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Background: Hepatocellular carcinoma (HCC) has a high prevalence and poor

prognosis worldwide. Therefore, it is urgent to find e�ective and timely diagnostic

markers. The objective of this study was to evaluate the diagnostic value of F-box

protein 43 promoter methylation in peripheral blood mononuclear cells (PBMCs)

for HCC.

Method: A total of 247 participants were included in this study, comprising

individuals with 123 hepatitis B virus-associated HCC, 79 chronic hepatitis B, and

45 healthy controls. F-box protein 43methylation andmRNA levels in PBMCswere

detected by MethyLight and quantitative real-time PCR.

Result: F-box protein 43 promoter methylation levels were significantly lower in

HCC PBMCs than the chronic hepatitis B (P < 0.001) and healthy control PBMCs

(P < 0.001). Relative mRNA expression levels of F-box protein 43 in HCC PBMCs

were significantly higher than those in chronic hepatitis B (P < 0.001) and healthy

control PBMCs (P < 0.001). Receiver operating characteristic analysis of F-box

protein 43 promoter methylation levels yielded an area under curve (AUC) of

0.793 with 76.42% sensitivity and 68.35% specificity when di�erentiating HCC from

chronic hepatitis. These values for the F-box protein 43 promoter methylation

level were superior to those of the alpha-fetoprotein serum (AFP) level (AUC:

0.780, sensitivity: 47.97%, and specificity: 96.20%), with increments in values for

the combination of F-box protein 43 promotermethylation AFP levels (AUC: 0.888,

sensitivity: 76.42%, and specificity: 86.08%).

Conclusion: Hypomethylation of the F-box protein 43 promoter in PBMCs is a

promising biochemical marker for HBV-associated HCC.

KEYWORDS

hepatitis B virus-associated hepatocellular carcinoma, DNA methylation, MethyLight,

FBXO43, diagnosis

Introduction

Primary liver cancer is a widespread cancer worldwide, with 906,000 new cases

and 830,000 deaths, ranking sixth in incidence and third in mortality globally in 2020.

Hepatocellular carcinoma (HCC) accounts for 75%−85% of primary liver cancer. In

areas with high HCC prevalence, such as China and Korea, the main causes are chronic

hepatitis B virus (HBV) infection, aflatoxin exposure, or both (Sung et al., 2021).
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According to the latest statistics, the 5-year survival rate of primary

liver cancer is 21% (Siegel et al., 2023). Such poor outcomes are

mainly because of the insidious onset of HCC, which is not easy

to detect at an early stage, and most of them are discovered with

a missed opportunity window for treatment. Alpha-fetoprotein

(AFP) serum has been recognized as a non-invasive marker for the

diagnosis of HCC. AFP serum level of 20 ng/ml is the upper limit

for diagnosing HCC, but its sensitivity is 60%−70%. Moreover,

AFP serum level is normal in 30%−40% of HCC patients (Trevisani

et al., 2001; Gupta et al., 2003; Gopal et al., 2014). Additionally,

some patients with chronic liver disease, especially those with a

high degree of regeneration, may have elevated AFP even in the

absence of malignant tumors (Di Bisceglie et al., 2005; Colli et al.,

2006; Marrero et al., 2009; Lok et al., 2010). A report from the

United States showed that AFP serum level was not elevated in 31%

of patients diagnosed with HCC (Agopian et al., 2017). Therefore, a

reliable and accurate non-invasive index is urgently needed for the

early detection and diagnosis of HCC to alleviate the suffering of

patients and improve the survival rate.

Methylation of deoxyribonucleic acid (DNA) cytosine-

phosphate-guanine (CpG) islands is a very common epigenetic

phenomenon in mammalian genomes for gene regulation. DNA

methylation has been shown to affect biology in many ways, such as

normal development, ribonucleic acid (RNA) and X-chromosome

inactivation, imprinting, and development of tumors (Li et al.,

1992, 1993; Panning and Jaenisch, 1998; Koch et al., 2018). DNA

methylation of key regulatory regions has been shown to be a

biomarker for tumor diagnosis and disease prognosis in many

tumors, such as colorectal cancer, lung cancer, breast cancer,

prostate cancer, and HCC (Salta et al., 2018; Constâncio et al., 2019;

Nunes et al., 2019; Luo et al., 2020; Hernandez-Meza et al., 2021).

