most importantly, microbial DNA was purified from human tissue 
and enriched using the NEBNext Microbiome DNA Enrichment Kit, 
following the manufacturer’s instructions. In brief, genomic DNA, free 
proteins, proteinase A, SDS, and organic solvents were incubated for 
10 min at room temperature, followed by washing beads two times in 
a bind/wash reaction buffer. Furthermore, MBD2-Fc magnetic beads 
were incubated with the reaction for 15 min at room temperature, and 
the supernatant containing enriched microbial DNA was collected. 
This method leads to the enrichment of microbial DNA from samples 
containing methylated host DNA (including human) by selective 
binding and removal of the CpG-methylated host DNA. Methylation 
at CpG sites in microbial species is rare, leaving the non-CpG-
methylated (microbial) DNA in the supernatant. The quality and 
quantity of the extracted DNA were assessed by 1.0% agarose gel and 
NanoDrop (Thermo Scientific, United States), respectively.

2.3 Library preparation and sequencing

16S rRNA sequencing was performed following the method 
described by our group (Mukherjee et al., 2014, 2016) with minor 
modifications. In brief, library preparation was performed using the 
NEBNext Ultra™ DNA Library Prep Kit for Illumina sequencing 
(New England Biolabs), following the manufacturer’s 
recommendations. PCR was performed by thermocycling: 5 min at 

94°C for initialization; 28 cycles of 3 min denaturation at 94°C, 40 s 
annealing at 53°C, and 1 min extension at 72°C; followed by 5 min 
final elongation at 72°C. We used three replicates per sample, and each 
PCR product of the same sample was mixed. The amplicon products 
from different samples were purified using Agencourt Ampure beads 
(Agencourt Bioscience Corporation, Beverly, MA, USA). The library 
quality was assessed on a Qubit@ 2.0 Fluorometer (Thermo Scientific) 
and Agilent Bioanalyzer 2,100 system. Finally, the library was 
sequenced on an Illumina Hiseq  2,500 platform, and 250-bp 
paired-end reads were generated.

2.4 Bioinformatics analysis

Raw read files in FASTQ format obtained from the sequencing 
platform were assessed for quality using FastQC v0.12.1 (Andrews, 
2010), followed by trimming by Trimmomatic V0.33 (Bolger et al., 
2014), to remove low-quality bases and adapter sequences to improve 
data quality. Paired-end clean reads were merged using FLASH 
V1.2.11, based on some specific criteria described elsewhere (Magoč 
and Salzberg, 2011). The microbial taxonomy analysis was performed 
on QIIME2 v2019.10 (Caporaso et  al., 2010). In brief, DADA2 
(Callahan et al., 2016) was employed for denoising and removing 
chimeric sequences. After the removal of singleton sequences, 
operational taxonomic unit (OTU) picking was performed at 3% 
divergence (97% similarity) (Dowd et  al., 2008a,b; Edgar, 2010; 
Swanson et  al., 2011). Taxonomic classification of OTUs was 
carried  out using BLASTn against a curated SILVA SSU database 
v  138.1. The results of the taxonomic classification were used 
to generate the OTU file and associated taxonomy file for further 
downstream analysis (otu_count_ Supplementary Table S2, 
Sequences_otu_Supplementary Table S3, and Taxonomy_ 
Supplementary Table S4). The microbial community and diversity 
analysis was performed and visualized using different R packages 
(phyloseq, ggplot, vegan, and tidyverse), MicrobiomeAnalyst server 
(Dhariwal et al., 2017), and SHAMAN (Volant et al., 2020).

2.5 Expression of PD-L1 using qRT-PCR

RNA extraction from fresh tissues was performed using the 
RNeasy Midi Kit (catalog number 75144, Qiagen). To assess the 
relative expression levels of PD-L1 mRNA, a quantitative reverse 
transcription polymerase chain reaction (RT-PCR) was conducted. 
This involved the use of sequence-specific primers for human PD-L1: 
forward primer: 5′- CCA AGG CGC AGA TCA AAG AGA −3′ and 
reverse primer: 5′- AGG ACC CAG ACT AGC AGC A − 3′. These 
primers were utilized to amplify and analyze the expression of the 
PD-L1 gene. The relative expression of the PD-L1 gene was normalized 
by a housekeeping gene (GAPDH) and expressed as 2^-(ΔΔCt) (Crucello 
et al., 2019).

