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Introduction: Pseudomonas aeruginosa infections are one of the leading causes

of death in immunocompromised patients with cystic fibrosis, diabetes, and

lung diseases such as pneumonia and bronchiectasis. Furthermore, P. aeruginosa

is one of the main multidrug-resistant bacteria responsible for nosocomial

infections worldwide, including the multidrug-resistant CCBH4851 strain isolated

in Brazil.

Methods: One way to analyze their dynamic cellular behavior is through

computational modeling of the gene regulatory network, which represents

interactions between regulatory genes and their targets. For this purpose, Boolean

models are important predictive tools to analyze these interactions. They are one

of the most commonly used methods for studying complex dynamic behavior in

biological systems.

Results and discussion: Therefore, this research consists of building a Boolean

model of the gene regulatory network of P. aeruginosa CCBH4851 using data

from RNA-seq experiments. Next, the basins of attraction are estimated, as

these regions and the transitions between them can help identify the attractors,

representing long-term behavior in the Boolean model. The essential genes of the

basins were associated with the phenotypes of the bacteria for two conditions:

biofilm formation and polymyxin B treatment. Overall, the Boolean model and

the analysis method proposed in this work can identify promising control actions

and indicate potential therapeutic targets, which can help pinpoint new drugs and

intervention strategies.

KEYWORDS
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1 Introduction

Some of the life-threatening nosocomial infections among severely ill
and immunocompromised individuals are bacterial infections caused by the
“ESKAPE” pathogens (Rice, 2010). This is an acronym for Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
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Pseudomonas aeruginosa, and Enterobacter spp., which are
characterized by their ability to escape the action of multiple drugs
(Santajit and Indrawattana, 2016). Consequently, P. aeruginosa and
some of these multidrug-resistant (MDR) pathogens have been
classified by the World Health Organization as Priority 1, the most
critical group on the list of pathogens for research and development
of new antibiotics (World Health Organization [WHO], 2017).

Multidrug resistance is the central challenge in selecting
appropriate antibiotic treatments and reduces treatment options,
especially in nosocomial settings such as healthcare-associated
infections (HAIs) (Matos et al., 2018; Tamma et al., 2021), which
pose a serious public health problem due to high rates of morbidity
and mortality in hospitalized patients and high healthcare costs,
with P. aeruginosa being one of the most prevalent agents (Litwin
et al., 2021).

Pseudomonas aeruginosa is a ubiquitous opportunistic
pathogen that can cause infections in the lower respiratory
tract, skin, urinary tract, eyes, soft tissues, surgical wounds, and
gastrointestinal system, among others, leading to bacteremia,
endocarditis, and other complications, mainly in hospital settings
and immunocompromised patients (Horcajada et al., 2019;
Medeiros Filho et al., 2019; Montero et al., 2020). It is the leading
cause of death in patients with cystic fibrosis, diabetes, and other
lung diseases such as pneumonia and bronchiectasis, but rarely
causes infection in immunologically healthy individuals (Vallet-
Gely and Boccard, 2013). This non-fermenting gram-negative
bacterium is one of the most challenging to treat (Kadri et al., 2018)
due to its intrinsic resistance, acquisition of resistance through
chromosomal genetic mutations, and horizontally acquired
mechanisms of multidrug resistance (Horcajada et al., 2019).
Indeed, patients infected with MDR clones of P. aeruginosa have a
higher mortality rate (44.6%) than those infected with non-MDR
strains (24.8%) (Matos et al., 2018).

The production of carbapenemases is the most
epidemiologically important mechanism of carbapenem resistance.
Among clinical MDR isolates of P. aeruginosa in Brazil, São Paulo
metallo-β-lactamase (SPM-1) is the most prevalent carbapenemase
(Martins et al., 2018). This enzyme is encoded by the blaSPM-1
gene, located on the chromosome of P. aeruginosa (Medeiros
Filho et al., 2019), conferring resistance to almost all classes of
beta-lactams. The first reported strain of MDR P. aeruginosa
carrying the blaSPM-1 gene in Brazil dates back to 2003 (Gales
et al., 2003). SPM-1-producing P. aeruginosa is associated with
the SP/ST277 clone and has been isolated from hospital sewage,
rivers, and migratory bird microbiota, being widely disseminated
in various Brazilian geographic regions (Nascimento et al., 2016;
Martins et al., 2018). The strain P. aeruginosa CCBH4851, which
this research work is based on, belongs to the SP/ST277 clone
and was involved in an endemic outbreak in Brazil in 2008,
being isolated from the tip of a catheter in a hospitalized patient
(Silveira et al., 2014). This strain is resistant to most clinically
important antimicrobials, being susceptible only to polymyxin
B, and possesses various mechanisms of mobile genetic elements
(Silveira et al., 2014; Medeiros Filho et al., 2019).

A more comprehensive understanding of P. aeruginosa
behavior can be obtained by analyzing the dynamics of its
gene regulatory network (GRN) due to the predicted gene
expression patterns (Chagas et al., 2022). In recent years,
computational modeling methods have been employed to simulate

complex biological processes influenced by numerous factors,
including the construction of biological networks and analysis
of gene, metabolic, signal transduction pathways, and/or protein
interactions (Das et al., 2010; Tatarinova and Nikolsky, 2017).
The GRN consists of molecular regulators (RG, regulatory genes),
including transcription factors, that interact with each other and
other molecules within the cell to regulate mRNA levels and protein
expression (Souza, 2015). The GRN is modeled as a network, where
vertices represent genes, and the connections represent two types
of interactions: gene expression activation or inhibition (Garg et al.,
2011).

Boolean networks are a particularly simple way to model a
complex system (Albert et al., 2008). In a Boolean model of the
GRN, the nodes represent genes, the edges represent activation or
repression interactions between them, and each node can be in
an ON state (1, meaning expressed) or an OFF state (0, meaning
not expressed) (Schwab et al., 2020). In a simulation, each gene’s
expression level (state) is functionally related to the expression
states of certain other genes, depending on its logical updating rule
(Banzhaf et al., 2020).