F-box protein 43 (FBXO43) is a member of the F-box protein

family, consisting of approximately a 40-amino acid F-box motif.

FBXO43 is involved in the biological processes of mitosis and

meiosis (Schmidt et al., 2005; Gopinathan et al., 2017). In 2019,

10 genes, including FBXO43, were confirmed as prognostic and

progression markers of HCC by gene coexpression network

analysis (Xu et al., 2019). The prognostic value of FBXO43 in breast

cancer has been evaluated histologically. The results showed that

high expression of FBXO43 correlated positively with a high risk of

metastasis and a poor prognosis (Vadhan et al., 2020). Moreover,

studies have shown that the expression of FBXO43 is significantly

increased in HCC cells and human tissues (Wu et al., 2023; Zhou

et al., 2023). However, all of these reports were conducted at cellular

and tissue levels. In clinical work, liver tissue is difficult to obtain,

and the risk associated with surgery is high. Hematological tests are

the most convenient and economical and do the least harm to the

patient. However, as mentioned above, the detection rate of AFP

serum level is not ideal. Therefore, we designed this experiment to

investigate the value of FBXO43 promoter methylation as a non-

invasive marker in the diagnosis of HCC using peripheral blood

mononuclear cells (PBMCs) as a proxy for estimating the epigenetic

rewiring potential of HBV infection.

In this study, we analyzed expression levels of FBXO43 to infer

promoter methylation levels in PBMCs among patients with HBV-

associated HCC, chronic hepatitis B (CHB), and healthy controls

(HCs), as well as the clinicopathological features. At the same time,

we evaluated the value of FBXO43 promotermethylation in PBMCs

using MethyLight as a non-invasive marker in the diagnosis of

HBV-associated HCC.

Materials and methods

Participants

In this study, 123 HBV-associated HCC patients, 79 CHB,

and 45 HCs were recruited at the Department of Hepatology,

Qilu Hospital of Shandong University, from January 2018 to

December 2021. The diagnostic criteria for HBV-associated HCC

were established according to the 2018 Practice Guidance by the

American Association for the Study of Liver Diseases (AASLD)

(Marrero et al., 2018). The inclusion criteria for CHB were in

accordance with the AASLD 2018 Hepatitis B Guidance (Terrault

et al., 2018). The exclusion criteria were as follows: (1) associated

with other tumors; (2) combined with other virus infections

(hepatitis A virus, hepatitis C virus, hepatitis D virus, hepatitis E

virus, and human immune deficiency virus (HIV) infection); (3)

other liver diseases (autoimmune hepatitis, alcoholic hepatitis, and

drug hepatitis); and (4) incomplete information. The screening

process is shown in Figure 1.

This study was approved by the local Research and Ethics

Committee at Qilu Hospital of Shandong University in accordance

with the 1975 Declaration of Helsinki. The study details were

explained to the participants in detail, and their consent was

obtained before enrollment.

DNA extraction and sodium bisulfite
modification

PBMCs were isolated by density gradient centrifugation

with Ficoll-Paque (Pharmacia Diagnostics, Uppsala, Sweden) and

stored at −80◦C until use. Genomic DNA was extracted from

PBMCs using a QIAamp DNA Blood Mini Kit (QIAGEN,

Valencia, CA, USA) following the standard protocol for bisulfite

conversion. DNA bisulfate modification was performed using an

EZ DNA Methylation-Gold Kit (Zymo Research, Orange, CA,

USA) according to the manufacturer’s instructions. Finally, 20 µl

of modified DNA was obtained for methylation.

TaqMan probe-based quantitative
methylation-specific polymerase chain
reaction (MethyLight)

MethyLight was used to detect methylation levels of FBXO43

promoter and the promoter of the reference gene β-Actin. We

used a website (http://genome.ucsc.edu/) to delineate the promoter

of FBXO43 and another website (http://www.urogene.org/

methprimer/) for sequence transformation. Then, oligo7 (OLIGO

1267 Vondelpark ColoradoSprings, CO 80907, USA) was used for

the sequence design of probes and primers. Finally, the genome

coordinates of FBXO43 are hg38, chr8:100133351–100145817. We
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FIGURE 1

Flowchart for the enrollment of participants and the subset of samples used in the study.