2.6 Statistical analyses

The statistical significance of the abundances of phyla and genera 
between the groups has been tested using the Mann–Whitney method 
at a value of p level of <0.05. A PREANOVA NMDS (non-metric 
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multidimensional scaling) plot was generated in the R platform using 
the ggplot2 package to visualize the data. The stress value and value of 
p indicate how well the data fit the NMDS model, and the statistical 
significance of the differences is observed. Furthermore, the analysis 
of the linear discriminant analysis (LDA) scores for differential genera 
between the two groups (normal and tumor) was conducted using 
LEfSe (Chang et al., 2022) in MicrobiomeAnalyst. All the experiments 
were performed in triplicate to minimize the impact of variability and 
increase confidence in the observed findings.

3 Results

3.1 Clinical characteristics of the cohort

This cohort comprises patients with diverse clinical characteristics, 
including varying ages, genders, and racial backgrounds 
(Supplementary Table S1). Individuals receive a diagnosis of PDAC, 
exhibiting varying tumor sizes, nodal engagement, and stages. 
Histological features range from well-differentiated to poorly-
differentiated tumors, indicating a spectrum of disease severity and 
prognosis within this cohort and highlighting the heterogeneity of this 
patient population.

3.2 Taxonomic composition and 
abundances of bacterial phyla in pancreatic 
cancer

DNA was extracted from freshly collected pancreatic tumor 
samples and matched adjacent normal samples, followed by 
sequencing and downstream bioinformatics analysis (Figure 1). The 
abundances of bacterial phyla have been assessed in tumor and 
adjacent normal tissues and presented in Figure 2. Due to differences 
in sequence depth, normalization is recommended before microbiome 
data analysis. The log-transformed OTU count before and after the 
normalization is presented in Figures 2A,B, respectively. The result 
indicates that five phyla, namely, Proteobacteria, Actinobacteroita, 
Firmicutes, Bacteroidota, and Cyanobacteria, are the most important 
contributors in these two tissue types (Figure 2C); however, their 
relative abundances vary between these two groups. For example, the 
abundance of Firmicutes (41.1%) was recorded to be very high in 
adjacent normal tissues, followed by Actinobacteroita (23.7%), 
Proteobacteria (18.7%), and Cyanobacteria (11.6%). Similarly, in 
tumor tissues, the abundances of Actinobacteroita (39.2%), 
Proteobacteria (31.3%), and Bacteroidota (14.4%) were high. However, 
the differential abundances of these phyla between groups (tumor and 
adjacent normal tissues) were not significant at a value of p level of 
<0.05 (Figures 2D–G).

3.3 Taxonomic composition indicates 
distinct bacterial genera found in 
pancreatic cancer

The genus abundances in both the tumor and adjacent normal 
groups are visually represented using a Krona graph in Figure 3A,B, 
respectively (Supplementary Figure S1). In the tumor group 

(Figure  3A), a higher prevalence of bacterial genera such as 
Streptomyces, Cloacibacterium, and Corynebacterium was observed. 
Conversely, in the adjacent normal tissues (Figure  3B), the genus 
Acholeplasma was the most predominant, followed by Streptomyces.

