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Mucormycosis, an invasive fungal disease with severe consequences, poses a 
significant threat to immunocompromised individuals. However, the timely and 
accurate identification of Mucorales infection continues to present difficulties. 
In this study, novel detection techniques utilizing recombinase polymerase 
amplification (RPA) and quantitative real-time polymerase chain reaction (qPCR) 
were developed, specifically targeting the mitochondrial rnl gene, in order to 
address this challenge. The specificity of the RPA and qPCR assay was assessed by 
adding genomic DNAs extracted from 14 non-targeted strains, as well as human 
and mouse blood. No false-positive results were observed. Additionally, genomic 
DNAs from 13 species in five genera of order Mucorales were tested and yielded 
positive results in both methods. To further evaluate the sensitivity of the assays, 
DNAs from Rhizopus oryzae, Mucor racemosus, Absidia glauca, Rhizomucor 
miehei, and Cunninghamella bertholletiae were utilized, with concentrations 
ranging from 1  ng/μL to 1  fg/μL. The limit of detection (LoD) for the RPA assay 
was determined to be  1  pg., with the exception of Rhizomucor miehei which 
had a LoD of 1  ng. The LoD for the qPCR assay varied between 10  fg and 1  pg., 
depending on the specific species being tested. Sensitivity analysis conducted on 
simulated clinical samples revealed that the LoD for RPA and qPCR assays were 
capable of detecting DNA extracted from 103 and 101 colony forming units (CFU) 
conidia in 200  μL of blood and serum, respectively. Consequently, the real-time 
RPA and qPCR assays developed in this study exhibited favorable sensitivity and 
specificity for the diagnosis of mucormycosis.
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Introduction

Mucormycosis is a perilous and extensively damaging invasive fungal disease caused by 
filamentous fungi belonging to the order Mucorales, primarily affecting individuals with 
compromised immune systems (Millon et al., 2019; Guegan et al., 2020). Additional predisposing 
risk factors include diabetes mellitus, recipients of hematopoietic stem cell transplants, severe 
traumatic injuries, burns, and hematological malignancies. The majority of mucormycosis cases 
arise from the inhalation of fungal sporangiospores or direct inoculation through wounds, 
subsequently leading to the growth of angioinvasive hyphae (Skiada et al., 2018). The order 
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Mucorales encompasses a vast array of species, totaling more than 250 
across 55 genera (Badali et  al., 2021). Among these, the primary 
pathogens responsible for human mucormycosis are Rhizopus spp., 
Mucor spp., Lichtheimia spp. (formerly known as Absidia). 
Additionally, Rhizomucor spp., Cunninghamella spp., Apophysomyces 
spp., and Saksenae spp. have also been identified as causative agents 
(Badali et  al., 2021). It is worth noting that the etiology of 
mucormycosis exhibits regional variation, with Rhizopus spp., Mucor 
spp., and Lichtheimia spp. being the most prevalent in European 
patients. In India, Rhizopus species are the predominant pathogens, 
including Apophysomyces elegans, Apophysomyces variabilis and 
Rhizopus homothallicus, which have also emerged as significant 
contributors (Skiada et al., 2018).

The incidence of mucormycosis has experienced a substantial 
increase in recent decades due to the expanding number of susceptible 
populations (Ambrosioni et al., 2010; Saegeman et al., 2010; Guinea 
et al., 2017). Based on calculations from the Leading International 
Fungal Education portal, the annual prevalence of mucormycosis 
worldwide, excluding India, is estimated to be approximately 10,000 
cases (Chander et  al., 2018). However, in India, the prevalence is 
approximately 70 times higher than the global data, with an incidence 
rate of approximately 0.14 per 1,000 population. The Corona Virus 
Disease 2019 (COVID-19) pandemic has resulted in a notable increase 
in the incidence of mucormycosis. Atul Patel’s research revealed a 
2.1-fold rise in mucormycosis cases in India between September and 
December 2020 compared to the corresponding period in 2019 (Patel 
et  al., 2021), with COVID-19 being identified as the primary 
contributing factor. A comprehensive analysis of 80 cases of COVID-
19-associated mucormycosis (CAM) across 18 countries, 
demonstrated a mortality rate of 49%, with surviving patients 
experiencing significant long-term impairments, such as vision loss in 
46% (Hoenigl et  al., 2022) of cases. Furthermore, a recent study 
conducted in France reported a remarkably high mortality rate of 88% 
within a 12-week timeframe, underscoring the potential lethality of 
mucormycosis as a complication of COVID-19 (Danion et al., 2022).