selected the upstream 2,000 bp region of its TSS as the promoter

region. Then, primers and probes were designed at 1,782–1,945 bp

in the promoter region (Supplementary Figure S1). We found one

CpG island, so only this one was tested. The sequence is shown

in Table 1. The MethyLight reaction system consisted of a total of

10 µl volume, including 5 µl MethyLight Master Mix consisting

of HotStarTaq Plus DNA Polymerase, EpiTect Probe PCR Buffer,

and dNTP mix (dATP, dCTP, dGTP, dTTP), 0.4 µl forward primer,

0.4 µl reverse primers, 0.2 µl probe, 2 µl nuclease-free water,

and 2 µl modified DNA. We used β-actin as the reference. The

cycling conditions were 95◦C for 15min, followed by 45 cycles of

95◦C for 15 s and 60◦C for 60 s (Analytik Jena, Germany). SSSI

methylase and bisulfite-modified human control DNA (QIAGEN,

Hilden, Germany) were used as references for methylation. The

MethyLight results PMR (percentage of methylated reference)

were calculated using the following formula (Gao et al., 2015):

PMR = 100%× 2 exp

−[Delta Ct (target gene in sample− control gene in sample)

−Delta Ct (100%methylated target in reference sample

−control gene in reference sample)].

RNA extraction and quantitative real-time
PCR

RNA was extracted from PBMC cells using TRIzol (Invitrogen,

Carlsbad, CA, USA).

We reverse-transcribed RNA to cDNA using a reverse

transcription kit according to the instructions (ThermoFisher,

Waltham, USA). Expression levels of FBXO43 and β-actin mRNA

were detected using real-time PCR. This reaction system consisted

of 10 µl, including 5 µl of TB Green premix (Takara, Shiga, Japan),

4.1 µl of nuclease-free water, 0.2 µl of forward primer, 0.2 µl of

reverse primers, and 0.5 µl of cDNA. The cycling conditions were

95◦C for 30 s, followed by 40 cycles of 95◦C for 5 s, 55◦C for 30 s,

and 72◦C for 60 s (Analytik Jena, Germany). The primer sequences

used are shown in Table 1. The comparative method (2−11Ct)

was applied.

Statistical analysis

Statistical analyses were performed with SPSS (version

26.0), MedCalc (version 20.010), and GraphPad Prism (version

8.0.1). Quantitative variables are expressed as the median

(centile 25 and centile 75). Categorical variables are expressed

as numbers (%). The Mann–Whitney U-test and the Kruskal–

Wallis H-test were used to compare quantitative variables.

A chi-square test was used to analyze categorical variables.

Spearman’s test was applied to determine the relationship

between FBXO43 methylation level and quantitative clinical

data. Receiver operating characteristic (ROC) curves were

constructed to assess sensitivity, specificity, and respective

areas under the curves (AUCs). Independent risk factors

for HBV-associated HCC were analyzed by binary logistic

regression. We considered P < 0.05 (two-sided) to indicate

statistical significance.
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TABLE 1 Primer and TaqMan probe sequences used to amplify bisulfite-converted DNA and RT-qPCR.

Gene Forward primer sequence (5
′

-3
′

) Reverse primer sequence

(5
′

-3
′

)

Probe oligo sequence

MethyLight

FBXO43 TTTTAAAGTGGGAATGGGGAGAAGTAGAGT CCCGCAAACCTAAATCCTCGCTTAAAC CCTCTCTCGCTCACCCCTACACCCGTCCCG

β-Actin TGGTGATGGAGGAGGTTTAGTAAGT AACCAATAAAACCTACTCCTCCCTTAAA ACCACCACCCAACACACAATAACAAACACA

RT-qPCR

FBXO43 GGAAAGTAAGCAGAAATTGGCGTG GAGTGGCAGCATCCTCGACATT

β-Actin ATGGGTCAGAAGGATTCCTATGTG CTTCATGAGGTAGTCAGTCAGGTC

RT-qPCR, quantitative real-time PCR; FBXO43, F-box protein 43.

Results

General characteristics

A total of 247 participants were enrolled in this study, including

123 HBV-associated HCC, 79 CHB, and 45 HCs. Their basic

clinical characteristics are shown in Table 2. There were significant

differences in PTA (P= 0.024), HBsAg (P < 0.001), and HBV-DNA

(P < 0.001) between the HCC and CHB groups. Similarly, sex (P=

0.036), age (P < 0.001), ALT (P < 0.001), AST (P < 0.001), ALB (P

< 0.001), TBIL (P < 0.001), PLT (P < 0.001), and AFP serum level

(P < 0.001) were significantly different among the three groups.

