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Background: Previous studies have suggested an association between gut 
microbiota and primary biliary cholangitis (PBC). Nonetheless, the causal 
relationship between gut microbiota and PBC risk remains unclear.

Methods: A bidirectional two-sample Mendelian Randomization (MR) study was 
employed using summary statistical data for gut microbiota and PBC from the 
MiBioGen consortium and Genome-Wide Association Studies (GWAS) database to 
investigate causal relationships between 211 gut microbiota and PBC risk. Inverse 
variance weighted (IVW) method was the primary analytical approach to assess 
causality, and the pleiotropy and heterogeneity tests were employed to verify the 
robustness of the findings. Additionally, we  performed reverse MR analyses to 
investigate the possibility of the reverse causal association.

Results: The IVW method identified five gut microbiota that demonstrated 
associations with the risk of PBC. Order Selenomonadales [odds ratio (OR) 2.13, 
95% confidence interval (CI) 1.10–4.14, p  =  0.03], Order Bifidobacteriales (OR 
1.58, 95% CI 1.07–2.33, p  =  0.02), and Genus Lachnospiraceae_UCG_004 (OR 
1.64, 95%CI 1.06–2.55, p  =  0.03) were correlated with a higher risk of PBC, while 
Family Peptostreptococcaceae (OR 0.65, 95%CI 0.43–0.98, p  =  0.04) and Family 
Ruminococcaceae (OR 0.33, 95%CI 0.15–0.72, p  =  0.01) had a protective effect on 
PBC. The reverse MR analysis demonstrated no statistically significant relationship 
between PBC and these five specific gut microbial taxa.

Conclusion: This study revealed that there was a causal relationship between 
specific gut microbiota taxa and PBC, which may provide novel perspectives and 
a theoretical basis for the clinical prevention, diagnosis, and treatment of PBC.
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1. Introduction

Primary biliary cholangitis (PBC) is an autoimmune liver disease 
characterized by chronic cholestasis, fibrosis, and the destruction of 
small intrahepatic bile ducts, leading to the development of irreversible 
cirrhosis and liver failure (Levy et al., 2023). A comprehensive review 
of epidemiological investigations revealed that the incidence of PBC 
varies between 0.3 and 5.8 per 1,000 individuals, with a discernible 
upward trend in prevalence rates over time (Lu et al., 2018). Despite 
being rare, PBC imposes a weighty clinical burden compared to its 
incidence and prevalence in the population. Regrettably, the etiology 
of PBC remains largely unresolved due to the complex interaction 
between environmental triggers and genetic susceptibility factors 
(Lleo et al., 2020).

The human gut microbiome, comprised of a diverse array of 
microorganisms, performs a vital function in metabolic processes, 
immune regulation, and the preservation of gut integrity (Hou et al., 
2022). An increasing body of evidence indicates that imbalances in the 
gut microbiota may play a role in the onset and advancement of PBC 
(Zhang L. et  al., 2023). This connection arises from the linkage 
between the liver and intestine through the portal vein, forming a 
gut-liver axis (Wang et al., 2021). In a study, it was observed that the 
gut microbiota compositions in individuals with PBC significantly 
diverged from those in healthy controls. This disparity manifested as 
a decrease in several potentially advantageous microbiota, such as 
Faecalibacterium and Ruminococcaceae, along with an increase in 
opportunistic pathogens, including Serratia and Yersiniaceae (Zhou 
et al., 2023). Tang et al. also found that significant differences in the 
serum and fecal bile acid profiles between PBC patients without 
ursodeoxycholic acid (UDCA) treatment and the control group (Tang 
et al., 2018). Furthermore, an observational study indicated that the 
cholestasis in PBC patients may be  related to impaired bile acid 
metabolism caused by the dysregulation of the gut microbiota. For 
instance, secondary bile acids (SBAs) were found to be  inversely 
correlated with genera that were enriched in PBC (Veillonella, 
Klebsiella) and positively correlated with genera enriched in controls 
(Bacillus, Oscillatory) (Chen et  al., 2020). In addition, the gut 
microbiota can also be  involved in the development of PBC by 
increasing gut permeability, influencing the intestinal mucosal 
immune balance, and inducing abnormal immune activation (Harada 
et al., 2009; Allam-Ndoul et al., 2020; Furukawa et al., 2020). However, 
most existing research predominantly utilizes observational study 
designs, often featuring limited sample sizes, and may be influenced 
by confounding factors, such as lifestyle, environment, and age. While 
these discoveries have established a connection between gut 
microbiota and PBC, they have not definitively uncovered a specific 
cause-and-effect relationship.

