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Introduction: The yield of chickpea is severely hampered by infection wilt caused 
by several races of Fusarium oxysporum f. sp. ciceris (Foc).

Methods: To understand the underlying molecular mechanisms of resistance 
against Foc4 Fusarium wilt, RNA sequencing-based shoot transcriptome data of 
two contrasting chickpea genotypes, namely KWR 108 (resistant) and GL 13001 
(susceptible), were generated and analyzed.

Results and Discussion: The shoot transcriptome data showed 1,103 and 1,221 
significant DEGs in chickpea genotypes KWR 108 and GL 13001, respectively. Among 
these, 495 and 608 genes were significantly down and up-regulated in genotypes KWR 
108, and 427 and 794 genes were significantly down and up-regulated in genotype GL 
13001. The gene ontology (GO) analysis of significant DEGs was performed and the 
GO of the top 50 DEGs in two contrasting chickpea genotypes showed the highest 
cellular components as membrane and nucleus, and molecular functions including 
nucleotide binding, metal ion binding, transferase, kinase, and oxidoreductase activity 
involved in biological processes such as phosphorylation, oxidation–reduction, cell 
redox homeostasis process, and DNA repair. Compared to the susceptible genotype 
which showed significant up-regulation of genes involved in processes like DNA 
repair, the significantly up-regulated DEGs of the resistant genotypes were involved 
in processes like energy metabolism and environmental adaptation, particularly host-
pathogen interaction. This indicates an efficient utilization of environmental adaptation 
pathways, energy homeostasis, and stable DNA molecules as the strategy to cope 
with Fusarium wilt infection in chickpea. The findings of the study will be useful in 
targeting the genes in designing gene-based markers for association mapping with 
the traits of interest in chickpea under Fusarium wilt which could be efficiently utilized 
in marker-assisted breeding of chickpea, particularly against Foc4 Fusarium wilt.
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1. Introduction

Chickpea (Cicer arietinum L) is a protein and nutrient-enriched 
pulse crops, cultivated in different parts of the world, with an area of 
about 15 million hectares (Mha) and an annual production of 16 
million tons (MT; FAOSTAT, 2023). India contributes more than 75% 
of the world’s chickpea production (around 12 MT @ 1,192 kg ha−1) in 
an area of around 10 Mha (Indiastat, 2023). The demand for protein 
and other nutrient-dense foods like pulses is increasing to meet the 
food and nutritional security of the growing world population. 
However, the area and production of chickpea have only increased 
marginally in the past few decades. One of the reasons for the 
antagonistic production and productivity of chickpea is Fusarium wilt 
disease, caused by Fusarium oxysporum f. sp. ciceris (Foc). Fusarium 
wilt is a devastating biotic stress that causes up to 100% yield loss in 
chickpea (Jendoubi et al., 2017) if the proper disease management 
practices are not followed.

The Fusarium wilt disease is very difficult to manage by 
conventional methods like the application of fungicides, crop rotation, 
etc., as the nature of the pathogen is soil- and seed-borne and it can 
survive in the soil for up to 6 years without a host (Haware et al., 1996). 
However, most of the time, farmers’ preference is higher yield over 
disease resistance. Several high-yielding varieties that are preferred by 
farmers are susceptible to Fusarium wilt. Hence, the cultivation of 
wilt-resistant varieties of chickpea is the best way to overcome yield 
and production losses. Cultivation of one resistant variety over a long 
time in the same field may also lead to a breakdown of the resistance 
mechanism by pathogens, as many of these mechanisms are controlled 
by one major gene or oligogenes (Adugna, 2004). The different races 
of this pathogen cause wilt disease and other related symptoms in 
chickpea across chickpea-growing countries. The wilting symptom in 
chickpea is caused by specific races of this pathogen, namely 1A, 2, 3, 
4, 5, and 6 (Jendoubi et al., 2017).