Hypomethylation of the FBXO43 promoter
in patients with HBV-associated HCC

MethyLight was used to detect the methylation status of

FBXO43 promoter in PBMCs of HCC, CHB, and HC patients. The

FBXO43 promoter methylation levels in HCC, CHB, and HCs are

shown in Figure 2A. The methylation level of FBXO43 promoter in

HCC was lower than that in CHB (P < 0.001, ANOVA) and HCs (P

< 0.001, ANOVA), and the difference was statistically significant.

There was no difference in the methylation level of the FBXO43

promoter between the CHB and HC groups (P = 0.641, ANOVA).

FBXO43 mRNA levels in di�erent groups

As methylation is a common mechanism that affects

transcription, we examined the expression level of FBXO43

mRNA in PBMCs of the HCC, CHB, and HC groups, as shown

in Figure 2B. The mRNA expression level of FBXO43 in the HCC

group was significantly higher than that in the CHB (P < 0.001,

ANOVA) and HC (P < 0.001, ANOVA) groups. There was no

difference in the methylation level of the FBXO43 promoter

between the CHB and HC groups (P = 0.103, ANOVA). The

differences mentioned above for expression were statistically

significant. To further clarify the relationship between the

methylation level of FBXO43 promoter and the mRNA expression

level, we used Spearman’s rank correlation analysis to analyze the

relationship. We found a weak negative but significant correlation

TABLE 2 Baseline characteristics of participants.

Variable HCs (n = 45) CHB (n = 79) HCC
(n = 123)

Male, n

(%)

30 (66.7) 53 (67.1) 100 (81.3)

Age

(years)

49 (39–59) 42.00 (32.00–55.00) 55.00 (48.00–62.00)

ALT

(U/L)

18 (13.50–24.50) 33.00

(21.00–102.00)

32.00 (19.00–59.00)

AST

(U/L)

17 (15.00–22.00) 29.00 (20.00–74.00) 39.00 (24.00–74.00)

ALB (g/L) 47.00

(45.00–49.00)

46.80 (42.80–48.80) 41.30 (34.50–45.00)

TBIL

(µmol/L)

12.50 (8.50–18.50) 13.80 (10.10–20.30) 17.60 (13.00–28.40)

PLT

(109/L)

236

(204.50–269.00)

182.00

(146.00–216.00)

154.00

(103.00–198.00)

PTA (%) NA 93.00

(83.00–101.00)

87.00 (74.00–99.00)

AFP

(ng/ml)

2.39 (1.76–3.06) 3.38 (2.18–11.99) 30.00 (5.71–800.00)

HBsAg

(IU/ml)

NA 3,050.00

(967.12–12,630.80)

250.00

(212.70–2,026.13)

HBV-

DNA (+),

n (%)

NA 76 (96.2) 74 (60.2)

Quantitative variables are expressed as the median (25th percentile and 75th percentile).

Categorical variables are expressed as the number (%). HCC, hepatocellular carcinoma;

CHB, chronic hepatitis B; HCs, healthy controls; HBV, hepatitis B virus; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; ALB, albumin; TBIL, total bilirubin; PLT,

blood platelet; PTA, prothrombin time activity; AFP, alpha-fetoprotein; HBsAg, hepatitis B s

surface antigen; NA, not available.

between the FBXO43 promoter level and the mRNA expression

level (Spearman’s r =−0.135, P = 0.036; Figure 2C).

Relationship between FBXO43 promoter
methylation and clinicopathological
features in HBV-associated HCC

The relationship between FBXO43 promoter methylation and

clinicopathology was analyzed in HCC patients. As shown in
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FIGURE 2

Relationships contrasting promoter methylation and expression levels of FBXO43 in PBMCs among participants, along with clinicopathological

features. (A) FBXO43 methylation levels in PBMCs of HBV-associated HCC, CHB, and HCs. HCC: hepatocellular carcinoma; CHB: chronic hepatitis B;

HCs: healthy controls (***P < 0.001). (B) FBXO43 mRNA levels in PBMCs of HBV-associated HCC, CHB, and HCs. HCC: hepatocellular carcinoma;

CHB: chronic hepatitis B; HCs: healthy controls (***P < 0.001). (C) Relationships between FBXO43 promoter methylation levels and mRNA levels in

PBMCs. (D) Relationships between the FBXO43 promoter methylation level and the quantitative clinical data in the HBV-associated HCC group.