Among the modes of state transition from state x(t) to its
successor state x(t + 1) in Boolean networks, three are more
frequently used: synchronous, asynchronous, and probabilistic
(Schwab et al., 2020). All updating methods can lead to stable and
significant behaviors of biological dynamics (Wang et al., 2012).
In the probabilistic mode, one function per node is randomly
chosen at each time step according to its probability before each
state transition, and then synchronous updating is performed.
The probabilistic Boolean network (PBN) mode was proposed by
Shmulevich et al. (2002) to relax the deterministic rigidity of the
Boolean model and incorporate uncertainty in gene expression
data. In all types of Boolean networks, including PBNs, the
dynamics of the model can be represented in state transition graphs,
which show the transition between states of all nodes in the network
and their progression toward each attractor (Schwab et al., 2020).

Attractors are sequences of states that repeat periodically,
representing long-term behaviors of Boolean networks and being
associated with biological phenotypes, making them a crucial point
of interest in model analyses (Wang et al., 2012). They resemble
what is observed in cells, which are stable systems where their
behavior (expression pattern) does not change unless there are
modifications in environmental conditions or genetic mutations
(Ma’ayan, 2012). In other words, cells operate within attractors of
the system, representing specific cellular behaviors (Naldi et al.,
2015). The compilation of all states leading to an attractor is called
the basin of attraction. Therefore, the larger the basin of attraction
is, the higher the probability that the attractor is biologically
significant (Schwab et al., 2020). Generally, the attractor with the
largest basin of attraction describes a well-known system behavior
as it represents the most likely cellular behavior (Klemm and
Bornholdt, 2005). Waddington’s “epigenetic landscape” concept
(Waddington, 1957) can represent the global dynamics of a GRN
by formally modeling cellular functioning through attractor theory
(Huang et al., 2009). The epigenetic landscape is a space of
states that defines the connection between an organism’s genotype
and phenotype; altering it can lead to different phenotypes.
Hypothetically, it is possible to manipulate essential genes within
the basins of attraction to alter the expected phenotype. The
description of attractors and their basins of attraction is based
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on a set of gene states within the analyzed model. Attractors
do not contain genes; instead, they are linked to specific states.
A particular gene may be active or inactive, occurring in multiple
basins of attraction across different phenotypes without forming
a direct gene-attractor association. For example, in Figure 1, we
see an example of attractor basins within the mammalian cell cycle
network, as introduced by Fauré et al. (2006) and discussed by
Müssel et al. (2023). There are 10 genes and 1024 states, resulting
in two basins of attraction with 512 states each. Each node within
the state graph of the mammalian cell cycle network represents a
specific network state, and each arrow represents a state transition.
Different basins of attraction are distinguished by varying colors,
with the yellow basin corresponding to attractor 1 (bold lines in
yellow) and the pink basin corresponding to attractor 2 (bold lines
in pink).

According to Sgariglia et al. (2021), biologically relevant
attractors and basins of attraction can be identified through
trajectory simulations, where the initial points are binary gene
expression values obtained by binarized cellular data, such as
RNA-seq data. The essential genes contributing to the stability
of the resulting basins of attraction can be considered potential
therapeutic targets as they can modify the epigenetic landscape in
which they are involved.

The state space of Boolean networks grows exponentially with
the number of nodes. In this work, due to the size and complexity
of the GRN of P. aeruginosa CCBH 4851 (Chagas et al., 2022),
there was a need to reduce the GRN into a core sub-network.
Kauffman et al. (2003) describe that the definition of the core sub-
network for attractor calculation should consider all nodes with
at least one outgoing edge, which can change the network state
from one timestep t to the next. Therefore, for this work, the core

FIGURE 1

An example of basins of attraction state graph from literature. These
basins are from the mammalian cell cycle network introduced by
Fauré et al. (2006) and developed by Müssel et al. (2023). This figure
was generated by us. There are 10 genes and 1024 states, leading to
two basins of attraction, each comprising 512 states. The nodes are
specific network states, and each arrow is a state transition, with
attractors highlighted by bold lines. The pink basin of attraction
corresponds to attractor 1 and the yellow basin to attractor 2. We
used the BoolNet Package (Müssel et al., 2023) to generate this
figure.

sub-network should consider all regulatory genes, and only them
Regulatory genes can be of two types: Regulators only, with at least
one outgoing edge, and regulator/target, with at least an outgoing
edge and at least one incoming edge, being also targets of other
regulators.

In a Boolean model, functions can be random, biologically
derived, or follow an order, such as Kauffman’s canalizing functions
(1974) (Kauffman, 1974). A canalizing function, as per Kauffman’s
definitions, takes multiple input variables, typically representing
gene states, and generates an output (0 or 1, “off” or “on” state).
These functions have one or more “dominant” input variables,
which can dictate the function’s output, regardless of the states of
other input variables. When one of these dominant inputs is in a
specific state, it “canalizes” or locks the function’s output, making
it independent of the other input values. The non-dominant
inputs can influence the function’s outcome only if the dominant
inputs are in particular states. In the absence of dominant inputs,
the secondary inputs alone can determine the function’s output.
Their role in GRN models captures the dynamics and stability
of biological systems, and over the years, more evidence has
emerged that canalization is ubiquitous in gene regulation (Daniels
et al., 2018). In more than 130 curated GRN models, the majority
of regulatory rules used are called Nested Canalizing Functions
(Kadelka et al., 2020), which has increased interest in studying
these Boolean behaviors and their impact on GRN dynamics and
controllability (Murrugarra and Dimitrova, 2015). It has been
observed that Boolean networks governed by canalizing functions
are typically more stable than those governed by random functions
(Kauffman et al., 2003), as they have a smaller number of attractors
and are more robust to perturbations (Dimitrova et al., 2022). In
general, the greater the quantity and prevalence of canalization, the
more stable the dynamics of the model (Karlsson and Hörnquist,
2007).