Therefore, understanding the molecular mechanisms behind the 
resistance to Fusarium wilt is a positive step toward the development 
of chickpea genotypes with better yield and quality, along with 
resistance to diseases. To understand the underlying molecular 
mechanisms in chickpea plants for resistance against Fusarium wilt, 
various approaches, including “omics” tools, are being utilized, such 
as cDNA-RAPD and cDNA-AFLP techniques (Gupta et al., 2009), 
small RNA sequencing to identify microRNAs (Kohli et al., 2014), 
genome-wide transcriptome profiling (Sharma et al., 2016), and a long 
SAGE transcriptome approach to understanding host-pathogen 
interaction (Upasani et  al., 2017). Similarly, studies on root 
transcriptome, marker-trait association, marker-based DNA profiling, 
and race-specific marker development against several races of Foc 
were conducted (Yadava et  al., 2023) and these reported several 
underlying genes and pathways involved in host-pathogen interaction 
and resistance mechanisms. However, most of these studies were 
conducted with races 1, 2, 3, and 5 of Foc and with different genotypic 
backgrounds of the chickpea.

Considering the above burning issues, the present study was 
conducted with two contrasting genotypes of chickpea (one highly 
resistant and one highly susceptible) against Foc4, aiming to reveal the 
important molecular pathways that are associated with Fusarium wilt 
resistance and the genes involved in it. The identified genes could 
be targeted to design candidate gene-based markers to be utilized in 
marker-trait association (MTA) studies. The MTA studies will enable 

us to understand how these genes are directly or indirectly imparting 
resistance against Fusarium wilt via different traits; that information 
will ultimately help to develop chickpea genotypes by using marker-
assisted breeding, particularly against Foc4.

2. Materials and methods

2.1. Experimental details

Two chickpea genotypes, namely KWR 108 and GL 13001, were 
selected for the study as these two varieties were reported to be highly 
contrasting in response to Fusarium wilt (Kumar et  al., 2019), 
particularly to Foc4. The experiment was conducted in the Fusarium 
wilt sick plot of TCA, Dholi farm (a designated plot for chickpea 
Fusarium wilt pathological trials from the All India Co-ordinated 
Research Projects on Chickpea located at TCA-Dholi under the 
Department of Agricultural Biotechnology and Molecular Biology, 
CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa 
(Samastipur) 848,125, Bihar, India). F. oxysporum isolates were 
collected from the field of TCA, Dholi and identified as Foc4 (Sharma 
et al., 2014). Among these chickpea genotypes, KWR 108 was reported 
as highly resistant and GL 13001 was reported as a highly susceptible 
genotype against Fusarium wilt (Kumar et al., 2019). The seeds of 
KWR 108 and GL 13001 genotypes were procured from the ICAR-
Indian Institute of Pulse Research, Kanpur, Uttar Pradesh, India. Seeds 
of both genotypes were sown in a grow bag filled with a mixture of 
autoclaved soil and compost at a ratio of 6:4. For each genotype, two 
seeds were sown in each grow bag. After germination, only one plant 
bag−1 was maintained for 25 days after sowing. Then plants of both 
genotypes were divided into two groups, namely control and 
treatment, which had three biological replicates. All the field 
experiments were carried out under the net house condition during 
rabi season 2021–2022, and the molecular works were carried out at 
the Functional Genomics Laboratory of the Department of 
Agricultural Biotechnology and Molecular Biology (25.98°N latitude 
and 85.67°E longitude and 52 m altitude from mean sea level), College 
of Basic Sciences and Humanities, Dr. Rajendra Prasad Central 
Agricultural University, Pusa 848,125, Bihar, India during the year 
2021–2022.