Mendelian randomization (MR) is a novel statistical approach that 
facilitates the assessment of causality, similar to a randomized 
controlled trial, by leveraging the random assignment of genetic 
variants during conception (Birney, 2021). By employing single 
nucleotide polymorphisms (SNPs) as instrumental variables (IVs), 
MR enables the modeling and inference of causal effects, effectively 
mitigating the impact of confounding variables (Richmond and Davey 
Smith, 2022). Moreover, the non-reversibility of heredity in MR 
analysis is advantageous in addressing concerns related to reverse 
causation interference (Xu Q. et al., 2022). Although the MR method 
has been employed in several studies to examine the potential causal 
relationship between gut microbiota and different diseases (Li et al., 

2022; Liu et al., 2023; Long et al., 2023), there is currently limited 
evidence regarding the causal association between gut microbiota 
and PBC.

In this study, we performed the first bidirectional two-sample MR 
analysis on summary data from Genome-Wide Association Studies 
(GWAS), investigating the causal relationship between gut microbiota 
and PBC risk. Our findings highlight the causal influence of gut 
microbiota on PBC and identify specific gut microbiota markers that 
could provide value in diagnosing and treating PBC.

2. Methods

2.1. Study design

We conducted a bidirectional two-sample MR analysis to 
investigate the potential correlation between gut microbiota and 
PBC. To mitigate the impact of confounding variables on the 
outcomes, the MR should meet three fundamental assumptions 
(Davies et al., 2018): (1) there must be significant associations between 
IVs and gut microbiota; (2) IVs should not be  correlated with 
confounding factors that are unrelated to gut microbiota; (3) the 
impact of IVs on PBC should be  solely mediated through gut 
microbiota (Figure 1).

2.2. Gut microbiota data sources

The genetic information of gut microbiota was acquired from the 
largest GWAS conducted by the MiBioGen consortium, which 
encompassed 5,717,754 SNPs and 18,340 participants of 16S rRNA 
gene sequencing data from 24 cohorts (Kurilshikov et al., 2021). The 
study included a predominantly European ancestry, with 16 cohorts 
and 13,266 samples. The researchers identified a comprehensive set of 
211 gut microbiomes, covering the species to the genus level, 
comprising 9 phyla, 16 classes, 20 orders, 35 families, and 131 genera. 
The cohort dataset employed in this study underwent meticulous 
adjustments for sex, age, genotyping batch, and the first ten principal 
components, as conducted by the original investigators of the 
respective cohorts (Kurilshikov et al., 2021). Fifteen microbial taxa 
were removed without specific species names (13 unknown families 
and 2 unknown genera). A total of 196 microbial taxa were included 
for analysis.

2.3. The data source for PBC

The summary statistic of PBC was extracted from the genome-
wide meta-analysis of Cordell et al., including 2,764 cases and 10,475 
controls of European ancestry (Cordell et al., 2021). All cases of PBC 
included in the cohorts met the diagnostic criteria specified by the 
European Association for the Study of the Liver (EASL).

2.4. Selection of instruments variables

To ensure the accuracy of the results, a rigorous data screening 
process was conducted on the extracted information from MiBioGen. 
Considering the limited number of gene loci that achieve 
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genome-wide significance levels in GWAS for the gut microbiota 
(p < 5 × 10−8), we  chose to use exposure data with a threshold of 
p < 1 × 10−5 to broaden the scope of correlation findings (Sanna et al., 
2019). To ensure independence among the SNPs, a linkage 
disequilibrium (LD, R2 > 0.001 and within 10,000 kb) was conducted 
based on the European-based 1,000 Genomes Project (The 1000 
Genomes Project Consortium, 2010). Following the principle that the 
selected SNPs affect exposure and outcome through identical alleles, 
we removed palindromic SNPs without A/T or C/G polymorphisms 
from the IVs (Zhang et al., 2021).