At the genus level, the differing taxonomic profiles between tumor 
and adjacent normal tissues revealed specific genera being exclusively 
present in tumor tissues, such as Candidatus_Obscuribacter 
(prevalence 10%) and Nocardioides (prevalence 10%). In contrast, two 
bacterial genera, such as Atopostipes (prevalence 15%) and Veillonella 
(prevalence 10%), were exclusively present in adjacent normal tissues. 
The most prevalent genera in tumor samples were Streptomyces 
(prevalence 100% and relative abundance 28.4%), Cutibacterium 
(prevalence 100% and relative abundance 12.9%), and Pseudomonas 
(prevalence 90% and relative abundance 10.7%) (Figure  3C). In 
contrast, Cutibacterium (prevalence 100% and relative abundance 
9.5%), Pseudomonas (prevalence 100% and relative abundance 5%), 
and Streptomyces (prevalence 90% and relative abundance 23.4) were 
prevalent in adjacent normal tissues (Figure 3C). Interestingly, in the 
adjacent normal tissues, the genus Acholeplasma had a notably high 
relative abundance of 30.6%, while its prevalence in the samples was 
only 15% (Figure 3C). We further conducted LDA analysis to pinpoint 
significant (p  < 0.05) features (genera), distinguishing these two 
groups. Intriguingly, three bacterial genera, namely, Citrobacter, 
Sphingomonas, and Streptococcus, displayed positive LDA scores (4.53, 
5.37, and 5.05, respectively) in the adjacent normal group compared 
with the tumor group (Figure  3D). However, the genus Delftia 
exhibited a negative LDA score (−5.46), signifying its higher 
abundance in tumor tissues compared with adjacent normal tissues 
(Figure 3D).

Furthermore, we aimed to explore connections between bacterial 
abundance and clinical characteristics. Our approach involved 
categorizing the tumor group into three segments based on 
differentiation (G1, G2, and G3). The variations in genus composition 
underscore the presence of differentially abundant genera across 
various tumor stages. For instance, Gemella (prevalence 7.69%), 
Lactobacillus (prevalence 7.69%), Microlunatus (prevalence 7.69%), 
and Bacillus (prevalence 15.38%) exclusively appeared in G3 stage 
samples. On the other hand, a few genera such as Cetobacterium, 
Enterococcus, and Fusobacterium were detected in a few samples of the 
G2 and G3 groups but completely absent in G1 stage samples. 
Interestingly, in the G1 stages, where tumors are well differentiated, 
Delftia and Staphylococcus displayed higher abundances compared 
with G2 (well to moderately differentiated) and G3/G4 (poorly 
differentiated). The relative abundance and prevalence of Delftia were 
31.0 and 100%, respectively, in G1 samples, while Cloacibacterium 
(relative abundance 15.7% and prevalence 15.38%) and Actinobacter 
(relative abundance 14.9% and prevalence 66.6%) were abundant in 
G2 and G3, respectively (Figure 3E). The substantial abundance of 
Delftia in G1, particularly when compared with adjacent normal 
tissues, suggests its role in tumor initiation and development and 
characteristics of well-differentiated cells. The resurgence of Delftia in 
G3 might indicate heightened cellular activity in poorly differentiated 
tumors, demanding aggressive proliferation and alterations in 
pathways or the tumor microenvironment. Furthermore, the Mann–
Whitney analysis emphasizes the significant difference in the 
abundance of Delftia between these groups (Figure 3F). These findings 
emphasize the unique and crucial role that Delftia may play in tumor 
development and progression, opening avenues for further exploration.
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FIGURE 1

The detailed workflow from sample collection to downstream bioinformatics analysis.

FIGURE 2

Differential abundance of phyla in adjacent normal and tumor tissues. (A) and (B) represent the log OTU count before and after normalization, 
respectively. (C) indicates the relative abundance of major phyla in adjacent normal and tumor tissues. (D-G) The Mann–Whitney significance test of 
the differential abundance of phyla between the adjacent normal and tumor groups.
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3.4 Bacterial diversity in normal and tumor 
tissues

The alpha diversity of microbial community in both normal and 
tumor samples has been investigated using Shannon and Simpson 
diversity indices. The Shannon diversity index indicates the species 
diversity in a community and is recorded to be 1.78 and 1.77 for 
adjacent normal and tumor groups, respectively 
(Supplementary Figure S2). Similarly, the Simpson index of adjacent 
normal and tumor groups was recorded to be  0.77 and 0.78, 
respectively. However, the species diversity and their relative 
abundances between these two groups are not significant at p < 0.05. 
To understand the similarities or differences between the microbiome 
of the tumor and adjacent normal tissues, we performed beta diversity 
(PCoA and NMDS) analyses using Bray–Curtis dissimilarity distance 
(Figure 4). Beta diversity essentially allows the comparison of the 
community of bacteria considering both how many different taxa are 
in the sample and their phylogenetic relationship. The PCoA plot 
indicated two overlapping clusters (one for tumor tissue and one for 
adjacent tissue); however, the genus diversity was not significant at a 
value of p level of <0.05 (Figure 4A). Furthermore, the NMDS plot was 
generated to visualize the difference in taxonomic composition 
between tumor and adjacent normal groups. No significant difference 
was observed between these two groups (Figure 4B, Pre-ANOVA, 
R2 = 0.02, p = 0.56).