The most prevalent clinical presentations of mucormycosis 
include rhino-orbito-cerebral, pulmonary, cutaneous, gastrointestinal, 
and disseminated forms. Typically, symptoms manifest abruptly, 
leading to rapid disease progression and a high mortality rate within 
a short period of time (Steinbrink and Miceli, 2021). Consequently, 
early detection and subsequent administration of antifungal therapy 
are imperative for a favorable prognosis. Presently, the diagnosis of 
mucormycosis primarily relies on mycological culture and 
histopathological examination. Under direct microscopy, the clinical 
specimens of Mucorales are characterized with the hyphae of a 
variable width (ranging from 6 to 25 μM), non-septate or 

pauci-septate and an irregular, ribbon-like branching, and wide-angle 
(90°) bifurcations (Skiada et al., 2018). The potential impact of friable 
hyphae damage during tissue manipulation on the low sensitivity and 
high rate of false negative outcomes has been identified as a 
contributing factor (Bougioukas et  al., 2022). Additionally, the 
suboptimal sensitivity of culture, with only approximately 50% of 
specimens yielding positive results even in cases of positive 
microscopy, may lead to delays or missed diagnoses of infections 
(Skiada et al., 2020). Furthermore, clinical and radiological features 
are unable to differentiate between various causes of invasive fungal 
diseases (IFD), including Aspergillosis, though recent studies have 
indicated that the presence of a reverse halo sign may suggest a 
Mucorales infection (Baldin et  al., 2018). The identification of 
mucormycosis is not aided by the detection of galactomannan or beta-
glucan (Guegan et al., 2020). Given that a delay of 6 days in diagnosis 
has led to a significant increase in 30-day mortality rates from 35 to 
66%, it is crucial to establish prompt and accurate methods for early 
detection (Werthman-Ehrenreich, 2021).

Molecular methods commonly used in research include 
conventional polymerase chain reaction (PCR), sequencing of the 
amplicons, restriction fragment length polymorphism (RFLP), 
quantitative real-time PCR (qPCR), and high-resolution melting 
(HRM) analysis of PCR products. The primers used in these methods 
target specific regions such as the internal transcribed spacer (ITS1 
and ITS2) region (Bernal-Martínez et al., 2013), the 18S rRNA gene 
(Scherer et al., 2018), the 28S rRNA gene (Springer et al., 2016), the 
high-affinity iron permease (FTR1) gene (Nyilasi et al., 2008), the 
mitochondrial gene rnl (Caramalho et al., 2019), the cytochrome b 
gene (Hata et al., 2008), and the Mucorales-specific spore coating 
encoding protein (cotH) gene (Baldin et al., 2018). Numerous studies 
have utilized formalin-fixed, paraffin-embedded (FFPE) or fresh 
tissue samples, serum, blood and BALF samples (Millon et al., 2013; 
Bellanger et al., 2018; Scherer et al., 2018) to investigate this matter, 
with varying levels of sensitivity (62 to 100%) and specificity (89 to 
100%). A detailed overview of molecular tools published 
Supplementary Table S1 provides further insight into this topic (Bialek 
et al., 2005; Hsiao et al., 2005; Nagao et al., 2005; Machouart et al., 
2006; Kasai et al., 2008; Massire et al., 2013; Lengerova et al., 2014; 
Alanio et al., 2015; Salehi et al., 2016; Springer et al., 2016; Yang et al., 
2016; Ino et al., 2017; Ashraf et al., 2022; Bigot et al., 2022).

Presently, there exist a minimum of three commercially available 
qPCR methods that have been documented for the purpose of 
detecting Mucorales. One such method, the MucorGenius kit, has 
been subjected to testing and has demonstrated commendable levels 
of sensitivity (ranging from 75 to 90%) and specificity (100%) when 
applied to clinical samples (Dannaoui, 2022). Additionally, Dolatabadi 
et  al. (2014) have devised a rolling circle amplification (RCA) 
technique that relies on the ITS region for the molecular identification 
of six distinct species of Mucorales. This technique exhibits a rapid 
turnaround time of 2 h and is visualized through the utilization of 
agarose gel electrophoresis (Dolatabadi et al., 2014). When compared 
to conventional detection methods, these techniques have significantly 
decreased the time required and are likely to enhance outcomes by 
facilitating timely intervention with appropriate treatment. However, 
the clinical application of these techniques is restricted due to their 
reliance on a thermal cycler. Additionally, certain studies lack 
comprehensive data on the limit of detection (LoD), sensitivity, 
specificity, and cross reactivity. The limited number of clinically 
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validated cases necessitates further investigation for a comprehensive 
evaluation of these established methods.