The impact of each SNP on gut microbiota was analyzed by 
assessing the F and R2  values utilizing the specified formula: 
F = [R2 × (N-2)]/(1- R2), R2 = [2 × β2 × EAF × (1-EAF)]/[2 × β2 × EAF × 
(1-EAF) + 2 × SE2 × N × EAF × (1-EAF)] (Burgess et al., 2011; Levin 
et al., 2020). It is worth noting that N and EAF in these formulas 
indicate the sample size and effect allele frequency, respectively. 
Additionally, the SNP’s impact size and standard error on gut 
microbiota are represented by β and SE. We excluded SNPs with an F 
statistic of less than 10, as these SNPs lacked adequate validity in the 
analyses. Furthermore, gut microbiota with fewer than 3 correlated 
SNPs across the genome was removed, following the requirement of 
having a minimum of 3 SNPs correlated with the exposure in specific 
sensitivity analyses using MR (Hemani et al., 2018).

2.5. Mendelian randomization analysis

In this study, the primary approach used to evaluate the causal 
relationship between gut microbiota and PBC without considering 
horizontal pleiotropy was the Inverse Variance Weighted (IVW) 
method (Burgess et al., 2013). Furthermore, to enhance the robustness 

of our findings, we  utilized supplementary methodologies in 
conjunction with the IVW approach, which included MR-Egger, the 
weighted median (WM), the maximum likelihood estimator (MLE), 
and the weighted mode (WMODE). The supplementary methods 
should conform to the assumptions of their respective models. The 
WM method assumes that at least half of the SNPs are unaffected by 
pleiotropy (Bowden et al., 2016). However, even if more than 50% of 
the SNPs are affected by pleiotropy, the MR-Egger inference results 
will remain robust (Bowden et al., 2015). The MLE, or Maximum 
Likelihood Estimation, is a theoretical method used for point 
estimation in this study. Compared to the IVW method, the MLE 
method exhibits a lower standard error and yields unbiased results 
without heterogeneity or horizontal polymorphism (EPIC- InterAct 
Consortium et al., 2015). The weighted mode method is versatile in 
handling genetic variables challenging the pleiotropy hypothesis 
(Hartwig et al., 2017). The IVW approach was utilized as the primary 
foundation of this study, supplemented by four additional methods to 
strengthen and enhance the findings.

2.6. Sensitivity analysis

To enhance the credibility and robustness of our results, 
we performed a comprehensive series of sensitivity analyses. Two 
methods were utilized to scrutinize the horizontal pleiotropy: the 
MR-PRESSO global test and the MR Egger intercept test. A p value 
greater than 0.05  in both tests showed the absence of horizontal 
pleiotropy (Verbanck et al., 2018). To assess heterogeneity in this MR 
analysis, we utilized Cochran’s Q statistic (MR-IVW) and Rucker’s Q 
statistic (MR Egger). p values exceeding 0.05 indicated no significant 
heterogeneity (Hemani et al., 2018). Furthermore, we employed a 

FIGURE 1

Overview of the Mendelian randomization analysis and three main assumptions. The workflow of the Mendelian randomization study exhibits causality 
between gut microbiota and PBC. Assumption 1 is a significant association between genetic variation and exposure; Assumption 2, there is no 
correlation between genetic variation and confounding factors; Assumption 3, genetic variants exert effects on the outcomes by influencing the 
exposure of interest. The arrows denote causal relations between two variables, pointing from the cause to the effect. The causal pathway is blocked if 
“X” is placed in the arrowed line. SNPs, single nucleotide polymorphisms; LD, linkage disequilibrium; WM, weighted median; WMODE, weighted mode.
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leave-one-out sensitivity test to evaluate the potential impact of 
individual SNPs on causal associations (Xiang et al., 2021). To validate 
the second MR assumption, we conducted a comprehensive search in 
the PhenoScannerV2 database, exploring each IV and its 
corresponding proxy features (Kamat et  al., 2019). Then, 
we subsequently excluded SNPs associated with potential confounders 
or risk factors (including inflammatory bowel disease, vitamin D 
concentrations, and obesity) (Xu H. et al., 2022; Zhang H. et al., 2023). 
Moreover, we applied the MR Steiger directionality test to assess the 
association between exposure and outcome (Hemani et al., 2017).