3.5 Correlation between PD-L1 expression 
in tumor tissues and dominant bacterial 
genera

The correlation of PD-L1 expression (Supplementary Table S5) in 
cancer lesions with the most prevalent genera (present in at least 60% 
of the sample) has been calculated using multiple correlation 
coefficient statistics (Figure 5). The relative expressions of PD-L1 in 
tumor lesions were computed using qRT-PCR after normalizing the 
expressions in adjacent normal tissues. Our result depicted a positive 
correlation of Streptomyces (0.3054), Cutibacterium (0.2402), and 
Delftia (0.2238) with PD-L1 expression, while the correlation of 
Pseudomonas (−0.2020), Staphylococcus (−0.0044), and Acinetobacter 
(−0.1030) with PD-L1 was recorded to be negative. However, none of 
these interactions are significant at p < 0.05.

4 Discussion

The challenge of early PDAC detection persists, with the 
mechanisms underlying pancreatic cancer progression still not fully 
understood. Despite reported oncogenes, diagnosis and predicting 
outcomes remain challenging. While the role of microbiota in 
diagnosis and prognosis is recognized, its impact on the natural 
history of PDAC is insufficiently explored. This study investigates 

FIGURE 3

The taxonomic composition and differential abundance of genus between the groups. (A,B) Krona chart representing the percent abundances of 
genera in tumor and adjacent normal groups, respectively. (C) The differential relative abundance of the most dominant genera between the groups. 
(D) Linear discriminant analysis (LDA) effect size (LEfSe) performed on the microbial genus community abundance at a value of p level of <0.05. The 
candidates with significant LDA scores were represented in the graph. (E) The relative abundance of the genus in different tumor differentiation stages 
(G1, G2, and G3) along with adjacent. Normal tissues. (F) Mann–Whitney significance test of Delftia between different tumor stage groups and adjacent 
normal groups.
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tissue-invaded bacteria, exploring their contribution to disease 
development, marking the first exploration of PDAC tumor 
microbiome at both genera and species levels, and providing valuable 
insights into pathogenesis.

Several metagenomic and transcriptomic studies resulted in the 
development of novel specific and sensitive biomarkers for the 
diagnosis of PDAC at the earliest stages. The current study presents 
16S rRNA taxonomic profiling, revealing either overabundance or 
underabundance of distinct bacterial communities within the 
microbiota of pancreatic cancer tissues. Using surgically resected 
PDAC tissues and comparing them with matched adjacent normal 
tissues from the same patient, we were able to demonstrate distinct 
occurrences or abundances of bacterial taxa that harbor pancreatic 
tissue. Our findings provide evidence that the pancreatic tissue 
occupies substantial indices of bacterial diversity between-person 