Recombinase polymerase amplification (RPA) is an isothermal 
nucleic acid amplification technique that functions within a consistent 
temperature range of 25–40°C, completing the amplification of the 
target sequence in a time frame of 10–20 min (Ghosh et al., 2018). The 
initiation of amplification occurs through the pairing of primers with 
homologous sequences on the template by a recombinase. 
Subsequently, the reaction is stabilized by the single strand binding 
protein, which binds to the displaced DNA strand and prevents 
primer dissociation. Finally, the extension step is carried out by the 
strand displacing polymerase (Wang et  al., 2021). The primary 
methods utilized for detecting RPA products include real-time 
fluorescence, lateral flow strips (LFS), and agarose gel electrophoresis. 
The majority of necessary reagents are readily available in a dehydrated 
pellet form. Recent literature has demonstrated the successful 
application of RPA-based techniques in the identification of various 
fungal species, such as Candida albicans (Wang et al., 2021), Candida 
tropicalis (Wang et al., 2022), Candida glabrata (Wang et al., 2022), 
Cryptococcus neoformans/C. gattii (Ma et  al., 2019), Aspergillus 
fumigatus (Li et al., 2022), and Fusarium graminearum (Lei et al., 2022; 

Liang et al., 2022; Wang et al., 2022), thereby fulfilling the demand for 
rapid, specific, and highly sensitive detection within a timeframe of 
20–30 min (Supplementary Table S2). However, to date, there have 
been no published studies investigating the use of RPA for identifying 
fungi belonging to the order Mucorales. In this study, two detection 
approaches were devised for the identification of order Mucorales 
using probe-based real-time RPA and qPCR in order to establish a 
technical reference for the prompt clinical detection of mucormycosis.

Results

Specificity validation

The specificity of the RPA and qPCR assay, which targeted the 
mitochondrial rnl gene, was evaluated using 13 species from various 
genera within the order Mucorales, as well as 14 non-targeted strains 
(Table 1) and samples of human and mouse blood. All 13 Mucorales 
strains exhibited positive signals (Figures  1A,C), while the 14 
non-Mucorales strains and the human and mouse blood samples did 
not yield amplification in either the RPA or qPCR assays 

TABLE 1 Strains used in this study.

Genus Latin name Strain RPA assay qPCR assay

Rhizopus spp. Rhizopus oryzae Isolated strain + +

Rhizopus microsporus Isolated strain + +

Mucor spp. Mucor mucedo BNCC336219 + +

Mucor circinelloides BNCC147484 + +

Mucor racemosus BNCC336225 + +

Mucor pusillus CICC41069 + +

Mucor fragilis Isolated strain + +

Lichtheimia sp. Lichtheimia corymbifera Isolated strain + +

Absidia sp. Absidia glauca Isolated strain + +

Rhizomucor spp. Rhizomucor miehei BNCC337563 + +

Rhizomucor pusillus CICC41598 + +

Cunninghamella sp. Cunninghamella bertholletiae Isolated strain + +

Actinomucor sp. Actinomucor elegans BNCC336123 + +

Non-targeted Aspergillus fumigatus Isolated strain − −

Aspergillus terreus Isolated strain − −

Trichoderma aureoviride Isolated strain − −

Penicillium chrysogenum Isolated strain − −

Candida albicans Isolated strain − −

Candida glabrata Isolated strain − −

Rhodotorula mucilaginosa Isolated strain − −

Cryptococcus neoformans Isolated strain − −

Alternaria alternata Isolated strain − −

Paraconiothyrium brasiliense Isolated strain − −

Fusarium oxysporum Isolated strain − −

Cladosporium cladosporioides Isolated strain − −

Acrophialophora levis Isolated strain − −

Escherichia coli Isolated strain − −
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(Figures 1B,D). These findings suggest that there were no instances of 
false-positive amplifications with non-Mucorales species in either 
assay, indicating that the primer and probe combination, Mt. RPA 
F/R/P and Mt. qPCR F/R/P, demonstrated good interspecies specificity.

