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Exposure to pesticides changes the microbial community structure in

contaminated agricultural fields. To analyze the changes in the native microbial

composition qRT-PCR, a metagenomic study was conducted. The qRT-PCR

results exhibited that the uncontaminated soil has a higher copy number

of 16S rDNA relative to the soil contaminated with pesticide. Metagenome

analysis interprets that uncontaminated soil is enriched with proteobacteria

in comparison with pesticide-contaminated soil. However, the presence of

Actinobacteria, Firmicutes, and Bacteroides was found to be dominant in the

pesticide-spiked soil. Additionally, the presence of new phyla such as Chloroflexi,

Planctomycetes, and Verrucomicrobia was noted in the pesticide-spiked soil,

while Acidobacteria and Crenarchaeota were observed to be extinct. These

findings highlight that exposure to pesticides on soil significantly impacts the

biological composition of the soil. The abundance of microbial composition

under pesticide stress could be of better use for the treatment of biodegradation

and bioremediation of pesticides in contaminated environments.
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Introduction

The application of agrochemicals including fertilizers and pesticides has become an

essential component of agriculture (Malla et al., 2018). Consumption of pesticides is

tremendously increasing globally in order to fulfill the food demand of the growing

population (FAO, 2021; Gangola et al., 2023a). The global consumption of pesticides

was 4.2 metric tons in 2021 and is expected to reach 4.4 million metric tons by

2026, with a 0.5% increase every year (PMO, 2022). Based on the consumption of

pesticides, China is at the top, followed by the United States, Brazil, and Argentina.

Pesticides can travel from the soil surface to a water reservoir or groundwater, and their
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fate depends on the environmental conditions, such as adsorption

to the matrix/soil sediment, transport with water, chemical

transformation, and formation of recalcitrant metabolites

(Gonzalez-Rodriguez et al., 2011). Although the formation of

pesticides is examined under standard rules and systems, some are

very recalcitrant in nature, becoming a threat to the ecosystem and

polluting water bodies (Sjerps et al., 2019).

Agricultural and natural habitats are regularly contaminated

by anthropogenic activity (Jeffries et al., 2018). The application

of pesticides on agricultural fields released into the environment

and reaching the soil surface, different water sources, and

underground water is of major concern for environmental

sustainability and human health (Aldas-Vargas et al., 2022).

Transformation of pesticides in the environment depends

on environmental conditions and physical, chemical, and

biological degradation mechanisms (Gangola et al., 2023b).

Microorganisms play a significant contribution in nutrient

recycling, enhance crop growth and nutritional quality, and are

vital components of our living environment. Therefore, it is

necessary to check the negative impact of pesticides on beneficial

microbial populations and their surrounding environment

(Gangola et al., 2022a; Bhatt et al., 2023). The implementation of

a microbial system for the degradation of xenobiotic compounds

from a contaminated environment is the most favorable

approach for the sustainable environment and human health

(Saibu et al., 2020; Doolotkeldieva et al., 2021). The complete

dissolution of pollutants from contaminated sites depends

on several factors such as concentration, chemical structure,

temperature, pH, soil microbial community composition, and

their activity (Kowalczyk et al., 2015). Due to the variation in

season, geographical location, and environmental conditions,

the distribution of pesticides is uneven and affects microbial

composition significantly (Verma et al., 2013; Raj et al., 2023).

The process of biodegradation may vary from one ecosystem

to another and depends more on the microbial composition as

agricultural soil is rich and active in microbial composition as

compared with the oligotrophic environment. Hence, monitoring

pesticide biodegradation mechanism by structural and functional

attributes of native microflora under different environmental

conditions and their environmental fate is important as an

indicator and for better understanding of the study (Fenner

et al., 2013). Microorganism-mediated pesticide mineralization

involves several chemical reactions such as oxidation–reduction,

dehalogenation, hydrolysis, dehydrogenation, dealkylation,

methylation, conjugation, and ring cleavage (Cycoń et al., 2017).