variability in the relative abundances of bacterial taxa at the genera 
level in the pancreas. Our study demonstrates, for the first time in 
human PDAC patients, the distinct microbiota signatures colonizing 
pancreatic tumors and the matched adjacent normal tissue, and this 
colonization can modify the overall microbiome of the tumor. 
Interestingly, the phylum Bacteroidota (14.3%) was detected to 
be abundant in tumor tissues. The member of Bacteroidota belongs to 
different ecological habitats such as water, soil, ocean, and the 
gastrointestinal tract and consist of four major classes, namely, 
Flavobacteria, Cytophagia, Bacteroidia, and Sphingobacteria (Thomas 
et al., 2011). However, many bacterial candidates belonging to the 
class Bacteroidia are reported to the potential pathogens that cause 
different types of health complications (Wexler, 2007). The genus-level 
analysis showed high abundances of few important bacterial genera 
(such as Corynebacterium, Delftia, Cloacibacterium, and Pseudomonas) 
in cancer lesions compared with matched normal tissues from the 
same patient (Figure  3). Corynebacterium is a gram-positive 
bacterium, and many species of this genus have been reported to cause 
infections in humans and other animals (Oliveira et al., 2017). Even 
more, few previous studies have reported the close association of 
Corynebacterium with cancer patients and patients with solid tumors 
(Martins et al., 2009; Oresta et al., 2021). On the other hand, Delftia is 
a gram-negative bacterium and also have been reported to cause 
different types of infections in immunocompromised patients, 
including cancer (Bilgin et al., 2015; Brady et al., 2018). This indicates 
that these genera may contribute to risk stratification for pancreatic 
cancer. Many species of Pseudomonas (especially P. aeruginosa) are 
known to be one of the risk factors in the occupational environment, 
leading to respiratory disease. P. aeruginosa, due to its metabolite 
properties, contributes to nitric oxide (NO)-related carcinogenesis, 
such as oral cancer (Kakabadze et al., 2020) and NO signaling pathway 
as a pathogenic driver in pancreatic cancer (Wang et al., 2015; Fujita 
et al., 2019). However, at the genus level, the beta diversity (both PCoA 
and NMDS) does not show any significant differences at a value of p 
level of <0.05. Given the findings from this study, where two different 
tissue specimens were examined in the same subject and show 
difference in microbial inhabitation, it may also be  plausible that 

FIGURE 4

The genus level beta diversity between the tumor and adjacent normal groups. (A) Principal coordinates analysis (PCoA) indicates the genus-level 
taxonomic diversity between groups. Cluster 1 and Cluster 2 indicate the adjacent normal and tumor groups, respectively. (B) 7. Non-metric 
multidimensional scaling (NMDS) ordination plot presenting taxonomic composition diversity between the groups.

FIGURE 5

The multiple correlation coefficient (at p  <  0.05) demostrates 
between the most prevalent bacterial genera and relative expression 
of PD-L1 in tumor tissues. Red and green gradients signify the 
positive and negative correlation, respectively.
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everyone has a unique microbiome profile that exists in different 
gastrointestinal tissues, and that bacterial translocation from the gut 
to the pancreas might be  occurring. Most bacterial communities 
found in the tumoral milieu are commonly present in the gut 
microbiome, but investigating the tumor region is more important to 
determine the relevance of particular microbial colonization. This 
represents a significant unmet need, as most chemotherapeutic and 
immunotherapeutic agents that have proven efficacy in other 
malignancies have limited efficacy in PDAC. Since the gut harbors 
numerous good and bad bacteria, pancreatic tumors present the 
microbiota that is directly associated with disease prevalence 
and progression.

Recent studies have shown that the microbiota affects the 
responses to immune checkpoint blockade therapy in patients with 
cancer (Roy and Trinchieri, 2017; Routy et al., 2018; Saus et al., 2019). 
The fecal microbiota transplantation is an innovative investigational 
treatment that has been reported to augment and restore the human 
immune system, leading to increased sensitivity to immunotherapy 
(Smits et al., 2013; Kang and Cai, 2021). Organ-specific microbiomes 
have been recently given more importance due to their role in cancer 
growth (Schwabe and Jobin, 2013). Data suggest that microbiota 
adjustment may present a novel strategy for improving the efficacy of 
immunotherapies for cancer, particularly checkpoint blockade 
approaches targeting the cytotoxic T-lymphocyte-associated protein 
4 and programmed cell death ligand-1 (PD-L1) pathways (Goc and 
Sonnenberg, 2022; Park et  al., 2022). Specifically, our analysis 
establishes a positive compelling link between PD-L1 expression in 
PDAC tumor tissues and bacterial genera (Streptomyces and Delftia), 
suggesting a nuanced microbial influence on the tumor 
microenvironment. These insights not only contribute to our 
understanding of PDAC but also pave the way for targeted 
interventions aimed at harnessing the microbiota to optimize 
immunotherapeutic approaches in cancer, with particular emphasis 
on the PD-L1 pathway. This study positions microbiota modulation 
as a promising avenue for advancing precision medicine and 
personalized immunotherapy strategies in the realm of 
cancer treatment.