Table 3, no significant differences were found upon comparing

PMR to sex (P = 0.200), age (P = 0.281), HBV-DNA (P = 0.764),

AFP serum level (P = 0.976), tumor number (P = 0.637), tumor

size (P = 0.133), vascular invasion (P = 0.488), CTP staging (P =

0.992), or ascites (P = 0.317). Then, Spearman’s rank correlation

analysis was used to analyze the relationship between PMR and

clinicopathological features, as shown in Figure 2D. FBXO43

promoter methylation also showed no correlation with AFP serum

level (Spearman’s r = 0.053, P = 0.561), ALT (Spearman’s r =

5.968e−005, P = 1.000), PTA (Spearman’s r = 0.095, P = 0.295),

PLT (Spearman’s r = −0.003, P = 0.9726), AST (Spearman’s r =

−0.035, P = 0.699), TBIL (Spearman’s r =−0.098, P = 0.282), and

ALB (Spearman’s r =−0.015, P = 0.867).

Diagnostic value of the FBXO43 promoter
methylation level

ROC curves showed that the AUC of FBXO43 promoter

methylation level (95% CI 0.730–0.846, AUC 0.793, sensitivity

76.42%, specificity 68.35%) was higher than that of AFP serum level

(95% CI 0.717–0.835, AUC 0.780, sensitivity 47.97%, specificity

96.20%). In addition, the combination of FBXO43 methylation

with AFP serum level improved the differentiation power (95%

CI 0.836–0.928, AUC 0.888, sensitivity 76.42%, specificity 86.08%;

Figure 3A, Table 4). A greater proportion of patients with HCC

showed FBXO43 promoter methylation than increased AFP serum

level [94 (76.4%) vs. 67 (54.5%) of 123 patients; Figure 3B].

Furthermore, 43 (76.8%) of 56 AFP serum level-negative patients

with HCC had positive FBXO43 promoter methylation results. The

rate was similar [51 (76.1%) of 67] in AFP serum level-positive

patients. Moreover, when the FBXO43 promoter methylation level

was combined with the AFP serum level, the rate of HCC diagnosis

significantly increased to 110 of 123 (89.4%) in HCC (Figure 3B).

Independent risk factors for HBV-
associated HCC

Independent risk factors for HBV-associated HCC were

assessed using univariate and multivariate analyses. The cohort

was divided into two subgroups based on an optimal cutoff value

of 14.56% FBXO43 promoter methylation level and 20 ng/ml

AFP serum level. As illustrated in Table 5, the PMR value of
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TABLE 3 Associations between FBXO43 promoter methylation levels and

clinicopathological features in HBV-associated HCC.

Variable Total
number

PMR (%) P-value

Gender 0.200a

Male 100 11.60 (9.03–14.73)

Female 23 10.73 (7.76–12.46)

Age (year) 0.281a

>50 84 10.89 (7.83–14.38)

≤50 39 11.69 (9.55–14.76)

HBV-DNA 0.764a

Negative 49 10.99 (7.56–14.60)

Positive 74 11.44 (8.93–14.23)

AFP (ng/ml) 0.976a

>20 67 11.66 (7.91–14.45)

≤20 56 10.97 (9.08–14.46)

Tumor number 0.637a

Single 65 10.96 (8.36–14.21)

Multiple 58 11.54 (8.52–14.74)

Tumor size 0.133a

≤5 79 10.88 (7.81–14.16)

>5 44 12.01 (9.74–15.31)

Vascular invasion 0.488a

Negative 81 10.96 (7.86–14.51)

Positive 42 11.79 (9.13–14.29)

CTP staging 0.992b

A 95 10.88 (8.10–14.06)

B 19 13.21 (9.21–15.50)

C 9 12.85 (10.15–18.18)

Ascites 0.317a

No 88 11.60 (8.52–14.63)

Yes 35 10.73 (7.91–13.30)

aMann–Whitney U-test.
bKruskal–Wallis H-test.

CTP, Child–Turcotte–Pugh; PMR, percentage of methylated reference.