Canalizing Boolean functions is suitable for Boolean network
models of GRNs, as they represent biological regulations well
(Harris et al., 2002; Nikolajewa et al., 2007). Nested Canalizing
Functions (NCFs), a subclass of canalizing functions, were more
recently introduced (Harris et al., 2002) and studied from the
perspective of the stability properties of network dynamics. NCFs
exhibit an even more specific canalizing behavior due to their
“nested” hierarchical canalization. Within an NCF, you can find
multiple layers of canalization. In this structure, the state of
one input variable determines the canalization of another input
variable, and this pattern can continue through multiple layers.
This nested characteristic of canalization introduces an additional
layer of complexity to the function. Most regulatory rules in
molecular regulatory networks are canalizing, most of which
are nested canalizing (Kauffman et al., 2004; Murrugarra and
Laubenbacher, 2011). Therefore, they are important given their
relevance in systems biology. An important characteristic of NCFs,
according to Li et al. (2013), is that they exhibit a stabilizing effect
on the dynamics of a Boolean network: small perturbations from an
initial state do not increase over time and eventually end up in the
same attractor as the initial state.

In this work, we propose a Boolean model of the P. aeruginosa
CCBH4851 GRN based on Nested Canalizing Functions and study
its dynamics. For attractor landscape characterization, we used
RNA-seq data generated under several conditions. We then discuss
attractors and genes related to specific experiments, such as biofilm
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formation and Polymyxin B treatment. The Boolean model and
analysis presented in this work provide important directions on the
dynamic behavior of P. aeruginosa and can lead to new intervention
strategies for multidrug-resistant strains.

2 Materials and methods

The main stages of the method used in this work are illustrated
in Figure 2. The following subsections detail the procedures used
in those stages.

2.1 Boolean model construction

The CCBH-2022 GRN (Chagas et al., 2022) is the largest and
most comprehensive version of a P. aeruginosa GRN published
to date, with edges classified as activation, repression, dual, and
unknown, as described in dedicated biological databases and
scientific literature. The Boolean model of CCBH-2022 proposed
in this work is a PBN due to the uncertainty of dual and unknown
edges, with uniform probability values (P = 0.5) for expressed
function (Boolean value 1) and non-expressed function (Boolean
value 0) (Shmulevich et al., 2002).

CCBH-2022 consists of 5,428 regulatory interactions among
3,139 gene products, of which 212 were identified as regulatory
genes and 2,927 as target genes. It represents approximately 48% of
the P. aeruginosa CCBH4851 genome and includes 3,821 positive
regulation interactions, 643 negative regulation interactions, 19

FIGURE 2

Flowchart of the steps for constructing the Boolean model of the
RRG of Pseudomonas aeruginosa CCBH4851. Due to the size and
complexity of CCBH-2022, it was necessary to reduce its size to a
core sub-network. After determining the nodes that will be included
in this core sub-network, the Boolean model is constructed. To
analyze its dynamics and identify the attractor basins, bulk RNA-seq
data were binarized and used as the initial point for simulating the
trajectory of the model. Finally, genes in the basins were associated
with bacterial phenotypes through bibliographic research.

double regulation interactions, and 945 unknown interactions
(Chagas et al., 2022).

Due to the original network’s complexity and size, a core sub-
network was selected to simplify the model, define biologically
relevant attractors, and construct the PBN. Thus, the core sub-
network consists of 166 genes with both incoming and outgoing
edges and 46 genes with only outgoing edges, totaling 212 genes.
These 46 nodes always have conserved initial states, as it is through
the incoming edge that the state of a gene can be modified. The
initial conditions of the core sub-network (which in this work are
the binarized bulk RNA-seq expression data) can be defined as a
starting point for the trajectory simulation, but the landscape of
attractors does not depend on the initial conditions (Kauffman
et al., 2003).

The adopted Boolean function assignment for all nodes in
the network is the Nested Canalizing Functions (NCFs). As an
illustration, in the expression (ihf | rpoD) and (! (psrA)), if ihf or
rpoD = 1, the total resulting expression value will be 1 only if psrA is
not active. The first group of variables will be equal to 1 only if psrA
equals 0. In other words, several variables simultaneously influence
the value of the total function, with psrA dominating the others.

As there is a need to model the dynamics of a large-scale PBN,
the selected computational tool was the Approximate Steady-State
Analyzer of Probabilistic Boolean Networks (ASSA-PBN), which
allows for the analysis of PBNs with a high number of nodes and
was presented by Mizera et al. (2018). It simulates state transitions
and computes the probability associated with a set of states under
analysis.

To generate the input file for ASSA-PBN, which is the Boolean
model itself, a Python script was developed by our research group,
available in the supplementary data repository. It reads the CCBH-
2022 CSV file, selects the core sub-network (genes with at least one
outgoing edge), separates the conserved genes, and generates a file
with their Boolean rules. This file is in the “.pbn” format, which
ASSA-PBN requires.

The next step is assigning the corresponding bulk RNA-seq
expression values to each element of the CCBH-2022 core sub-
network.

2.2 RNA-seq experiments

RNA-seq data are available in the supplementary data
repository. The RNA-seq experiments were performed with 16
samples under 8 conditions:

1. Succinate (experiments 1 and 2).
2. Acetate (3 and 4).
3. Glycerol (5 and 6).
4. Glucose (7 and 8).
5. Planktonic (9 and 10).
6. Biofilm (11 and 12).
7. Polymyxin B (13 and 14).
8. Imipenem (15 and 16).

Several phenotypes of P. aeruginosa PAO1, among other
strains, with their respective regulatory genes, are described in
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the literature. After constructing the Boolean model of CCBH-
2022, trajectory simulations were performed using the RNA-
seq data as initial points, and the basins of attraction for each
RNA-seq sample were obtained. A search was then conducted
in the basins associated with the above-mentioned phenotypes
to observe the state of the regulatory genes described in the
scientific literature. If the literature shows that certain genes
act as positive or negative regulators of a phenotype, we verify
whether they are expressed in the related basins. We conducted a
search for publications that provide descriptions of the phenotypes
of P. aeruginosa in the context of the RNA-seq experiments,
along with information about the regulatory genes associated with
these conditions. These publications may identify genes that have
either a positive or negative influence on specific phenotypes. For
instance, a gene might be described as directly promoting (i.e.,
activating) the expression of another gene well-known for its role
in biofilm formation or as suppressing (inhibiting) a gene widely
recognized for its contributions to antibiotic resistance or efflux
pumps, and so forth.

The biofilm and polymyxin phenotypes were selected to
validate our Boolean model due to the information available
in the literature.