2.7. Reverse Mendelian randomization

In addition, we utilized a reverse MR analysis to evaluate the 
potential reverse causal association between PBC and gut microbiota. 
In this context, PBC was regarded as the exposure, and we extracted 
SNPs associated with PBC as the IVs (p < 5 × 10−8). Similar to the 
forward MR, a selection process was conducted, which involved 
eliminating linkage disequilibrium and instrumental variables with an 
F statistic below 10. Significant gut microbiota identified from the 
forward MR analysis was then utilized as the outcome. Subsequently, 
a two-sample MR analysis was utilized to determine the causal 
association between PBC and gut microbiota.

2.8. Statistical analysis

We established a robust causal association between gut microbiota 
and PBC based on the following criteria (Wang et al., 2023): (1) data 
analysis using the IVW method showed a statistically significant 
difference (p < 0.05); (2) consistent estimates were obtained from all 
five methods; (3) the Cochran’s Q test, MR-Egger test, and 
MR-PRESSO global test yielded non-significant results (p > 0.05); and 
(4) the MR Steiger directionality tests confirmed the concordance of 
causal direction. The above analyses were conducted using the 
Two-Sample-MR package (version 0.5.7) within the R software 
environment (version 4.2.3).

2.9. Ethics statement

Every GWAS incorporated in this study is publicly accessible via 
the original research publications and has obtained ethical approval 
from their respective institutions.

3. Results

3.1. Instrumental variable selection

We conducted quality control and identified 995 SNPs associated 
with PBC (Supplementary Table S1), which involved 171 gut 
microbiota taxa (including 109 genera, 29 families, 19 orders, 15 
classes, and 7 species). The F statistics for IVs range from 16.91 to 
88.42, showing the absence of weak IVs bias. The essential data for all 
IVs are presented in Supplementary Table S1. It’s important to 
highlight that in cases where two microbiota genera shared the same 

SNPs in our study, we opted for taxonomically distinct options (e.g., 
we  selected the Order Selenomonadales instead of the Class 
Negativicutes, and the Order Bifidobacteriales instead of the Family 
Bifidobacteriaceae) (Ye et al., 2023).

3.2. Causal associations of gut microbiota 
with PBC

Figure  2 and Supplementary Table S2 visually depict the initial 
findings on the connections between genetically represented gut 
microbiota and the risks associated with PBC. By applying a rigorous 
significance threshold (p < 0.05) using the IVW method and considering 
consistent directions across all five methods, we have discovered five gut 
microbiota taxa that demonstrate causal associations with PBC risk 
(Figure 3). The IVW analysis revealed a positive correlation between 
three gut microbiota taxa and PBC risk: Order Selenomonadales (OR 
2.13, 95%CI 1.10–4.14, p = 0.03), Order Bifidobacteriales (OR 1.58, 95% 
CI 1.07–2.33, p = 0.02), and Genus Lachnospiraceae_UCG_004 (OR 1.64, 
95%CI 1.06–2.55, p = 0.03). These findings suggest a possible link 
between these specific gut microbiota taxa and an increased risk of 
PBC. In contrast, our analysis discovered a significant negative 
relationship between two gut microbiota taxa and the risk of PBC: 
Family Peptostreptococcaceae (OR 0.65, 95%CI 0.43–0.98, p = 0.04), and 
Family Ruminococcaceae (OR 0.33, 95%CI 0.15–0.72, p = 0.01). These 
findings suggest that the two gut microbiota taxa have a protective effect 
against the development of PBC. The results obtained from other 
complementary analytical methods consistently corroborated the 
findings of the primary analysis, thereby bolstering confidence in the 
genuine causal relationship. Although none of the MR findings reached 
the threshold for significance after applying Bonferroni correction for 
various testing, there were several p-values less than 0.05, which 
indicated nominal significance.