Additionally, the development of a novel approach is crucial

to describe microbial diversity and give in-depth knowledge

of microbial responses to pesticide exposure (Gangola et al.,

2022b,c).

Pesticide concentration, residue, and metabolites are the

traditional indicators that are not applicable for several pesticides

in an anaerobic environment. Moreover, these indicators are

unable to differentiate between biotic and abiotic pesticide

biodegradation processes (Aldas-Vargas et al., 2022). Therefore,

the use of advanced research tools is important to monitor

genes involved in the biodegradation of pesticides or identify

the microorganisms in the contaminated environment. The

cultivation-dependent approach only allows to cultivate a

small proportion of total microorganisms and restricts their

accessibility for research study (Schloss and Handelsman, 2006).

However, in cultivation-independent methods, the study relies

on DNA sequencing of the environmental sample to examine

the complete study of microbial community structure, biomass

composition, nutritional status, and physiological stress response

for a particular environment (Su et al., 2012; Costa et al., 2020).

The introduction of advanced technology such as metagenomics

and metabolomics is under development and has shown their

promising application in characterizing pesticide effects on

soil biomass (Hou et al., 2015; Jeffries et al., 2018; Malla et al.,

2022).

From the development of next-generation sequencing (NGS),

the researchers preferably work on targeted and non-targeted genes

to explore more information using some advanced techniques

such as metagenomics and metatranscriptomics. These molecular

tools have enough potential to extract the entire microbial

composition and their metabolic potential without having any

prior knowledge (Zhou et al., 2015). The metagenomics-based

approach extends several new ways of opportunities to explore

the dominant pesticide-degrading genes and their distribution

in different microbial genera both in culturable and in non-

culturable microorganisms within a complex environment (Fang

et al., 2018). Aldas-Vargas et al. (2022) used a metagenomic

approach to monitor the biodegradation of pesticides. Through

implementing metagenomics, the genes atzABCDEF responsible

for atrazine biodegradation were identified in agricultural soil

(Malla et al., 2022) and the rhizospheric region of different trees

(Aguiar et al., 2020). The metagenomic approach was successfully

used to study seasonal variation in microbial communities

and pesticide biodegrading genes linked to metabolic pathways

from different aquatic environments such as freshwater and

marine sediments (Fang et al., 2014). These water bodies were

contaminated with 10 pesticides, namely, atrazine, carbendazim,

chlorothalonil, isoproturon, linuron, metamitron, nicosulfuron,

2,4-dichlorophenoxyacetic acid (2,4-D), organophosphates, and

pyrethroid (Fang et al., 2014). After metagenomic analysis

of the activated sludge sample, a total of 68 subtypes of

pesticide-degrading genes were identified, and out of them,

dhn gene (encode dehydrogenase and degrade metamitron) was

found to be dominant. Pesticide contaminates the metagenomic

analysis of soil sample, revealing that as the concentration

of pesticide increases in the soil, the expression and number

of pesticide-biodegrading genes also increases and are mostly

peroxidase, monooxydase, and cytochrome P450 (Russell et al.,

2021). Hence, these studies confirmed that high-throughput

techniques have enough potential to examine the microbial

community and their different powerful pesticide-degrading genes

under complex environments. Very limited study has been

conducted on the comparative microbial community analysis

of pesticide-contaminated and non-contaminated soil. Therefore,

this study aimed to analyze and differentiate the microbial

community of pesticide-contaminated and non-contaminated

agricultural soil.
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Materials and methods

Soil samples were collected from two different agricultural

fields in Gularbhoj (29.0918◦N, 79.3156◦E), Uttarakhand, India.

One field was contaminated with pesticides, and the other was

uncontaminated. The rice crop was grown in both fields during

the Kharif season. The soil sample was collected using stainless

steel auger. The 10 cm of soil at the top was discarded, and

the next 5 cm of soil was collected from both the contaminated

and uncontaminated sites. Both the soil samples were labeled

and stored in a deep freezer at −20◦C. The soil sample taken

from uncontaminated sites acts as a control for this study.