2.3 RNA-seq bioinformatics analysis

The bioinformatics analysis for RNA-seq began with quality
control of the raw sequences (in fastq format), alignment
to a reference genome or transcriptome, quantification,
and normalization (steps performed by members of our
research group).

Quality control of the raw sequences obtained from an
Illumina MiSeq sequencer was performed using FastQC software
(Andrews et al., 2016), which allows for observing read quality,
nucleotide distribution, GC content, overrepresented sequences,
k-mer frequency, and duplication level, among other. With this
information, the state of the reads is identified, and measures are
taken to optimize them. No sequences were trimmed for this study.

Bowtie2 (Langmead et al., 2019) was used to align the reads,
an ultrafast and memory-efficient tool for aligning sequencing
reads to long reference sequences. The NCBI reference sequence
CP021380.2 was used for this process.

The resulting raw data were normalized to generate a set
of values proportional to expression levels (Kauffman et al.,
2003). The Feature Aggregate Depth Utility (FADU) tool (Chung
et al., 2021) was used for this process. It is a quantification
tool specifically designed for prokaryotic transcriptomic analyses,
addressing the deficiencies centered around this step. From an
alignment file generated by read alignment to a complete genome
set, FADU handles ambiguous multigene fragments, assigning
fragment counts proportionally (Chung et al., 2021). The FADU
workflow uses BAM (Binary Alignment Map) and GFF (General
Feature Format) annotation files to identify proportional read
counts for prokaryotic RNA-Seq analyses.

The BAM file obtained from Bowtie and a GFF annotation
file of the used reference sequence (CP021380.2.gff) were used
in FADU to identify proportional read counts for prokaryotic
RNA-Seq analyses. A gene count file normalized by TPM
was then generated.

The expression data were organized in table form and saved
in CSV files, with the names identifying the processed genes.
After normalization, the next necessary operation for modeling the
dynamics of the core sub-network is binarizing the assigned gene
expression values for each unique node using a separation threshold
determined by the binarization algorithm. We used the Binarize
package available in the R language. Studies show comparative
results between BASC-A and BASC-B and conclude that BASC-B
performs better in binarized gene expression data (Hopfensitz et al.,
2012), which was chosen for this project (p < 0.001).

We also used p-value validation criteria, and the chosen
criterion for this work was the false discovery rate (FDR), which is
considered an important metric for assessing the overall confidence
of datasets in various biological research areas (Benjamini et al.,
2001; Reiner et al., 2003; Glickman et al., 2014). The binarization
script applied at this stage is written in the R programming language
and is available in the supplementary data repository.

2.4 RNA-seq data binarization

Binarization is a strategy that aims to convert continuous gene
expression profiles into binary information (Müssel et al., 2016).
In this work, we perform a transformation of the input data (real
numbers) into discrete values (binaries), as we are modeling a
real phenomenon (gene expression values) using a Boolean model
(Zhao et al., 2021). Since the data are bulk RNA-seq data, the values
of each gene were divided into two clusters, with similar values
grouped together (partitions). A threshold value x is defined within
the range of extremes in each sample, where values greater than x
are classified into one cluster, while values lower than x are classified
into the other (Müssel et al., 2016).

Specialized algorithms, such as BASC-A and BASC-B
(Binarization Across multiple SCales) (Hopfensitz et al., 2012),
are used in the binarization process based on the volume of
processed data. These algorithms analyze whether the variation in
the expression of real numbers for each gene justifies partitioning
(Reis, 2013). These algorithms use the ordered vector of input
values and evaluate them through successive approximations until
finding the boundary between the two clusters, identifying the
“best” threshold for binarization based on the data itself (Ferreira,
2019).

The BASC method is ideal for analyses involving the
reconstruction of Boolean networks, especially when conventional
methods result in multiple solutions, and it is also useful in
reconstructing PBNs based on binarized data (Shmulevich et al.,
2002; Hopfensitz et al., 2012) as in this work. Additionally, BASC
algorithms handle the presence of noise (interferences in the
gene expression measurement process) and the presence of few
measurement points (as it can be costly to obtain them) (Ferreira,
2019). For this work, values above the threshold are set to 1 (active),
and values below are set to 0 (inactive) (Weaver et al., 1999; Di Cara
et al., 2007).

2.5 Trajectory simulation

The trajectory simulation was performed by ASSA-PBN
in a bash script (see supplementary data repository), set to
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execute the simulation with n steps. The result is a TXT file
containing the trajectory.

A trajectory shows the sequence of states in the evolution
of a network, i.e., how state transitions occur, for analysis of
its dynamic behavior. For this simulation, the initial states of
each node need to be established as input parameters. Due
to the size of the core sub-network (212 nodes), there is an
enormous number of possible state vectors, making it infeasible
to simulate them starting from each node or choosing them
randomly (Ferreira, 2019). These states must make biological
sense, so the binarized RNA-seq expression data define the initial
states.

Using ASSA-PBN, trajectory simulations were performed with
30,000 state transitions based on the binarized RNA-seq data.

With the rules determining the model and the binarized
RNA-seq values assigned to each node in the defined core
sub-network, its stable equilibrium states, i.e., the attractors,
which can be single (composed of a single state) or cyclic
(composed of multiple states), are explored (de León et al.,
2022). As explained above, the basins of attraction are all the
states of the system that evolve toward a specific attractor, and
these states represent the epigenetic barriers that delimit the
basin of attraction (Conforte et al., 2020). To illustrate this,
The basins corresponding to the bulk RNA-seq dataset were
obtained using another Python script developed by our group.
The trajectory file generated by ASSA-PBN is the input for this
algorithm, which analyzes the conserved genes in the last n time
steps.

Considering that all obtained basins have cyclic attractors,
the expression behavior of all specific genes in the core sub-
network was evaluated at each time interval, observing whether
they varied in their Boolean value during the attractor cycle or
remained fixed for the entire cycle. The script selects only the
genes that did not show variations in Boolean values in any of
the attractors over the last n time steps of the simulation. In
this work, n = 1000, meaning that out of the 30,000 steps of
the trajectory simulation, the script selected genes whose binary
values remained unchanged in the last 1000 steps. These constant
genes constitute the basin of attraction. The script generates an
output file as a table listing the genes in the basin and their
respective bar plot.