2.2. Treatment of plants with Fusarium 
oxysporum f. sp. ciceris culture

For infecting the plants, broth culture was prepared from the pure 
culture plates of Foc4 (pure culture was derived from the wilt-infected 
chickpea plant grown at the wilt sick plot of TCA, Dholi). Small-size 
inoculums (0.5 cm2) from the pure culture plate were inoculated in 
broth culture media (Potato Dextrose Broth) with the help of a forcep. 
The broth culture was incubated at 26°C and 150 rpm in a rotary 
agitator for 7 days. For inducing wilt infection in the treatment group 
of plants, the broth culture was thoroughly mixed using a pipette, and 
2 mL of the solution was added to each plant at the root zone with the 
help of a pipette. To further ensure the infection of plants in treatment 
groups, soil collected from the Fusarium wilt sick plot of TCA Dholi 
was filled on the top of the grow bags (treatment), followed by light 
irrigation. Symptoms appeared in the susceptible genotypes within 
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8–10 days of the treatment (Figures 1A,B). The plant leaf samples were 
collected after 10 days of treatment for transcriptome sequencing.

2.3. RNA isolation and preparation of 
library for transcriptome sequencing

The leaf samples were collected from control and treated plants of 
both the genotypes in three biological replicates and immediately 
dipped in the 2 mL micro-centrifuge tubes filled with RNA stabilizer 
solution (G-Biosciences) and outsourced for RNA isolation and 
transcriptome sequencing at Unigenome, Ahmedabad, Gujarat, India-
380015. The leaf samples from three biological replicates were bulked 
together for RNA isolation. RNA was isolated by using the Alexgen 
Total RNA kit. RNA quality and quantity were analyzed using 1% 
agarose gel and Qubit® 4.0 fluorometer, respectively. The NEBNext® 
Ultra™ RNA Library Prep Kit for Illumina NEB #E 7770 was used for 
paired-end sequencing library preparation. The mRNA enrichment 
was performed as per the user manual and mRNA was first 
fragmented, followed by cDNA synthesis and repairing of ends and 
adenylation of 3′ end. Subsequently, the adapter was ligated at the 
fragmented ends and PCR amplification was performed for selective 
enrichment of adapter ligated DNA fragments. The adapter-based 
selectively enriched amplified fragments/libraries were analyzed on 
TapeStation 4,150 (Agilent using RNA ScreenTape® as per 
manufacturer’s instructions). The average size of libraries was 
observed to be 331 bp, 363 bp for GL 13001 (control and treatment) 
and 353 bp and 344 bp for KWR 108 (Control and Treatment), 
respectively. The final library was pooled with other samples, 
denatured, and loaded onto the flow cell. On the flow cell, cluster 
generation and sequencing were performed using the Illumina 
Novaseq 6,000 platform to generate 2 × 150 bp paired-end (PE) reads. 
Data were filtered to remove the adapter and low-quality reads. The 
raw transcriptome sequencing data obtained from both genotypes 
under control and F. oxysporum f. sp. ciceris-treated plants with two 

technical replicates were submitted to the SRA (Sequence Read 
Archive) database of NCBI (accessed on 20 October 2023).1

2.4. Reference genome-based transcript 
mapping, assembly, and further 
bioinformatics works

From the NCBI database (accessed on 20 October 2023),2 the 
reference genome of Cicer arietinum (GCA_000331145.1_
ASM33114v1) and reference genome annotation GTF file were 
downloaded. Subsequently, by using STAR (v2.7.10a) aligner, 
reference genome-based assembly of transcripts was performed first 
by separately mapping high-quality (HQ) clean reads of control and 
treatment samples of GL 13001 and KWR 108 on the reference 
genome, respectively. The STAR Genome-Generate mode option was 
used to carry out indexing of the reference genome. Then the input 
reads, in FASTQ format, along with the indexed reference genome 
generated in the previous step, were given to the STAR aligner. To 
identify the positions of the origin of the reads, the STAR aligner 
created the alignment in BAM format for each sample through 
reference genome-guided mapping of the HQ reads followed by 
assembly of transcripts using StringTie (v2.2.1). After the assembly of 
transcripts by StringTie, the quantification of assembled transcripts 
was performed. The quantification of the assembled transcripts was 
done in order of most highly abundant transcripts to less abundant by 
using the network flow algorithm. The annotation of assembled 
transcripts was performed using the GFF annotation file of reference 
genome having “known” gene exon structures followed by 
quantification of the expression of known genes. Simultaneously, to 