Sensitivity assay

The sensitivity of the real-time RPA and qPCR assay was assessed 
by conducting tests on 10-fold serial dilutions of genomic DNAs from 
R. oryzae, M. racemosus, A. glauca, Rh. miehei and C. bertholletiae. The 
real-time RPA assay demonstrated a detection limit of 1 pg./reaction 
for the mitochondrial rnl gene, with the exception of Rh. miehei which 
had a detection limit of 1 ng/reaction (Figure 2A). The detection limits 
of qPCR assay were 10 fg/reaction for M. racemosus and A. glauca, 
100 fg/reaction for R. oryzae and C. bertholletiae, and 1 pg./reaction 

for Rh. miehei (Figure 2B). The presence of A. fumigatus or C. albicans 
genomic DNA did not impact the detection limits of either assay in 
any of the aforementioned strains (Supplementary Tables S3A,B).

Detection of simulated clinical samples

The simulated clinical samples comprised of a ten-fold dilution 
series ranging from 1 × 106 to 1 × 101 conidia of R. oryzae, 
M. racemosus, A. glauca, Rh. miehei, and C. bertholletiae, mixed with 
200 μL of blood or serum. In terms of the simulated serum samples, 
the limits of detection (LoDs) of RPA were determined to be 103 CFU 
conidia/reaction for M. racemosus and A. glauca, 104 CFU for 
C. bertholletiae, 105 CFU for R. oryzae, and 106 CFU for Rh. miehei 
(Table 2A). Conversely, the LoDs of qPCR were 101 CFU conidia/
reaction for R. oryzae, M. racemosus, A. glauca, and C. bertholletiae, 
and 103 CFU for Rh. miehei (Table 2B). Regarding simulated blood 
samples, the LoDs of RPA were determined to be 104 CFU conidia/
reaction for M. racemosus, 105 CFU for R. oryzae, A. glauca and 
C. bertholletiae, and 106 CFU in Rh. miehei (Table 2A), while the LoDs 
of qPCR were found to be 102 CFU conidia/reaction for R. oryzae, 
M. racemosus, A. glauca, and C. bertholletiae, and 103 CFU for Rh. 
miehei (Table 2B).

The analysis revealed that the RPA assay exhibited lower sensitivity 
compared to the qPCR assay in terms of the LoDs in simulated clinical 
samples (Supplementary Table S4). Overall, both the RPA and qPCR 
assays demonstrated lower LoDs for these five species in simulated 
serum samples as opposed to blood samples.

Discussion

The conventional diagnostic techniques for mucormycosis, such 
as pathology and culture, are predominantly invasive and may not 
be appropriate for specific patient populations due to their reduced 
sensitivity. To address this limitation, molecular assays have been 
proposed as supplementary tools to conventional diagnostic 
procedures for the detection and identification of mucormycosis 
(Skiada et al., 2018). In this regard, Springer et al. have developed a 
probe-based Mucorales-specific real-time PCR assay (Muc18S), 

FIGURE 1

Analytical specificity of Mucorales in real-time RPA and real-time PCR assay. Genomic DNAs from 13 species in five genera of order Mucorales and 16 
non-Mucorales stains, were used as template for real-time RPA reaction mixtures (A,B) and real-time PCR reaction mixtures (C,D).

FIGURE 2

Linearity and dynamic range. (A) Real-time RPA: 10−3-100 ng/μL 
genomic DNAs were introduced. (B) Real-time PCR: 10−5-100 ng/μL 
genomic DNAs were introduced.
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which successfully detected Mucorales DNA in all patients with 
probable or proven invasive mucormycosis, achieving a detection 
rate of 100%. The utilization of serum samples for detection allowed 
for an earlier diagnosis, approximately 21 days prior to the use of 
tissue samples (Springer et al., 2016). Millon et al. (2022) reported a 
sensitivity and specificity of 85.2 and 89.8%, respectively, for serum 
detection. Additionally, the first positive result in serum was 
observed 4 days before the first mycological or histological positive 
specimen, and 1 day prior to the initial imaging procedure (Millon 
et al., 2022).