3 Results

3.1 Boolean model of the P. aeruginosa
CCBH4851 GRN

More information about the core sub-network Boolean model
is described in Table 1. It is important to emphasize that
the network described in Table 1 is a sub-network of CCBH-
2022 that dictates its dynamics. One first observation is that
the core network is much smaller than the CCBH-2022 GRN.
Another fact worth noting is that most nodes are associated
with just one Boolean function. Most regulatory interactions
are positive and are related to gene activation, as shown in
Table 1.

TABLE 1 Description of the Boolean model of CCBH-2022.

Sub-network nodes (total) 212

Nodes with incoming and outgoing edges 166

Nodes with outgoing edges 46

Sub-network edges (total) 504

Positive regulation 239

Negative regulation 124

Dual regulation 3

Unknown regulation 138

Autoregulation (total) 89

Positive autoregulation 30

Negative autoregulation 40

Unknown autoregulation 19

Number of nodes in Boolean model 212

Number of nodes with 1 function 154

Number of nodes with 2 functions (chance of 50% for each) 58

Number of functions in Boolean model (total) 270

Number of positive autoregulation functions 57

3.2 The proposed method for identifying
biologically relevant basins of attraction
is computationally efficient

The model in the “.pbn” format (for more information, please
see Mizera et al., 2018) of the simplified network (core sub-network
with 212 genes) of CCBH-2022 is summarized in Figure 3, and the
complete code is available in the supplementary data repository.
It includes the simulation type (type), the number of nodes in
the network (n), a perturbation factor (perturbation), the list of
network nodes (nodeNames), and the definition of the Boolean
functions for each node, preceded by the respective probabilities
of the partially defined nodes (in this case, 50% for expressed
and unexpressed functions in double or unknown interactions)
(Shmulevich et al., 2002). According to Xiao and Dougherty (2007),
perturbation in the case of a Boolean network, which is a rule-based
binary network, refers to how a small change in a regulatory rule,
such as inverting its original binary value, affects the steady state
of the network. ASSA-PBN allows the application of a perturbation
value to nodes in the Boolean model. For example, if a node with a
constant Boolean value, contributing to a basin of attraction, has its
state perturbed, it may start varying and leave that basin. For this
reason, the perturbation factor in this work is set to 0, meaning no
perturbation is allowed.

Figure 4 is an example of binarized bulk RNA-seq data for the
selected genes discussed in this work, represented as a heatmap (p.
value > 0.001) (Figure 4A), also displaying their corresponding
normalized data (Figure 4B) (Transcripts Per Million) on a
gradient color scale. Their activation (depicted in green) or
inhibition (in red) in each RNA-seq condition in both scenarios
can be seen. In the heatmap of normalized genes, their behavior
according to the threshold detected by BASC-B is observed.

Trajectory simulations of all genes in the core sub-network
for the 16 samples were performed using the GRN_to_ASSA.py
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FIGURE 3

Abstract of the “.pbn” file. The summarized model code in “.pbn”
format of the simplified network (core sub-network) of
CCBH-2022. The “.pbn” file includes the simulation type (type), the
number of network nodes (n), a perturbation factor (perturbation), a
list of network node names (nodeNames), and the definition of
Boolean functions for each node, accompanied by the respective
probabilities for nodes that are not completely determined (typically
set at 50% for functions expressed and unexpressed in double
interactions or unknown cases).

script (supplementary data repository). It took approximately
1 min on an Ubuntu notebook (22.04 LTS) with an Intel Core i5
(2.5 GHz) processor, 8 GB of RAM, and 1 TB HD, demonstrating
computational efficiency to run a single simulation. We run a total
of 16 trajectory simulations, one for each replicate. Additional
executions per replicate provided the same result as the first run
when considering the set of genes that characterize a basin of
attraction, which is a consequence of choosing a large number of
steps for trajectory simulation. The binarized RNA-seq data were
used as the initial points of the trajectory. The trajectories are
expected to converge to simple or complex attractors within basins
of attraction corresponding to phenotypes. The result is a “.txt”
file containing all gene states for each time step of the trajectory,
which can be read in Excel. To enhance visual representation, the
initial section of the file (first 10 steps in the trajectory) has been
adapted into a heatmap graph for select genes in Figure 5. This
heatmap is from a biofilm sample (experiment #12). Each row in the
graph corresponds to the Boolean value of the states of individual
genes at each step of time in the trajectory (green: activation/1; red:
inactivation/0), while the columns represent the different time steps
in the simulation.

In addition to the CSV file with the dynamics during the
30,000 steps of all 212 genes (in heatmap format in Figure 5), the
GRN_to_ASSA.py script also generates the “conserved_genes.csv”
(in the supplementary data): a separate table with the 46 genes that
only have output edges.

3.3 Every condition is associated with
different regions of the epigenetic
landscape

For the detection of basins of attraction, the find_basin.01.py
script (supplementary data) reads the dynamics file (heatmap
in Figure 5) and the “conserved_genes.csv” file. The algorithm
considers the 46 genes based on the dynamics of the Boolean
model but separates them in the final result, excluding them from
the bar plots (Figure 6) and their respective tables (output files
of the algorithm). These 46 genes will always be part of the
basins of attraction for all experiments since their states remain
fixed throughout the trajectory simulation. Their binary values
are obtained from the simulated RNA-seq sample. They remain
constant in all samples because it is through the input edge that the
state of a gene can be modified. Therefore, the final result includes
166 genes with input and output edges whose stable states we want
to analyze.

Out of the 166 genes, the genes with constant states in the
last 1000 steps (total steps: 30,000) of the simulations for all 8
conditions of the 16 RNA-seq experiments were determined. The
number of shared genes between the basins of the samples and
their respective duplicates is presented in Figure 7. Every condition
is characterized by a different gene set, which indicates that every
condition is associated with a different region of the epigenetic
landscape. Nevertheless, it is important to highlight that more
than one basin of attraction may be present in the region of the
epigenetic landscape related to a condition.
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FIGURE 4

Heatmap illustrating binarized bulk RNA-seq data for selected genes (p-value > 0.001) alongside their normalized data (Transcripts Per Million) on a
gradient color scale. (A) The binarized data heatmap (p. value > 0.001), in which green represents activation, red indicates inhibition. (B) The
normalized data heatmap, in which the color scale reflects threshold values, where stronger shades of green indicate values above the threshold,
and deeper red hues signify values below it. The normalized gene heatmap showcases behavior based on the threshold identified by BASC-B.