Pesticide residues such as chlorpyrifos, cypermethrin fipronil, and

imidacloprid were majorly found in the pesticide-contaminated

soil. Soil DNA was extracted from both soil samples (500mg) using

the HiPurATM Soil DNA Purification Kit. The purity was checked

using a NanoDrop spectrophotometer at wavelengths of 260 and

280 nm with a concentration of 50 ng/L (Jeffries et al., 2018; Malla

et al., 2022).

The highly variable region (V3–V4) of the 16SrRNA gene

in the soil bacterial community was targeted using the Illumina

MiSeq platform. The primers used for amplification were V3:

341 F (5′ CCTACGGGAGGCAGCAG 3′) and V4: 806 R (5′

GGACTACHVGGGTWTCTAAT 3′). Paired-end reads obtained

from sequencing were subjected to several quality control checks,

including score distribution, base quality, average base content,

and GC distribution. The FLASH program (Magoč and Salzberg,

2011) was utilized to merge the paired-end reads. High-quality

reads ranging from ∼350 to 450 base pairs were obtained by

applying multiple filters. The UCHIME algorithm was employed

to identify and remove chimeric sequences. Subsequent analysis

of the data was performed using the QIIME program (version

1.9.1) (Caporaso et al., 2010). The pre-processed reads were

pooled and clustered into operational taxonomic units (OTUs)

at a 97% similarity threshold using the UCLUST program.

Representative sequences for each OTU were chosen by aligning

the sequences against the Greengene database via PyNAST

(DeSantis et al., 2006; Jeffries et al., 2018). Taxonomic classification

was conducted using the RDP classifier against the SILVA

16S rRNA gene database (Joshi et al., 2021). Obtained reads

and OTUs from both samples were classified into bacterial

phylum and genera (Khati et al., 2019). Statistical Analysis of

Metagenome Package (STAMP) was used for additional statistical

analysis and heatmap visualization, while UPGMA clustering was

employed to generate dendrograms (Parks et al., 2014). Alpha

diversity was assessed by the Shannon index using the QIIME

program (version 1.9.1) (Chaudhary et al., 2021; Joshi et al.,

2021).

qRT-PCR analysis

The 16S rDNA extracted from the soil was subjected

to qRT-PCR analysis using the iCycler iQTM Multicolor

instrument (Bio-Rad Laboratory, Hercules, CA, USA)

and SYBR green dye (Kumar et al., 2019). The qRT-PCR

amplification employed a pair of universal primers, specifically

primer 1 (5′-CCTACGGGAGGCAGCAG-3′) and primer

2 (5′-ATTACCGCGGCTGCTGG-3′).

Results

Real-time PCR analysis

In both the soil samples’ native soil bacterial community,

their abundance was observed using high-throughput

sequencing and qRT-PCR analysis. After qRT-PCR analysis,

it was observed that pesticide-contaminated soil had less

copy number of 16S rDNA than uncontaminated soil,

i.e., 1.96 × 108 and 5.25 × 108, respectively, per gram

of soil.

Comparative microbial diversity analysis

Comparative analysis for efficient functional microbiome and

taxonomic community composition under pesticide stress and

non-stress conditions was performed with the help of a high-

throughput metagenomic approach.

Total reads in the pesticide-contaminated (2G) and non-

contaminated (2GC) soil samples were 562,416 and 873,083,

respectively. Furthermore, the reads were classified at the phylum

and genus levels, i.e., for contaminated soil, the reads were 562,416

and 716, while for non-contaminated soil, the reads were 873,083

and 725. During the study, only the top 8 dominant phyla and

genera were selected for comparative analysis. At the genus level,

the unclassified category comprised of most abundant genera in

both the 2G (20.35%) and 2GC (18.52%) soil samples. In the 2G soil

sample, the second most dominant genus was Clostridium (8.30%),

subsequently followed by Nocardioides (3.41%), Bellilinea (3.14%),

Anaerolinea (2.75%), Longilinea (2.48%), Caldilinea (2.33%), and

Phycicoccus (2.21%). In 2GC soil sample, the second most

abundant genus was Candidatus Koribacter (5.89%), subsequently

followed by Bacillus (5.06%), Candidatus Solibacter (5.00%),

Clostridium (3.74%), Conexibacter (1.94%), Streptomyces (1.90%),

and Edaphobacter (1.87%) (Figure 1).