3.3. Sensitivity analyses and detection of 
pleiotropy

The results from all sensitivity assessments are aggregated and 
presented in Figure 4. Despite the varied results, Cochran’s Q tests 
indicate no significant heterogeneity among the IVs (p > 0.05). 
Furthermore, the MR-Egger intercept tests do not reveal any evidence 
of horizontal pleiotropy across the five gut microbiota taxa. 
Additionally, the subsequent MR-PRESSO analysis does 
not detect any significant outliers (Table  1). The scatter 
plots (Supplementary Figure S1) and leave-one-out plots 
(Supplementary Figure S2) do not exhibit any potential outliers in the 
IVs. Furthermore, after querying the SNPs as mentioned above for 
positive associations in PhenoScannerV2, we  identified that only 
rs12894272 in the IVs of Lachnospiraceae_UCG_004 was significantly 
associated with body mass index (BMI) (Supplementary Table S3). 
After removing the SNP, the causal effects of Lachnospiraceae_
UCG_004 remained significant (Supplementary Table S4). Moreover, 
the MR Steiger directionality test unequivocally confirmed the 
robustness of the five causal effects, indicating a consistent direction 
from the gut microbiota to PBC (Table 1). These findings suggest that 
the previously mentioned gut microbiota influences the observed 
causal associations between gut microbiota and PBC.
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3.4. Reverse Mendelian randomization

A reverse MR analysis was utilized through the IVW to explore 
the potential causal association between PBC and five specific gut 
microbiota taxa. This study evaluates whether genetically predicted 
PBC could causally influence gut microbiota composition. After 
eliminating linkage disequilibrium, we  identified 56 SNPs, each 
exhibiting a solid association with PBC and having an F value greater 
than 10 (Supplementary Table S5). The data presented in 
Supplementary Table S6 did not show any significant reverse causal 
association between PBC and gut microbiota taxa, including Order 
Selenomonadales (p = 0.09), Order Bifidobacteriales (p = 0.61), Family 
Peptostreptococcaceae (p = 0.25), Family Ruminococcaceae (p = 0.25), 
and Genus Lachnospiraceae_UCG_004 (p = 0.71). The MR-Egger 
regression analysis showed that the p-values for the horizontal 
pleiotropy results of the Selenomonadales were less than 0.05. However, 

the MR-PRESSO test results showed no evidence of horizontal 
pleiotropy or outlier values, warranting further discussion 
(Supplementary Table S6). Moreover, no horizontal pleiotropy was 
detected in the remaining analyzed gut microbiota. The MR Steiger 
directionality tests consistently showed that PBC had a statistically 
significant influence on five gut microbiota (Supplementary Table S6).

4. Discussion

Using summary statistics from a large-scale GWAS, we employed 
a bidirectional two-sample MR approach to investigate the causal 
relationship between gut microbiota and PBC risk. Our findings 
provide compelling evidence indicating a negative correlation between 
an increased abundance of Ruminococcaceae and Peptostreptococcaceae 
and the risk of PBC. Conversely, Selenomonadales, Bifidobacteriales, 

FIGURE 2

SNPs influence the causal effect with five MR methods. Each red dot represents the causal effect on PBC of each SNP with IVW, and each region 
corresponds to a different level of gut microbiota, including phylum, class, order, family, and genus. The gray dashed line represents OR  =  1. Circles 
from outside are the p-value of IVW, the p-value for MR-Egger, the p-value for WM, the p-value for MLE, and the p-value for WMODE. The outermost 
circle is each gut microbiota’s ID, corresponding to the bacterial taxon name in Supplementary Table S1. OR, odds ratio; IVW, inverse-variance-
weighted estimate; WM, weighted median; MLE, maximum likelihood estimator; WMODE, weighted mode.

https://doi.org/10.3389/fmicb.2023.1273024
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2023.1273024

Frontiers in Microbiology 06 frontiersin.org

and Lachnospiraceae_UCG_004 may pose risk factors for 
PBC. Furthermore, the bidirectional MR analyses did not reveal any 
evidence of a reverse causal relationship. These discoveries offer 
valuable insights into PBC prevention and treatment.