Caramalho et al. (2019) conducted a study demonstrating the 
potential of rnl, a representative gene of Mitochondrial (mtDNA), as 
a promising marker for diagnostic applications. This is due to the 
protective nature of mitochondrial DNA against degradation, its 
stability across multiple generations, and its higher copy numbers 
compared to nuclear DNA (Caramalho et al., 2019). While nuclear 
ribosomal genes including ITS, 18S and 28S, appear to be less suitable 
as pan-Mucorales markers. In particular, The ITS region shows 
intraspecific variability within 3.24% of the Mucoromycotina 
(Thiyagaraja et al., 2022). Moreover, heterogeneity in the sequences of 
ITS 1 and ITS 2 has been observed in R. microspores (Baldin 
et al., 2018).

The objective of our research was to develop a real-time RPA and 
qPCR assay utilizing probes, with the aim of rapidly detecting 
Mucorales by targeting the mitochondrial rnl gene. The results of this 
assay were obtained within 20 min and 40 min, respectively. The 
selection of R. oryzae, M. racemosus, A. glauca, Rh. miehei and 
C. bertholletiae for this study was based on their clinical significance. 
To determine the specificity of the assay, we utilized genomic DNA 
from 13 species within 5 genera of Mucorales, 14 non-Mucorales 
strains, as well as human and mouse blood samples. The real-time 
RPA and qPCR assays demonstrated high specificity, as no cross-
reactivity was observed with other organisms. Our findings indicate 
that the real-time RPA assay has a detection limit of 1 pg. genomic 
DNA/reaction or 103 CFU conidia/reaction in simulated clinical 

specimens. Similarly, the LoD of qPCR assay was down to 10 fg 
genomic DNA/reaction or 10 CFU conidia/reaction in simulated 
clinical specimens. The sensitivity of RPA was found to be lower than 
that of qPCR; however, the RPA reaction time was half as long. 
Importantly, both methods exhibited resistance to interference from 
other fungal genomic DNA (A. fumigatus and C. albicans), and their 
sensitivity remained unaffected.

As evidenced by the data presented in Table  2 and 
Supplementary Table S4, the LoDs for the simulated clinical samples 
was found to be lower than that of the control groups (saline groups), 
suggesting the influence of serum and blood. Furthermore, when 
comparing the sensitivity of simulated serum samples to that of 
simulated blood samples, it was observed that the latter exhibited a 
less effective sensitivity, potentially attributable to the complex 
composition of blood and the loss incurred during DNA extraction. 
Notably, in both genomic DNAs and simulated clinical specimens, the 
analytical sensitivity of Rh. miehei was significantly lower compared 
to the other four species.

In comparison to traditional culture methods, molecular-based 
assays have demonstrated the ability to provide earlier diagnosis, 
making them a valuable adjunct to conventional diagnostic procedures 
(Skiada et  al., 2018). Springer et  al. (2016) have described two 
independent probe-based real-time PCR tests for the detection of 12 
Mucorales strains, with the LoDs ranging from 3 to 64 fg. Millon et al. 
(2013) have developed three qPCR assays for the detection of Mucor/
Rhizopus, Lichtheimia, and Rhizomucor, with LoDs ranging from 3.7 
to 15 fg/10 μL. Additionally, Dolatabadi et al. (2014) have developed a 
rolling circle amplification (RCA) method that has shown positive 
results for six of the most virulent species, with an LoD as low as 
3.2 × 105 copies of amplicons. In comparison to other molecular-based 
assays utilized for the identification of Mucorales, the qPCR assay 
developed in this study demonstrated an LoD as low as 10 fg, while the 
RPA assay exhibited an LoD as low as 1 pg. Both the RPA and qPCR 
methods devised in this research possess a brief turnaround time, with 
approximately 20 and 40 min required, respectively. In contrast, other 

TABLE 2 LoDs (CFU) of simulated clinical samples tested by (A) real-time RPA and (B) real-time PCR①.