Additionally, the comparative study at the phylum level

exhibited the prominent existence of Firmicutes (specifically

Clostridium), Actinobacteria (Nocardioides and Phycicoccus),

and Chloroflexi (Bellilinea, Anaerolinea, Longilinea, and

Caldilinea) in the 2G soil sample (Supplementary Figure).

However, in the 2GC soil sample, the dominant phylum

was Acidobacteria (specifically Candida tuskoribacter and

Candida tussolibacter), followed by Firmicutes (Bacillus and

Clostridium), Actinobacteria (Conexibacter and Streptomyces),

and Proteobacteria (Edaphobacter). The phyla Proteobacteria,

Actinobacteria, Firmicutes, Bacteroidetes, and Planctomycetes

were consistently present in both soil samples. Two unique phyla,

Chloroflexi and Nitrospira, were found exclusively in the 2G

soil sample. With the exception of Clostridium, the genus-level

composition of the microbial communities exhibited variations

between the two soil samples.
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FIGURE 1

Pie chart provides a comparative analysis of the impact of pesticides on the soil microbial community at the genus level. (A) Depicts the soil sample

contaminated with pesticides (2G), while (B) represents the soil sample without any pesticide contamination (2GC).

Alpha diversity

The genus-level relative abundance of the top 25 classified

operational taxonomic units (OTUs) was investigated. In the 2G

soil sample, the Shannon species diversity index was high (3.198).

Genotypically, a total of 1,627 species were identified, whereas

in the 2GC soil sample (control), the Shannon species diversity

index was 2.739, and 1,850 species were identified genotypically

(Figure 2).

In the 2G soil sample, the population of Clostridium was

larger, whereas in the 2GC soil sample, the population of Bacillus

was dominant. Unclassified bacteria at the genus level were

predominantly found in both soils, but their abundance decreased

in the 2GC soil sample. Genera from the phyla Actinobacteria

(Nocardioides) and Firmicutes (Clostridium and Oenococcus) were

evenly distributed in both soil samples. Abundant genera in

the 2G soil sample included Clostridium (10.6%), Nocardioides

(4.3%), Bellilinea (4.0%), Anaerolinea (3.5%), Longilinea (3.2%),

and Phycicoccus (2.8%). The remaining microbial population in the

2G soil sample was distinct from that in the 2GC soil sample.

Hierarchal clustering

The heat map generated by hierarchical clustering exhibited the

number of OTUs per sample. The color intensity on the heat map

corresponds to the relative abundance of an OTU within a sample

(Figure 3). In the heat map generated by hierarchical clustering,

the pesticide-contaminated soil sample (2G) exhibited significant

prevalence of the following classes: Clostridia, Betaproteobacteria,

Ignavibacteria, Gemmatimonadetes, Dehalococcoides, Caldineae,

and Thermoprotei.

Discussion

Several microbial communities have been studied previously in

response to pesticide contamination (Floch et al., 2011; Zabaloy

et al., 2012); however, fewer studies have utilized metagenomics for

this purpose. Gangola et al. (2021) isolated a bacterial strain Bacillus

cereus 2D from the same sampling sites, i.e., Gularbhoj, and found a

highly efficient strain to tolerate higher concentrations of pesticides

and a high rate of degradation, and they evaluated the expression of

protein profiling under pesticide stress. The decrease in the copy

number of 16S rDNA genes in the pesticide-contaminated soil

indicated exposure of the pesticide to the native microbial flora,

leading to inhibition of metabolic activity and growth. Application

of real-time PCR was also employed by several researchers for

the investigation of gene expression, microbial abundance, and

functional and taxonomic gene expressions (Rastogi and Sani,

2011; Gangola et al., 2018; Kumar et al., 2019; Joshi et al., 2021).