The Genus Lachnospiraceae_UCG_004 group, which belongs to 
the clostridial cluster XIVas, is known for its 7α-dehydroxylated 
activity (Ridlon et al., 2016). This activity regulates SBAs by converting 
primary bile acids (PBAs) into SBAs through 7α-dehydroxylation 
(Kriaa et al., 2019). Heightened levels of this enzyme could increase 
SBA abundance. However, the inefficient elimination of SBAs through 
metabolism leads to their accumulation in bile, possibly contributing 
to the development of cholestasis (Li et al., 2017). Moreover, SBAs 
have been shown to have higher hydrophobicity and cytotoxicity than 
PBAs, resulting in liver cell damage (Ma et al., 2018; Sanyal et al., 
2021). Observational studies by Ma et  al. (2018) also found 
significantly higher levels of Lachnospiraceae in PBC patients 

compared to the healthy control group. These results were similar to 
our findings in that the Lachnospiraceae_UCG_004 group increased 
the risk of PBC. However, further research is needed to elucidate the 
underlying mechanisms by which Lachnospiraceae influences PBC 
and explore its potential as a therapeutic target for preventing and 
treating this multifaceted condition.

The Order Selenomonadales and one of its classes, Negativicutes, 
belong to the phylum Firmicutes. Previous observational studies using 
16S rRNA gene sequencing of the fecal microbiome have consistently 
shown a significant increase in the bacterial abundance of Firmicutes 
species in PBC patients (Ma et al., 2018). Several observational studies 
also showed that an increased relative abundance of Firmicutes is 
commonly associated with obesity (Mathur and Barlow, 2015; Hu et al., 
2022). A recent study utilizing MR analysis provided evidence 
suggesting that an elevated BMI, as determined by genetic factors, 
could be a causal factor in the development of PBC (Xu H. et al., 2022). 

FIGURE 3

Forest plot of MR estimate for the association between gut microbiota and PBC. Lines signify 95% confidence intervals and are truncated where they 
exceed the plotted range (arrowheads). OR, odds ratio; IVW, inverse-variance-weighted; WM, weighted median; MLE, maximum likelihood estimator; 
WMODE, weighted mode.
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FIGURE 4

Sensitivity analysis results of all SNPs. Each green dot represents the intercept of MR-Egger, and each region corresponds to a different level of gut 
microbiota, including phylum, class, order, family, and genus. The gray dashed line represents intercept =0. Circles from outside are the p-values for 
Cochrane’s Q (MR-Egger), Cochrane’s Q (IVW), and the p-values for the MR-PRESSO, the p-values for the MR-Egger regression. The outermost circle 
is each gut microbiota’s ID, corresponding to the bacterial taxon name in Supplementary Table S1. IVW, inverse-variance-weighted estimate; MR, 
Mendelian randomization. MR-PRESSO, MR-Pleiotropy RESidual Sum and Outlier.

TABLE 1 Sensitivity analyses of MR results between gut microbiota and PBC.

Classification Gut microbiota Pleiotropy, P Heterogeneity  
(Cochrane’s Q), P

Correct 
Causual 
direction

Steiger 
pval

MR-Egger 
intercept

MR-
PRESSO

IVW MR-Egger

order Bifidobacteriales.id.432 0.61 0.45 0.38 0.47 TRUE 4.07E-15

order Selenomonadales.id.2165 0.95 0.96 0.95 0.83 TRUE 3.26E-06

family
Peptostreptococcaceae.

id.2042
0.36 0.39 0.36 0.37 TRUE 7.94E-09

family
Ruminococcaceae.

id.2050
0.61 0.29 0.79 0.98 TRUE 7.19E-04

genus
Lachnospiraceae_

UCG_004.id.11324
0.73 0.21 0.61 0.5 TRUE 3.61E-10
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These studies further confirmed our results of the Selenomonadales 
group, which significantly increases the risk of PBC.

Notably, Bifidobacterium species are recognized as pivotal 
regulators of intestinal homeostasis and have the potential to confer 
various health benefits (Hidalgo-Cantabrana et al., 2017). Conflicting 
outcomes have emerged from observational studies examining their 
impact. A case–control study demonstrated that the relative 
abundance of Bifidobacterium showed a remarkable increase in 
patients with PBC compared to the control group (Furukawa et al., 
2020). This finding aligns with our study and suggests a causal 
association between the higher prevalence of Bifidobacterium and 
increased susceptibility to PBC, highlighting its adverse impact on the 
disease. Furthermore, Bifidobacterium adolescents have been found to 
enhance Th-17 cell levels in diverse gut-associated organs. Increased 
levels of Th-17 cells have been strongly linked to autoimmune and 
inflammatory diseases in both mice and humans (Tan et al., 2016). 
Synthesizing the findings from these studies, Bifidobacterium 
significantly increases the risk of PBC, most likely through the Th-17 
pathway (López et al., 2010).