In summary, our results highlight the growing importance of 
microbiota in influencing responses to cancer treatments. We have 
explored the diversity of bacterial phyla and genera, delving into the 
intricacies of their abundances in the tumor and adjacent normal 
tissues. Hence, this study stands out by specifically examining 
microbes in pancreatic tissue, revealing unique microbial populations 
in both tumor and adjacent normal tissues, which is consistent with 
some studies demonstrating the dominance of the most prevalent 
species in each of them (Kartal et al., 2022; Tan et al., 2022). This 
contrasts with some previous studies that highlighted no differences 
in microbial populations between tumors and adjacent normal tissues 
(Nejman et  al., 2020). Despite some differences, there are shared 
observations with the previous studies investigating pancreatic tissue 
microbiome, such as the prevalence of Proteobacteria and Firmicutes, 
indicating potential microbial involvement in pancreatic cancer 
development (Geller et al., 2017; Nejman et al., 2020). The current 
study extends this knowledge by providing a comprehensive analysis 
at the genera and species levels, emphasizing the unique microbial 
signatures in both tumor and adjacent normal tissues and offering 
insights into microbial signatures associated with different stages of 
tumor progression. Moreover, our findings highlight the influence of 

microbiota on immune checkpoint-associated proteins, revealing a 
positive correlation between increased PD-L1 expression and the 
presence of specific genera (Streptomyces, Cutibacterium, and Delftia). 
This direct positive association between Streptomyces, Cutibacterium, 
and Delftia and PD-L1 expression suggests a nuanced microbial 
influence on the tumor microenvironment, opening avenues for 
targeted interventions. Therefore, acknowledgment of organ-specific 
microbiomes, particularly in their contribution to cancer development, 
emphasizes the potential of microbiota modifications as an innovative 
approach to bolster the treatment, including immunotherapies.

Despite these advancements, our study acknowledges a limitation 
in its sample size, urging the need for a more expansive and diverse 
population for enhanced generalizability. Future research should 
prioritize extensive validation studies, collaborating across research 
centers and incorporating larger, diverse samples. Additionally, 
understanding the molecular underpinnings of PDAC through our 
results holds the potential for stratifying patients for targeted 
therapies, ultimately improving treatment outcomes and patient care. 
By addressing these limitations and pursuing these future directions, 
we strive to propel PDAC research forward and translate our findings 
into impactful clinical applications. Altogether, this study unveils 
crucial insights into the pancreatic tumor tissue microbiome, 
showcasing distinct microbial communities that can impact PDAC 
pathogenesis and prognosis. Notably, our study lays the groundwork 
by uncovering distinct microbial colonization patterns in both PDAC 
tumors and adjacent normal tissues at the broader compositional 
level. This opens promising avenues for leveraging the microbiome in 
PDAC diagnostics and therapeutics.

5 Conclusion

Overall, this study provides an important insight into pancreatic 
tumor tissue microbiome at both phylum and genus levels. The findings 
reveal distinct microbial communities within pancreatic tumor lesions 
that potentially can influence PDAC pathogenesis and prognosis of 
patients. Notably, the high abundance of Delftia in tumors emerges as a 
potential molecular signature for disease diagnosis. This study also 
highlights the influence of microbiota on the expression of immune 
checkpoint-associated proteins (such as PD-L1, which is involved in 
immune checkpoint blockade therapy) as we  observed a positive 
correlation between increased PD-L1 expression and the presence of 
Streptomyces, Cutibacterium, and Delftia. These findings open new 
avenues for exploiting the microbiome as a potential diagnostic and 
therapeutic target in PDAC. However, further understanding regarding 
the relevance of specific microbial colonization in the tumors will 
be highly useful for improving the therapy/management of pancreatic 
cancer patients; thus, future studies are warranted in this important area 
to address the urgent need for developing more effective diagnostic/
therapeutic modalities for this devastating cancer.
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