Yale et al. (2017) used quantitative PCR to assess and quantify

the expression of pesticide-degrading genes (trzN, atzB, and atzA).

Bacteria play an important role in balancing the ecosystem,

nutrient composition, and cycling, but exposure to pesticides

suppresses the microbial community significantly in agricultural

fields (Onwona-Kwakye et al., 2020). Although the development

of molecular techniques (qPCR) is quite laborious and difficult,

these techniques give more insights into and better monitoring of

pesticide-degrading genes.

Several hidden facts have been resolved since the development

of emerging explorative techniques such as metagenomics.

However, though it requires extensive data analysis, it justifies its

potential in monitoring more than one pesticide compound at

a time and analyzing their effects on the microbial community

at different levels, such as class, phylum, genus, and species

levels (Hou et al., 2015; Aldas-Vargas et al., 2022). The decrease

in reads in the pesticide-treated soil (2G) is supported by

various findings that clearly indicate the toxic nature of the

pesticide (Onwona-Kwakye et al., 2020; Bhatt et al., 2021; Gangola

et al., 2022d). The reduction in read numbers in the 2G soil

sample may be attributed to the excessive and repeated use of

pesticides in agricultural practices, ultimately resulting in the

decline in themicrobial population. Regular application of different

pesticides decreases themicrobial communities such asAeromonas,

Bordetella, Comamonas, Enterobacter, and Staphylococcus. Apart
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FIGURE 2

The bar graph exhibits alpha diversity of bacterial communities. The top 25 OTUs, taxonomically classified at genus level of (A) pesticide

contaminated (2G) and (B) non-contaminated (2GC) soil samples.

from that, exposure to pesticides may decrease the degradation

rate of organic pollutants, microbial homeostasis, and plant growth

and protection from pathogens (Hayward et al., 2010; Khalifa

et al., 2016; Hamidou Soumana et al., 2017; Pereira et al.,

2017). Kantachote et al. (2001) and Rodríguez et al. (2020)

have demonstrated the negative impact of pesticides on soil

microorganisms on agar plates.

The large portion covered by others in the pie chart represents

those microorganisms presenting their existence in a very minor

proportion compared with others present dominantly, while the

dominance of the unclassified category in both the soil samples

represents those microorganisms that are still not identified and

classified or are novel. In the 2G soil sample, Clostridium is the

dominant genus followed by Nocardioides, Bellilinea, Anaerolinea,

Longilinea, Caldilinea, and Phycicoccus. Clostridium has already

been reported for its pesticide degradation potential such as

Alachlor, chlorpropham, DDT, and lindane and is capable of

surviving in pesticide-contaminated soil (Alipour et al., 2018).

The presence of atrazine and chloro-s-trazine-degrading enzyme

TrzN was identified in Nocardioides sp. and utilizes atrazine as the

sole carbon and nitrogen source from contaminated soil (Topp,

2001; Ortiz-Hernández et al., 2013). Although Bellilinea sp. and
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FIGURE 3

Hierarchical clustering illustrates the total count of operational taxonomic units (OTUs), according to the number of hits and % hits against the

Greengene database. The heatmap indicates the abundance of each class within every sample. The color gradient from deep brown (+1) to dark

green (−1) represents the distribution of OTUs, ranging from higher to lower abundance.

Longilinea sp. have not been reported for pesticide biodegradation,

in previous report, Bellilinea sp. showed their potential to degrade

a carcinogenic xenobiotic compound, i.e., 2-methyl-naphthalene,

while Longilinea sp. was characterized for propionate degradation

(Yamada et al., 2007; Musat et al., 2009; Rodríguez et al., 2020). The

role of Anaerolineae has been reported to degrade and minimize

the concentration of different xenobiotic hydrocarbons under

wastewater (Yamada et al., 2007). In soil conditions, the initial

application of chlorpyrifos suppresses the expression of genes and

metabolic action of the native microbial community; after 2 weeks

of the application, the suppressed microbial community reverts

back to the level of control (non-contaminated soil) (Fang et al.,

2008). Hence, it concluded that due to the different environmental

fate of the pesticides after their applications, the native microbial

community gets a chance to recover or can adapt to the conditions

by expressing pesticide-degrading genes and metabolic potential.