FIGURE 5

A portion of the trajectory simulation output by a bash script for
some of the nodes in a heatmap. Binarized RNA-seq data serves as
the starting points for the trajectory, and the results of the trajectory
simulation are examined in the form of a “.txt” file. However, a
segment of this data has been adapted and presented in this
heatmap to enhance visual interpretation. Each row corresponds to
the Boolean state values of the respective genes over the course of
the trajectory (green for activation and red for inhibition), while the
columns represent the various time steps during the simulation. In
this simulation, ASSA-PBN is instructed to carry out simulations
encompassing 30,000 state transitions. The specific command lines
are detailed in the supplementary data repository.

3.4 Phenotypically relevant genes
associated with biofilm formation and
polymyxin sensitivity basins of attraction

For the association of basins with phenotypes, we chose two
conditions out of the eight that have substantial data in the scientific
literature: biofilm and polymyxin B. The bar plots for the biofilm
and polymyxin B simulations are shown in Figure 6. The blue
columns up to 1000 on the y-axis represent genes with constant
values in the last 1000 steps of the 30,000-step trajectory simulation.
They are all in the same basin of attraction. It is important to note
that the gene values can be either 0 or 1; what is relevant is that this
value remains constant in the last 1000 steps.

Figures 6A, B correspond to the basins of the 2 biofilm
phenotype experiment samples. Basin A contains 61 genes with
constant Boolean values, while Basin B contains 60. Figures 6C, D
3 represent the samples under the polymyxin B condition, with
C having 70 genes in the basin and D having 55. It is important
to mention that more than one basin may be associated with a
condition, representing different local minima within the same
basin of attraction. For instance, the epigenetic region associated
with biofilm is identified by the conserved genes in both basins A
and B. Due to its size, the list of genes contained in the attraction
basins of the Biofilm and Polymyxin B samples is available in
“biof-polb-basin.xlsx” within sim.zip in the supplementary data
repository. The analysis of the dynamic behavior of the network can
be assessed through trajectory analyses, aiming to identify the most
frequent transitions. From these transitions, it is possible to find
genes whose state changes had the most impact on these transitions
through phenotype analyses.

Figure 6 shows several genes with a constant Boolean value
in CCBH-2022 at various trajectory steps during simulation. This
stable set of states can be detected by the cyclic repetition of
Boolean values in the network genes, with these genes being related
to the stability of the attractor. The essential genes in the basins
were identified, and some were associated with phenotypes through
literature research for this work. This allows us to formulate
hypotheses about the attractors. As described in the section “2.
Materials and methods,” two phenotypes were selected to evaluate
the validation of the Boolean model: biofilm and polymyxin B,
based on the availability of more information in the scientific
literature.

Figure 8 presents the biofilm GRN of all gene interactions
for genes present in the biofilm basin of attraction. It has 2162
edges, and these interactions were classified into activation (“ + ”),
repression (“-”), dual (“d,” indicating that the regulatory gene can
function as both an activator and a repressor depending on the
conditions), and unknown (“?”), described in dedicated biological
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FIGURE 6

Bar plot of the final 1000 steps out of 30000 simulation steps. The x-axis represents the genes present in the simulation, and the y-axis represents
the last 1000 time steps of the trajectory. Genes that maintain a filled blue bar extending to the top of the y-axis are the genes whose states are
stable and define the attractor basin of the trajectory. (A,B) Genes characterizing the attractor basins of both biofilm samples. (C,D) Genes defining
the basins of attraction for the two polymyxin B samples.

FIGURE 7

Barplot of the number of common genes in the basins of the samples and their duplicates. The RNA-seq experiments were conducted in duplicates
for each condition. The graph illustrates the number of common genes between sample duplicates for each RNA-seq condition used in this study.
The x-axis represents the conditions, and the y-axis represents the number of shared genes between each pair of samples.
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FIGURE 8

Visualization of the GRN of all gene interactions of the 47 common genes present in the biofilm basin of attractions within the CCBH-2022.
Illustration of the gene interactions between the genes found in the biofilm attractor basin and the rest of the CCBH-2022 network. Yellow circles
indicate regulatory genes, light blue circles indicate target genes, black lines indicate an unknown mode of regulation, green lines indicate activation
and red lines indicate repression. Purple lines indicate a dual-mode of regulation. It is possible to observe the larger, highly interconnected
component, along with three regulatory genes and their targets that are not connected to the larger component. The image was created using
Cytoscape (version: 3.9.1).

databases and scientific literature. The image was created using
Cytoscape (version: 3.9.1).

4 Discussion

Certain genes associated with the phenotypes in the RNA-seq
conditions are indeed present in the CCBH-2022, but solely as
targets, characterized by having only incoming edges, without any
regulatory role. Consequently, they are not part of the essential
core sub-network and, consequently, and, therefore, are not present
in the basin of attraction of any condition. This include, for
example, genes related to glucose metabolism in P. aeruginosa,
such as glk (Glucokinase), gapA (Glyceraldehyde-3-phosphate
dehydrogenase), edd (6-Phosphogluconate dehydratase), and
acetate-related genes like acsA (Acetyl-CoA synthetase) and ackA
(Acetate kinase). Consequently, their activation or inhibition states
may undergo alterations, but they do not impact other network
nodes. Although they are integrated within the GRN, they function
as regulated elements without contributing to the characterization
of the basin of attraction.

There were 61 genes in the basin of attraction for the first
biofilm sample and 60 genes in the second sample. Among the two
basins, there were 47 genes in common. These 47 genes define the
larger basin of attraction, while the number of possible states for

the 60 genes basin is smaller and nested within the larger basin.
In the polymyxin B samples, the first sample had 70 genes, and
the second had 55. The difference in the case of biofilm lies in
the presence of the czcR gene in one sample of each condition.
This gene modulates the repression of pyocyanin production and
biofilm formation in the presence of an excess of Zn2+ or ZnO
nanoparticles (Lee et al., 2014), in addition to modulating quorum
sensing and antibiotic resistance through direct binding with gene
promoters such as lasI, phzA1, and oprD (Dieppois et al., 2012). It
is also essential for flagellar gene expression and swimming motility
during Zn2+-induced stress (Liu et al., 2022). The association of
multiple basins of attraction with biofilms is compatible with the
physiological variation of bacteria growing in biofilms, as reported
previously for P. aeruginosa (Williamson et al., 2012).