FBXO43 promoter ≤14.56% [odds ratio (OR) = 9.373, 95%

confidence interval (CI) 3.745–23.459, P < 0.001, multivariate

logistic regression], male (OR = 3.125, 95% CI 1.159–8.424, P =

0.024, multivariate logistic regression), age (>50) (OR = 3.793,

95% CI 1.578–9.117, P = 0.003, multivariate logistic regression),

HBsAg (>1,000 IU/ml, multivariate logistic regression; OR =

0.313, 95% CI 0.130–0.756, P = 0.010, multivariate logistic

regression), HBV-DNA(+) (OR = 0.038, 95% CI 0.008–0.168,

P < 0.001, multivariate logistic regression), and AFP serum

level (>20 ng/ml; OR = 3.198, 95% CI 1.145–8.929, P = 0.027,

multivariate logistic regression) were independent risk factors for

HBV-associated HCC.

Discussion

Our study demonstrates that the methylation level of FBXO43

promoter in PBMCs of patients with HBV-associated HCC is

significantly lower than that in CHB patients andHCs.Moreover, as

a non-invasive marker for HBV-associated HCC, the methylation

level of the FBXO43 promoter was more valuable than the

AFP serum level. In particular, the positive rate of FBXO43

promoter methylation was also high in AFP serum level-negative

patients, showing good complementarity with AFP serum level.

Furthermore, the diagnostic value of the combination was higher.

Finally, we found that FBXO43 promoter methylation, sex, age,

HBsAg, HBV-DNA, and AFP serum level were independent risk

factors for the occurrence and development of HBV-associated

HCC. The correlation between FBXO43 promoter methylation and

mRNA was Spearman’s r = −0.135 with P = 0.036. A statistically

significant association does not necessarily mean that the strength

of the association is strong; however, the P-value suggests that

there are fewer chances below 5% that this negative correlation

with this intensity could have occurred by chance (Akoglu, 2018).

Because the regulation mechanism of genes is very complex, here,

we only observed a weak correlation between them, potentially due

to the small number of subjects included in the study. As this study

focused on the diagnostic value of FBXO43 promoter methylation

for HCC, the specific relationship between FBXO43 methylation

and mRNA was not specifically explored here, and we will explore

the relationship between them in depth in the follow-up study.

DNA methylation plays an important role in gene expression

regulation. Abnormal methylation is a marker of HCC

development and is valuable in the early detection and prognosis

of the disease (Nagaraju et al., 2022). Methylation is observed in

precancerous lesions of varying degrees, such as cirrhosis, and

changes in DNA methylation are also found during carcinogenesis

(Kuramoto et al., 2017; Wijetunga et al., 2017). Methylation of

many genes, such as ACADS (Chen et al., 2019), ADRA1A (Chen

et al., 2020), BEX1 (Wang et al., 2021), and EYA4 (Hou et al.,

2014), has been reported to be associated with HCC. Therefore,

gene methylation assessment is a promising diagnostic tool for

HCC. In addition, for the detection of methylation, most studies

have adopted traditional methylation-specific PCR (MSP). This

method avoids the use of restriction enzymes and their subsequent

associated problems and is therefore highly sensitive. However,

MSP is a qualitative method with relatively poor accuracy,

strong subjectivity, and inconvenient analysis. In addition, if

the distribution of 5-methylcytosine in the DNA to be tested is

uneven, the detection will be more complicated, and false-positive

results may occur. Other methods to detect the methylation of

specific genes have also been applied in previous studies, such

as pyrosequencing, bisulfite cloning, and sequencing. Although

these two methods are highly accurate and can improve the

sensitivity of detection, they require deep sequencing. Moreover,

these two methods are technically complex, the operation process

is cumbersome, and the price is expensive, which is not suitable for

clinical application. Therefore, the methylation analysis technique

we used is MethyLight, which is a fast, efficient, accurate, and

qualitative experimental method for the analysis of molecular

methylation levels. It can also analyze multiple samples rapidly at
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FIGURE 3

The diagnostic value of FBXO43 promoter methylation levels in PBMCs of HBV-associated HCC. (A) ROC curves of the PBMCs’ FBXO43 promoter

methylation level, AFP, and the combination of both in discriminating HBV-associated HCC from CHB. (B) Rate of positive results for AFP, PBMCs’

FBXO43 promoter methylation levels, or both in patients with HBV-associated HCC, and for FBXO43 by AFP status.

TABLE 4 Diagnostic value of FBXO43 promoter methylation and AFP in HBV-associated HCC.