(A) Species Saline Serum Blood

LoD Ct Value LoD Ct Value LoD Ct Value

R. oryzae 103 15.37 ± 2.14 105 13.45 ± 1.16 105 17.19 ± 3.87

M. racemosus 103 13.27 ± 3.86 103 14.79 ± 3.93 104 13.89 ± 4.06

A. glauca 103 15.69 ± 2.62 103 ②17.2 105 13.20 ± 1.51

Rh. miehei 106 ②7.24 106 ②12.87 106 11.26 ± 5.69

C. bertholletiae 104 11.76 ± 0.79 104 ②12.98 105 12.71 ± 4.72

(B) Species Saline Serum Blood

LoD Ct Value LoD Ct Value LoD Ct Value

R. oryzae 101 35.91 ± 0.54 101 35.66 ± 1.77 102 32.86 ± 1.09

M. racemosus 101 35.35 ± 0.63 101 32.07 ± 0.82 102 33.18 ± 0.68

A. glauca 101 35.84 ± 0.79 101 34.64 ± 0.75 102 34.22 ± 1.15

Rh. miehei 103 36.64 ± 0.64 103 33.27 ± 2.24 103 32.23 ± 3.36

C. bertholletiae 101 36.14 ± 0.52 101 36.95 ± 0.74 102 32.71 ± 2.31

① Aliquots of 200 μl samples were inoculated with a 10-fold dilution series of 1 × 106–1 × 101 CFU conidia of R. oryzae, M. racemosus, A. glauca, Rh. miehei, and C. bertholletiae. Each assay was 
repeated in 3 different batch of samples.  
② There was only one positive result among three assays.
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molecular-based assays necessitated 2–24 h to obtain results 
(Supplementary Table S1).

The primary drawback of these two assays is their inability to 
identify the specific genus of clinically relevant Mucorales strains. 
Accurate determination of Mucorales genera is crucial for guiding 
comprehensive diagnosis and selecting appropriate antifungal 
medication, which directly impacts clinical outcomes. While 
amphotericin B, posaconazole and isavuconazole antifungal therapies 
are generally effective against Mucorales strains in vitro, certain genera 
within this order have been linked to suboptimal prognosis in terms 
of clinical response, potentially due to reduced susceptibility (Badali 
et al., 2021). For instance, studies have demonstrated that the minimal 
inhibitory concentration of amphotericin B against Cunninghamella 
can be as high as 40% (Almyroudis et al., 2007), resulting in a higher 
mortality rate compared to diseases caused by other genera (71 versus 
44%) (Cornely et al., 2019; Jeong et al., 2019). Arendrup et al. (2015) 
discovered that triazole antifungals are less effective against 
M. circinelloides compared to other clinically relevant Mucorales 
species, particularly isavuconazole.

Additionally, when compared to the qPCR assay developed in this 
study and other molecular detection methods, the real-time RPA assay 
is relatively more expensive. Despite being conducted in a category II 
biosafety cabinet, the risk of cross contamination between samples 
remains significant due to the presence of numerous amplicon (Ghosh 
et al., 2018). Therefore, it is imperative to implement rigorous quality 
control measures and contamination precautions. Through further 
optimization, specifically enhancing analytical sensitivity and 
conducting comprehensive evaluations of specificity, RPA has the 
potential to emerge as a promising alternative to qPCR or other 
isothermal methods for the rapid detection of pathogenic fungi. The 
absence of reliance on rapid temperature ramping, as observed in 
PCR, renders RPA more suitable for integration into microfluidic 
lab-on-chip devices and amenable to field use. Consequently, RPA 
exhibits promising potential for rapid detection (Wang et al., 2021).

The utilization of our real-time RPA and qPCR assay in clinical 
samples has yet to be established, and this will be a focal point of our 
future research endeavors. Recent investigations have documented 
instances of combined aspergillosis and mucormycosis cases (Loubet 
et  al., 2022), particularly as secondary complications in critically ill 
COVID-19 patients (Johnson et al., 2021; Paul et al., 2022). Consequently, 
the screening for specific infections or co-infections, such as aspergillosis, 
presents an intriguing challenge (Muthu et al., 2022; Ramani et al., 2022).

In this study, our real-time RPA and qPCR system serves as the 
experimental basis for the swift identification of order Mucorales in 
clinical specimens, thereby enhancing the diagnosis and treatment of 
Mucorales infection and exhibiting promising potential for 
practical implementation.

Materials and methods

Mucorales strains and growth conditions

The Mucorales strains utilized in this research were obtained 
from the BeNa Culture Collection, China Center of Industrial 
Culture Collection, and the laboratory of the Department of 
Disinfection and Infection Control, Chinese PLA Center for Disease 
Control and Prevention (as indicated in Table 1). The fungi were 

cultivated on potato dextrose agar at a temperature of 28°C and 
allowed to incubated for 2–5 days.