Figure 8 displays a GRN containing only the genes present
in the biofilm basin of attraction and their gene interactions with
the rest of the CCBH-2022. This biofilm GRN includes the 47
genes common to both biofilm samples, which belong to the
largest attractor basin. Interactions were considered in which these
genes function as both regulators and targets. As a result, these
47 nodes are involved in 2162 gene interactions, acting as both
regulators and targets. This Figure shows that this biofilm GRN is
highly interconnected, with only three regulatory genes and their
targets disconnected from the larger component. According to
Chagas et al. (2022), this variability in the number of connected
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components is most likely linked to the availability of biological
information used for the interaction reconstruction. This illustrates
how biofilm formation is a complex phenomenon emerging from
the interactions of numerous genes.

The biofilm phenotype can be described in terms of genes
expressed by cells associated with the biofilm (Donlan and
Costerton, 2002). Biofilms are microbial communities of cells
attached to a substrate, an interface, or to each other and embedded
in a matrix of extracellular polymeric substances produced by them
(Donlan and Costerton, 2002).

Long-term infections, such as those in the lungs of cystic
fibrosis patients, are maintained through the conversion of
P. aeruginosa to a mucoid phenotype, which results from the
overproduction of the exopolysaccharide alginate (Blanco-Cabra
et al., 2020). Biofilm formation is a complex and multifactorial
process, but studies have shown that this overproduction leads to
highly structured biofilms and is responsible for some properties
of the biofilm, such as increased resistance to the antibiotic
tobramycin (Sans-Serramitjana et al., 2017). Biofilms formed by
mucoid P. aeruginosa contain significant amounts of alginate,
which influences the architecture of the biofilm (Govan and
Deretic, 1996). In non-mucoid strains such as PAO1, alginate
is not the predominant polysaccharide present in non-mucoid
biofilms of P. aeruginosa cultured in vitro, and it is not necessary
for biofilm development (Stapper et al., 2004), likely being a
polysaccharide produced under stress (Hentzer et al., 2001). The
conversion of non-mucoid P. aeruginosa to the mucoid phenotype,
characterized by the overproduction of alginate, is a critical step in
the pathogenesis of cystic fibrosis, and it worsens the prognosis for
the patient (Hentzer et al., 2001). Therefore, activating the alginate
biosynthetic pathway, and developing biofilms in P. aeruginosa,
represent a critical moment in cystic fibrosis pathology (Morici
et al., 2007). The conversion to mucoid phenotype occurs, in most
cases, through spontaneous mutations in mucA, leading to the
hyperactivity of algU, which in turn results in the overexpression
of the alginate operon (Potvin et al., 2008). Therefore, it plays a
key role in forming mucoid biofilms in P. aeruginosa. Bazire et al.
(2010) examined the potential role of algU in forming non-mucoid
biofilms in P. aeruginosa and found that algU is critical for forming
robust biofilms. The algU gene is present in the biofilm basin with
a value of 1, indicating that it is always active in this basin.

The two-component regulatory system consists of a
transmembrane kinase sensor and its respective regulator and
is responsible for mediating bacterial responses to various
environmental stimuli (Groisman, 2016). Wu et al. (2021) showed
that when the expression levels of the PhoP-PhoQ two-component
system were disrupted, there was a reduction in biofilm formation
and cellular motility in P. aeruginosa PAO1 MphoP or MphoQ
mutants. These genes are essential for bacterial virulence and
regulate gene expression in quorum sensing, flagellar assembly,
and biofilm formation (Gooderham et al., 2009). Both phoP and
phoQ are present in the biofilm basin with a value of 1 (active).

fleN plays an important role in regulating flagellar gene
expression and flagellar biogenesis and in the transcriptional
regulation of biofilm matrix components (Navarrete et al., 2019).
This gene is present with a value of 1 in the biofilm basin. On
the other hand, fleQ, in addition to being a master regulator
of flagellar gene expression, also derepresses the expression of
genes involved in biofilm formation when intracellular levels of

cyclic guanosine monophosphate (cGMP), a nucleotide acting as
a second messenger, are elevated (Varadarajan et al., 2020). Unlike
flagellar genes, genes associated with biofilms are not always easily
recognizable in genome sequences (Gilleland and Murray, 1976).
Baraquet and Harwood (2015) identified new genes regulated by
fleQ involved in biofilm formation. FleQ is part of the basin of
attraction with a value of 0 (inactive). Navarrete et al. (2019)
revealed that FleN acts synergistically with FleQ in the activation
of transcription of important genes involved in biofilm formation
and in vivo cell-surface and cell-cell interactions at high levels of
cyclic di-GMP (c-di-GMP) but limits FleQ-dependent activation
under low c-di-GMP conditions. This may be a possible reason for
the activation of one and the inactivation of the other in biofilm
samples.

Since CCBH4851 is sensitive to polymyxin B, we focused
on genes related to its resistance. The phenotype of adaptive
polymyxin B resistance was first reported by Gilleland and Murray
in 1976 using the wild-type PAO1 strain in a low Mg2+ medium
and exposed to increasing concentrations of polymyxin B. Since
then, many studies have focused on the structural basis of
adaptive resistance (Santajit and Indrawattana, 2016), and it has
been discovered that under various environmental conditions,
P. aeruginosa synthesizes different forms of the lipid portion (lipid
A) of lipopolysaccharide (Gilleland and Farley, 1982), particularly
under Mg2+-limiting conditions.

In P. aeruginosa, the acquisition of polymyxin resistance
is mainly due to mutations in two two-component regulatory
systems, PhoP-PhoQ and PmrA-PmrB, which respond to Mg2+-
limiting conditions, resulting in polymyxin B resistance (Schurek
et al., 2009), and self-regulating operons (Gilleland and Conrad,
1982).