Our investigation revealed a significant negative association between 
Family Ruminococcaceae and Peptostreptococcaceae with PBC risk, 
suggesting a potential protective effect against PBC. Previous research 
has shown that Ruminococcaceae, a butyrate-producing bacterial genus 
primarily found in the gut, is significantly reduced in PBC patients 
(Ohira et al., 2017; Furukawa et al., 2020). Butyrate, a short-chain fatty 
acid (SCFA), plays a crucial role in maintaining the integrity of the 
intestinal barrier. Studies have demonstrated that butyrate enhances 
intestinal barrier function by upregulating tight junction proteins such 
as claudin-1 and Zonula Occludens-1 (ZO-1) (Wang et  al., 2012). 
Therefore, the reduced relative abundance of Ruminococcaceae in PBC 
patients may contribute to increased gut permeability. While most 
Peptostreptococcaceae bacteria are generally considered harmful, recent 
research has indicated that an increased population of 
Peptostreptococcaceae may protect against obesity in mice by promoting 
bile acid metabolism (Song et al., 2023). Nevertheless, limited research 
exists concerning the connection between the Family 
Peptostreptococcaceae group at the genus level and PBC. Significantly, 
our investigation has, for the first time, unveiled a protective causal 
association of the Family Peptostreptococcaceae group regarding PBC.

It should be  noted that some specific findings in this study 
diverged from previous research. We attribute these disparities, at least 
in part, to differences in sample size, geographic background, dietary 
habits, and age among subjects across different studies. Fluctuations 
in the microbiome’s composition can lead to disturbances in its 
functioning and the production of abnormal metabolites. A 
meticulous gut microbiota analysis holds great promise in establishing 
a comprehensive evaluation system.

This study represents the first examination of the casual 
relationship between the gut microbiome and PBC risk. Through MR 
analysis, we have identified a causal link between the gut microbiome 
and PBC, with specific gut bacteria playing an active role in disease 
development. One notable strength of our research is the robust 
application of the MR method, which effectively addresses potential 
reverse causation and confounding factors, leading to more accurate 
causal inferences.

However, some limitations should be considered. Firstly, due 
to the limited information available in the GWAS database, the 

use of summary statistics for disease types rather than raw clinical 
data in the research made it impossible to perform additional 
subgroup analyses concerning disease subtypes and severity. 
Secondly, it is essential to acknowledge that the GWAS studies 
primarily included individuals of European ancestry, which may 
introduce biases due to variations in dominant gut bacteria 
influenced by diverse exposure factors like diet (Lee et al., 2018). 
Therefore, caution is needed when generalizing our findings to 
other ethnic groups. Thirdly, our study examined SNPs of gut 
microbiota across multiple taxonomic levels, including phylum, 
class, order, family, and genus, rather than a more specific species-
level analysis. Although we acknowledge this limitation, it was 
crucial for obtaining a more comprehensive understanding of the 
gut microbial landscape. Furthermore, due to the complex 
pathobiology of PBC and the multitude of statistical complexities 
involved, a rigorous multiple-testing correction might 
inadvertently fail to identify strains causally associated with 
PBC. To mitigate this concern, we exercised caution and chose not 
to implement multiple corrections. Finally, despite our 
comprehensive investigation, the precise mechanisms underlying 
the impact of gut microbiota on the risk of PBC still require 
clarification and further exploration.

5. Conclusion

Our study revealed potential causal implications for PBC from the 
presence of five genera in the gut microbiome. Specifically, 
Ruminococcaceae and Peptostreptococcaceae were found to have a 
negative association with the risk of PBC. In contrast, Selenomonadales, 
Bifidobacteriales, and Lachnospiraceae_UCG_004 appeared to have a 
potentially adverse effect on PBC. These results imply that these gut 
microbiota taxa may offer new opportunities for the development of 
treatments and preventive measures for PBC and could serve as 
potential biomarkers.
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