Sensitivity (%) Specificity (%) Youden index AUC 95% CI

FBXO43 76.42 68.35 0.448 0.793 0.730–0.846

AFP 47.97 96.20 0.442 0.780 0.717–0.835

FBXO43+ AFP 76.42 86.08 0.625 0.888 0.836–0.928

AUC, area under curve; CI, confidence interval.

multiple gene loci. Moreover, there is no need for electrophoresis

and hybridization after PCR, which reduces contamination and

operation error. Its principle is based on PCR and TaqMan probe

technology, which is highly sensitive and can detect minimal

DNA in peripheral blood and other samples (Eads et al., 2000;

Ogino et al., 2006). Hence, compared to the above methods, the

advantages of MethyLight are evident.

It is necessary and urgent to search for simple and effective

novel non-invasive diagnostic markers for HCC, a focus area

of cancer research, because early detection of HCC can result

in patients’ valuable treatment opportunities. In recent years,

there have been many studies on non-invasive markers, such as

AFP serum level, AFP-L3, GP-73, DNA methylation, LncRNA,

circRNA, and miRNA, among others (Peng et al., 2004; Zhang

et al., 2016; Kisiel et al., 2019; Trevisani et al., 2019; Yu et al.,

2020; Chalasani et al., 2021; Kim et al., 2021; Tayob et al., 2023).

AFP is the most widely accepted non-invasive diagnostic marker.

However, as mentioned above, the low sensitivity, high false-

negative rate, and false-positive rate of AFP serum level limit

its clinical application. Moreover, the use of AFP is no longer

recommended in recent AASLD guidelines because of its low

sensitivity (Terrault et al., 2018). Therefore, it is necessary to find

novel non-invasive indicators to supplement or replace the AFP

serum level. In China, ∼70% of HCC is associated with HBV

infection (de Martel et al., 2015). All patients included in this study

were infected with HBV. In our study, the methylation of FBXO43

promoter in PBMCs showed high sensitivity in diagnosing HBV-

associated HCC (76.42%), with a larger AUC than for AFP serum

level (0.793 vs. 0.780), and better diagnostic performance and

higher clinical application value when combined with AFP serum

level. Moreover, PBMCs are easily available in clinical practice,

requiring only a blood test with little harm to patients and a

small cost.

At present, there are many methods for the diagnosis of HCC

based on hematology, including circulating tumor DNA (ctDNA),

circulating tumor cells (CTCs), exosomes, and PBMCs. However,

ctDNA is easily degraded, has a short half-life, is not easy to

preserve, has low specificity, and the amount of ctDNA in the

peripheral circulation is extremely low, which is not easy to detect

(Singh et al., 2020). CTCs also have the above problems as the

content of CTCs in the peripheral circulation is very low, and

CTCs have a short half-life, which make them difficult to detect.
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TABLE 5 Independent risk factors for the development of HBV-associated HCC.

Variables Univariate analysis Multivariate analysis

P-value OR (95%CI) P-value OR (95%CI)

FBXO43 (PMR ≤ 14.56%) <0.001 7.001 (3.725–13.159) <0.001 9.373 (3.745–23.459)

Male 0.023 2.133 (1.111–4.096) 0.024 3.125 (1.159–8.424)

Age (>50) <0.001 3.742 (2.063–6.789) 0.003 3.793 (1.578–9.117)

HBsAg (>1,000 IU/ml) <0.001 0.189 (0.101–0.353) 0.010 0.313 (0.130–0.756)

HBV–DNA (+) <0.001 0.060 (0.018–0.200) <0.001 0.038 (0.008–0.168)

AFP (>20 ng/ml) <0.001 4.363 (2.293–8.303) 0.027 3.198 (1.145–8.929)

ALT (>50 U/L) 0.769 0.911 (0.491–1.693) – –

AST (>40 U/L) 0.116 1.589 (0.891–2.834) – –

PLT (≤100× 109/L) 0.001 7.816 (2.292–26.646) 0.062 4.455 (0.930–21.337)

TBIL (>7.1 µmol/L) 0.052 1.772 (0.996–3.151) – –

ALB (≤40 g/L) <0.001 3.824 (1.876–7.794) 0.514 1.463 (0.467–4.585)

PTA (≤60%) 0.068 0.145 (0.018–1.155) – –

OR, odds ratio.

It is more suitable for guiding the prognosis of patients than for

the early diagnosis of cancer (Danese et al., 2019; Deng et al.,

2022). The application of exosomes in liquid biopsy is in the

preliminary stage of exploration, and the diagnosis of cancer is

found for early applications only in very few studies. Currently,

the study of exosomal RNA is more common than exosomal

DNA because RNA shows higher variations. In this study, we

aimed to detect the methylation of FBXO43 promoter in PBMCs.