The PhoP-PhoQ system is associated with bacterial resistance
to polymyxins (Yang et al., 2021) and multidrug efflux pumps.
Yang et al. (2021) revealed that PhoP-PhoQ contributes to
bacterial tolerance to polymyxin B by directly regulating numerous
genes involved in LPS modification and membrane integrity
maintenance. These genes may also be involved in the bacterial
response to environmental stresses such as cation depletion and
antimicrobial substances from the host. Both phoP and phoQ are
part of the basin of attraction with a value of 1, indicating that they
are active.

On the other hand, the PmrAB system can promote bacterial
resistance to polymyxins and cationic peptides in response to Mg2+

deficiency by modifying lipopolysaccharide molecules (Schurek
et al., 2009). Xiao et al. (2022) showed that all polymyxin-resistant
isolates evaluated in their study had mutations in pmrB. Both
pmrA and pmrB are present in the basin of attraction, but they
are inactive, possibly explaining why the CCBH4851 strain is still
sensitive to polymyxin B.

The method described here can be applied to any other
organism as long as similar data is available and organized to be
used following the procedures described in section “2. Materials
and methods.”

Due to the size of CCBH-2022, a simplification approach was
used to focus on the core sub-network resulting from modeling its
dynamics to reach steady states within the basin of attraction. This
simplification involved literature research in separating genes with
input and output edges as criteria for selecting the components of
the core sub-network.
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Since cellular regulation is strongly linked to gene expression,
information related to gene expression was used as input data to
simulate the model’s dynamics. In this work, we used recently
obtained bulk RNA-seq data from our group, which underwent
a normalization process and were subsequently binarized for the
Boolean model treatment.

The interactions identified in CCBH-2022 were used to infer
the Boolean functions of each node in the core sub-network. The
nature of CCBH-2022’s gene regulatory network, which contains
both dual and unknown interactions, gave the model characteristics
of probabilistic Boolean networks, and a 50% chance of choosing
either the activation or inhibition Boolean function was adopted
(Shmulevich et al., 2002). The stochastic nature of the model has a
direct implication in the complexity of the observed attractors. On
determinist models, one expects that most attractors are composed
of a single state or a limited set of state nodes in a cycle. In particular
situations, chaotic attractors can emerge in Boolean networks
(Karlsson and Hörnquist, 2007). For the PBN described in this
manuscript, it is possible to note that most complex attractors do
not compose a closed cycle but behave more like chaotic attractors
due to the stochastic nature of the model (Schwab et al., 2020). That
justifies our choice to identify those genes that remain constant over
a large part of the trajectory to characterize basins of attraction.

Multiple trajectory simulations were performed on this core
sub-network to analyze the evolution of the network and identify
basins of attraction where genes remained in stable states.
The analysis of the dynamic behavior of the model revealed
characteristics of a gene regulatory network, such as robustness and
a tendency to return to a stable state.

Overall, this work provides new insights into identifying new
antibiotic targets and contributes to an increased understanding of
the behavior of this bacterium. Two scenarios are possible: either a
potential target can be inhibited (Kerr et al., 2022) or be a subject
of a gene knockout (Dallidis and Karafyllidis, 2014). Both scenarios
are related to perturbations in the current state of the system. The
first scenario implies a perturbation in a trajectory that may result
in a change of basin of attraction. The second scenario may cause
a structural change in the core sub-network. In either case, the
set of genes that remain constant for a given condition indicates
potential candidates for intervention. In the context of Boolean
modeling (Trunk et al., 2010), perturbations can be applied to
gene interactions, altering the logical rules or connections between
genes. Perturbations can lead to changes in system behavior, such as
activating or inhibiting specific pathways. Perturbations can also be
applied to gene expression, increasing or decreasing the expression
of one or more genes by changing the logical state of a gene from
“active” to “inactive” or vice versa. Perturbations in the initial
conditions of the Boolean model, which represent the initial state
of genes in the trajectory simulation and may be associated with
variables external to the cell, can also be explored. Perturbations
can help us investigate how the system responds to changes and
deviations from the normal state and which perturbations may
influence the behavior of genes and their interactions by observing
the system’s dynamics. Therefore, it will be a valuable analysis to
understand gene regulation mechanisms better, identify essential
signaling pathways, and try to predict the effect of perturbations
on complex biological systems (Xiao and Dougherty, 2007).

5 Conclusion and perspectives

In this report, the Boolean model and complex dynamics of the
regulatory gene system of P. aeruginosa CCBH4851 were modeled
using a PBN paradigm, and RNA-seq bulk data were used to
identify basins of attraction. The methodology presented here can
be extended to any organism with similar data and can be directly
applied to analyze other bacterial species, such as Escherichia coli.
This work can be expanded in various ways, such as designing
an algorithm to define therapeutic interventions based on model
analysis. The idea is to manipulate the model toward desirable
states through targeted intervention in specific genes. This systems
biology approach could lead to developing strategies to disrupt
the connectivity of these essential processes within the basins of
attraction, potentially reducing the pathogenicity and suppressing
the resistance of this bacterium.

The results of this research will be used for integration
with the metabolic network of P. aeruginosa CCBH4851, which
is currently under development by our research group. Several
integration methods are described in the literature (e.g., Covert
et al., 2008; Motamedian et al., 2017). We also intend to
incorporate other cellular processes into the integrated model,
advancing toward a whole-cell model (Ahn-Horst et al., 2022) of
a multidrug.resistant P. aeruginosa. Additionally, future analyses
should include perturbations in the Boolean modeling of CCBH-
2022 to evaluate changes in its dynamics and whether they align
with the available literature.

Additionally, data integration and drug repositioning analyses
will be explored to develop new treatment strategies for infections
caused by this bacterium and contribute to identifying new
antibiotic targets. This case involves combining genomic and
pharmacological information to identify existing drugs that can
be repurposed for treating diseases different from those developed
initially (Badkas et al., 2021). This process helps accelerate the
discovery of new uses for existing drugs by leveraging knowledge
about gene interactions and signaling pathways involved in the
disease. Boolean modeling of biological networks provides a
simplified representation of these interactions, enabling efficient
computational analysis and the identification of promising
candidates for further experimental validation (Dallidis and
Karafyllidis, 2014; Recanatini and Cabrelle, 2020; Kerr et al., 2022).
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