Sporangiospores were harvested by washing the cultures with 
phosphate-buffered saline (PBS) and then separated from hyphal 
components using a 40 μm nylon cell strainer. Following 
centrifugation at 3,700 × g for 5 min, the sporangiospores were 
washed and resuspended in PBS for subsequent specificity testing. 
Additionally, 5 × 106 CFU sporangiospores of Rhizopus oryzae, 
Mucor racemosus, Absidia glauca, Rhizomucor miehei, and 
Cunninghamella bertholletiae (hereinafter abbreviated as R. oryzae, 
M. racemosus, A. glauca, Rh. miehei, and C. bertholletiae, 
respectively) were inoculated into 150 mL of potato dextrose 
medium and incubated at 28°C with agitation. Once the majority 
of sporangiospores had swollen, the germlings were separated from 
the medium by filtration through sterile gauze and then ground 
with liquid nitrogen for use in analytical sensitivity experiments.

Human and mouse blood

This study was carried out in accordance with the 
recommendations of Management of Laboratory Animal, 
Laboratory Animal Welfare and Ethics Committee, Academy of 
Military Medical Sciences, China, and the protocol was approved 
by this committee (IACUC-13-2016-002). Mice blood was acquired 
from C57BL/6 mice, which were obtained from Animal Center of 
Academy of Military Medical Sciences. Human simulated blood 
(Product No. A7930) was purchased from Beijing Solarbio Science 
& Technology Co., Ltd.

DNA extraction methods

The extraction of DNA from fungal cultures was conducted using 
the Biospin Fungus Genomic DNA Extraction Kit (Bioer Technology, 
Hangzhou, China), and simulated clinical samples were processed 
using the DNeasy® Blood & Tissue Kit (Qiagen, Madrid, Spain) 
according to the manufacturer’s instructions. Elution was performed 
using 50 ml of elution buffer. The quantification of DNA was carried 
out using the DeNovix Spectrophotometer (DeNovix Inc., America). 
The identification of ITS sequences was accomplished using the 
pairwise sequence alignment tool of BLAST from NCBI.

Primer and probe design

The primers and probes utilized in this study were designed 
based on a consensus sequence obtained from the mitochondrial 
rnl (encoding large-subunit-ribosomal-RNA) gene of R. oryzae, 
M. circinelloides and A. glauca sequences (GenBank accession 
numbers AY863212.1, KR809877.1, and KU196782.1). The 
software MEGA6 (version 6.06) was employed for this purpose. 
The design of primers and probes for real-time RPA and qPCR was 
performed using Primer Premier 5 (version 5.0.0). To ensure 
specificity, these primers (listed in Table  3) were subjected to 
BLAST analysis to confirm no cross-reactivity with human and 
non-targeted fungi. All primers were synthesized by Tsingke 
Biotechnology (Beijing, China).
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RPA and real-time PCR assay methods

The RPA reaction was conducted in a 50 μL volume using the 
Nucleic Acid Amplification Kit (Qitian, Jiangsu, China). The reaction 
mixture consisted of 5 μL Buffer VI, 2.1 μL (10 μM) of each primer, 
0.6 μL of the probe, and 2.5 μL of magnesium acetate. All reagents, 
except for the DNA template and magnesium acetate were combined in 
a master mix. The master mix was briefly vortexed for a few seconds and 
then distributed into individual reaction tubes containing a freeze-dried 
pellet. To each tube, 1 μL of genomic DNA or 5 μL of DNA extracted 
from simulated clinical samples was added. Subsequently, magnesium 
acetate was pipetted onto the tube lid and centrifuged into the bottom 
of the tube. Then, the tubes were immediately inserted into Light Cycler 
96 instrument (Roche Diagnostics, Mannheim, Germany). The reaction 
was conducted at 40°C for 20 min.

A qPCR reaction with a volume of 25 μL was carried out in the 
Light Cycler 96, consisting of 12.5 μL 2 × FsatFire qPCR PreMix 
(TIANGEN, Beijing, China), 10 μM each primer, 10 μM probe, RNase-
free water and either 2 μL genomic DNA or 5 μL DNA elution 
extracted obtained from simulated clinical samples. The cycling 
conditions encompassed an initial preincubation step at 95°C for 
1 min, followed by an amplification program consisting of 40 cycles: 
denaturation at 95°C for 5 s and annealing/extension at 58°C for 15 s. 
In each experimental trial, both negative and positive controls were 
incorporated. The threshold for determining positivity was established 
as a Ct value of <38.