Our research reveals variations in microbial communities

and population sizes, signifying the repeated use of pesticides

in agricultural fields. This leads to the replacement of older

populations with new ones over time. As a consequence, the

number of pesticide-sensitive species declines while pesticide-

tolerant species survive and proliferate (Gangola et al., 2021). Our

findings indicate that pesticides have a toxic impact on specific

species within the same phylum, while others are capable of

utilizing pesticides as a source of carbon and energy, enabling

their prolonged survival. The increased population sizes of

Proteobacteria, Actinobacteria, Firmicutes, and Chloroflexi point

to their active growth and proliferation in pesticide-contaminated

soil. The positive association between these present microbes in

consortia may enhance their degradation abilities under pesticide

stress (Yilmaz et al., 2022). Furthermore, our study demonstrates

that microbial communities with a high metabolic potential for
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pesticide degradation are more abundant in soils where pesticides

persist for an extended period or are regularly used over time.

Comparing the two soil types, we observed that the abundance

of highly metabolically active communities was higher in rapidly

degrading soil, indicating the superior functional capacity of these

microbes in terms of nutrient cycling. Consequently, we can infer

that the microbial community in 2GC soil exhibits sensitivity to

pesticides, whereas the microbial community in 2G soil displays

resistance to them (Gangola et al., 2021). At the phylum level,

our research indicates that these microbes utilize pesticides as a

source of carbon and energy for their growth and development.

The toxic nature of pesticides leads to the absence of certain

bacterial populations in the treated samples as compared with the

control sample (Jeffries et al., 2018). Notably, the higher richness

of Firmicutes, Actinobacteria, and Chloroflexi in the treated soil

suggests their active involvement in pesticide-contaminated soil.

As observed in the alpha diversity analysis, the Shannon species

diversity index (3,198) was maximum for the 2G soil sample, while

in the 2GC soil sample, the Shannon species diversity index was

minimum (2.739). This indicates that more the Shannon index

value, the more the diversity in species. Hence, it could be analyzed

easily that the more diversity in the system, the more the system

stable. Although the total number of species (1,850) present in 2GC

soil is more as compared with the 2G (1,627), in the context of

species diversity, 2G soil sample is more dynamic. The possible

reason is that pesticides create selective pressure on the microbial

community to adapt and acclimatize under stress.

In the hierarchical map, the different classes of microbial

communities were analyzed in a comparative manner between 2G

and 2GC soil samples. More intense color signifies the dominance

of the native microbial class. A hierarchical map was used by

Parks et al. (2014) and Jeffries et al. (2018) to analyze the relative

abundance of microbial functions in soil samples contaminated

with organophosphorus pesticides. Previous reports also marked

similar communities for pesticide degradation in different studies.

Parks et al. (2014) and Jeffries et al. (2018) employed the

hierarchical map approach, utilizing UPGMA clustering, to

investigate the comparative prevalence of microbial function in soil

samples contaminated with organophosphorus pesticides.

Conclusion

The application of indigenous microorganisms present in

contaminated environments is a more reliable approach for the

biodegradation of agricultural pesticides. Under pesticide stress, the

bacterial communities altered their genetic pool and developed as

efficient mutant strains for the utilization of pesticides as a source

of carbon and energy. Monitoring of microbial communities is

important because they play a crucial role in the regulation of

biogeochemical cycles and soil health, enhancing crop productivity,

and maintaining a sustainable environment. Additionally, by

conducting metagenomic studies of contaminated soil samples, it

becomes possible to identify various types of microbial populations

present and the interaction between them. This knowledge is

indispensable for comprehending the natural biodegradation of

pesticides in environmental settings. Looking ahead, exploring the

activity of bacterial isolates against other xenobiotic compounds

and delving into themechanisms of gene regulation involved would

be valuable avenues for research and potential advancements in

the field.
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