PBMCs contain various cell types, such as natural killer cells (NK

cells), monocytes, T and B lymphocytes, and dendritic cells (DCs),

which have a positive response to tumor cells (Mosallaei et al.,

2022). Compared with the above methods, PBMCs are easy to

obtain, DNA is more stable, can be stored for a long time, and

is more convenient for storage and retrospective analysis (Ziegler-

Heitbrock, 2014). In addition, there was a clear difference between

HCC and HC immune cell populations in PBMCs (Zhang et al.,

2018; Han et al., 2021). Moreover, the stimulation of different

external factors and pathological factors affects the regulation of

target genes by target organs, and related genes in peripheral

blood will also undergo the same changes (Mohr and Liew, 2007).

Tumors may affect the epigenetic changes of immune cells in

the circulatory system (Kristensen et al., 2012; Koch et al., 2018).

DNA methylation in peripheral blood immune cells has recently

been demonstrated in a variety of cancers, such as head and neck

squamous cell carcinoma, colorectal cancer, andHCC (Huang et al.,

2012; Zhang et al., 2018; Arayataweegool et al., 2019). Studies

have shown that HBV infection can also cause DNA methylation

changes. On the one hand, HBV can upregulate the expression

of DNA methyltransferase genes (DNMTs), which leads to DNA

methylation. On the other hand, HBV can regulate the methylation

of immune genes and cause the methylation of related genes

(Vivekanandan et al., 2010). Another study, a nested case-control

study with 22 years of follow-up, showed that changes in HBV

viral load caused changes in methylation at different sites (Kao

et al., 2017). The patients included in this study hadHBV-associated

HCC, and the methylation of FBXO43 promoter in the HCC

group was significantly lower than that in the CHB group. The

methylation of FBXO43 promoter may also be affected by HBV

infection. However, in this study, there was no significant difference

in FBXO43 promoter methylation between the CHB and HC

groups in the PBMCs. Thismay indirectly indicate that the FBXO43

promoter methylation status is not rewired by the HBV infection.

Moreover, some studies have shown that the methylation profiles in

immune cells are significantly different between the HBV infection

stage and the HCC development stage (Zhang et al., 2018). In

conclusion, HBV infection can cause themethylation of some genes

in immune cells, but in some cases, the development of HCC may

be due to the de novo methylation of another specific oncogene

rather than the methylation that has already occurred at the time

of HBV infection. Therefore, we speculated that FBXO43 promoter

methylation was not directly associated with HBV infection. As

this article is more focused on clinical research, mainly to find

markers for early identification of HCC, future studies will be

able to decode the epigenetic rewiring potential of HBV infection

with an in-depth discussion of the mechanism determining the

relationship between HBV infection and HCC in terms of FBXO43

promoter methylation. Overall, we found that FBXO43 promoter

methylation can diagnose HBV-related HCC, but as a limitation of

this study, we did not investigate its cause or development process

and did not validate our conclusions regarding HCC caused by

other etiologies, which we plan to explore in future studies.

Other limitations of this article are that this is a single-center

and small-sample study. In the future, we will increase the sample

size and conduct a multicenter study. Furthermore, we did not

explore how FBXO43 promoter methylation affects the progression

of HCC. We will continue to investigate the molecular mechanism

of FBXO43 promotermethylation in the occurrence of HCC. Third,

because it was difficult for us to obtain HCC tissues from the

same group of patients, our conclusions were not verified in HCC

tissues. In future studies, we will validate both HCC tissue and
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hematological assays to confirm our conclusion. Moreover, this

study is only for the diagnosis of HCC by a single gene, and the

combined detection of multiple genes may increase the detection

rate of HCC and improve the sensitivity of biomarkers. In future

studies, we will add the combined diagnosis of other differentially

methylated genes to explore whether it can improve the diagnostic

value of HCC. If other genes’ promoters are methylated in PBMCs

of HCC, then they can be used to diagnose HCC, where the

combination with FBXO43 diagnosis may improve the diagnostic

yield of HCC.

Conclusion

The FBXO43 promoter methylation levels are significantly

reduced in PBMCs of patients with HCC and can be investigated

as a promising non-invasive biomarker for HCC diagnosis.
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