Analytical sensitivity and specificity 
evaluation

The analytical sensitivity of real-time RPA and qPCR techniques 
was evaluated by employing 10-fold dilutions of DNAs from various 
fungal species, including R. oryzae, M. racemosus, A. glauca, Rh. 
miehei, and C. bertholletiae, ranging from 1 fg/μL to 1 ng/μL. Each 
assay was conducted a minimum of three times and the average CT 
value was calculated to ensure the reliability of the threshold cycle 
value outcomes.

The specificity and potential cross-reactivity were assessed by 
utilizing DNA samples extracted from 13 species within the Mucorales 
order, encompassing 5 genera, as well as 14 non-targeted strains, and 
samples of human and mouse blood. The strains of order Mucorales 
are Rhizopus spp. (Rhizopus oryzae, Rhizopus microspores), Mucor spp. 
(Mucor mucedo, Mucor circinelloides, Mucor racemosus, Mucor 
pusillus, Mucor fragilis), Lichtheimia corymbifera, Absidia glauca, 

Rhizomucor spp. (Rhizomucor miehei, Rhizomucor pusillus), 
Cunninghamella bertholletiae, and Actinomucor elegans. The 
non-Mucorales stains were Aspergillus fumigatus, Aspergillus terreus, 
Trichoderma aureoviride, Penicillium chrysogenum, Candida albicans, 
Candida glabrata, Rhodotorula mucilaginosa, Cryptococcus 
neoformans, Alternaria alternata, Paraconiothyrium brasiliense, 
Fusarium oxysporum, Cladosporium cladosporioides, Acrophialophora 
levis, Escherichia coli, and mammalian whole blood from mice 
and human.

In order to assess the potential impact of contamination from 
other strains on the sensitivity of detection, we introduced clinically 
significant pathogenic fungi of A. fumigatus or C. albicans (10 ng 
genomic DNA) into 10-fold dilutions of R. oryzae, M. racemosus, 
A. glauca, Rh. miehei and C.bertholletiae genomic DNA (ranging from 
1 ng/μL to10 fg/μL).

Preparation of simulated serum and blood 
samples

To simulate clinical patient samples, a 10-fold dilution series of 
1 × 106 to 1 × 101 sporangiospores of R. oryzae, M. racemosus, A. glauca, 
Rh. miehei, and C. bertholletiae were introduced into 200 μL of 
simulated blood and serum. DNA from saline samples containing the 
aforementioned sporangiospores series served as the control group. 
All procedures were conducted within a class II biosafety cabinet to 
mitigate the risk of contamination arising from environmental 
fungal spores.

Statistical analysis

Statistical analysis was conducted using GraphPad Prism 5 
software (GraphPad Software, La Jolla, CA). The data in Table 2 
and Supplementary Tables S3, S4 was represented as the 
mean ± standard deviation of the mean from at least three 
independent experiments, while the data in Figure  2 was 
represented as the mean.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

TABLE 3 Primers (5′ to 3′) for real-time RPA and real-time PCR.

Primer name Primer sequence

Mucorales-Mt-RPA F AGGACATGGTTGAAGGATAGGGTTTCCTTATCTGG

Mucorales-Mt-RPA R CTTAGAGGCCGTTACTTTACTCATGGAGGTTGAGC

Mucorales-Mt-RPA P CCTTATCTGGACATAACTGAGGAGAGAA[FAM-dT]G[THF] [BHQ-dT]GACATGAGTAACGTAA[3′-block]a

Mucorales-Mt-qPCR F AACCGACACTGGTCTGCTG

Mucorales-Mt-qPCR R TCTTCTATTCTGTGCCACGAC

Mucorales-Mt-qPCR P [FAM-dT]TCCCGAAGTTACGGAGTCATTTTGC[BHQ1-dT]

aFAM-dT, thymidine nucleotide carrying fluorescein; BHQ-dT, thymidine nucleotide carrying Black Hole Quencher; THF, tetrahydrofuran spacer; 3′ to block elongation.
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