1 https://submit.ncbi.nlm.nih.gov/subs/sra/SUB12177877/

2 https://www.ncbi.nlm.nih.gov/genome/?term=Chickpea
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FIGURE 1

Phenotypic observations of (A) No visible symptoms in genotype KWR 108 and (B) Yellowing and drying of lower leaves and wilting of young leaves in 
genotype GL 13001 due to the infection of F. oxysporum as compared to control.
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merge the gene structure found in all four samples, the assembled 
transcripts of all four samples were passed to StringTie’s merge 
function to avoid assembly of only a partial version of any of the 
transcripts in the initial StringTie run.

2.5. Identification of novel transcripts and 
novel isoforms of transcripts

The reference GTF file and the string-tie merged GTF file were 
taken and the GFF compare utility was run to check or identify if 
there were any novel transcripts or novel isoforms of transcripts 
were present in the merge sample. Novel transcripts were then 
identified using a method described by Gleeson et al. (2022). The 
transcripts that did not have any available information in the 
annotation file of the reference genome were considered 
novel transcripts.

2.6. Differential gene expression analysis

Using the SringTie merge function, a consensus set of transcripts 
was derived by merging the structures of all the genes found in all four 
samples and simultaneously estimating the abundances of the merged 
transcripts in the four samples. The read count information that was 
obtained from the files generated by StringTie was extracted by using 
prepDE.py, a Python program (Gill and Dhillon, 2022). The edgeR 
package (Robinson et al., 2010) was then used to calculate differential 
gene expression (DEGs) by taking read count results of a Python 
program prepDE.py as input.

2.7. Gene ontology and KEGG enrichment 
pathway analysis

Gene ontology (GO) analysis was done to identify the distribution 
of significant differentially expressed genes (DEGs) into three major 
domains, i.e., cellular component, molecular function, and biological 
process. GO term was assigned to each significant differentially 
expressed transcript using Blas2GOcli 1.4. KAAS (KEGG automatic 
annotation server; Moriya et  al., 2007) was used for ortholog 
identification and mapping of significant differentially expressed 
transcripts to the biological pathways. The criteria used to identify 
significantly down and up-regulated transcripts were log2FC > 0 and 
q value<0.05 (means significantly up-regulated), and log2FC < 0 and 
q value <0.05 (means significantly down-regulated). Using BLASTX 
with a threshold bit-score value of 60 (default), significant differentially 
expressed transcripts were compared against the KEGG database. A 
Heatmap of DEGs was generated for 25 highly significant down and 
up-regulated genes (a total top 50 transcripts) based on q value (i.e., 
least q value).

2.8. Identification of genes encoding 
differentially expressed transcripts

The reference of the genome-based transcript identification 
revealed that many of the transcripts showed differential expression 

under Fusarium wilt infections, which are the transcript fragments 
encoding the same proteins. Further analysis was conducted using the 
NCBI gene database. However, the protein IDs of the transcripts 
revealed that several proteins were the products/isoforms of the same 
genes. Using the sorting option available in MS Excel, the transcripts 
encoded by the same genes were sorted together to finally get the exact 
numbers of genes showing differential expression under Fusarium wilt 
stress in chickpea.

2.9. Primer design and real-time PCR 
analysis

From the RNA sequencing data, 15 genes that showed 
significant differential expression in the resistant genotype, i.e., 
KWR 108, were selected for real-time PCR verification of the RNA 
sequencing results. Primer Blast Program, available at NCBI 
database (accessed on 20 October 2023),3 was used for designing 
primers with CDS of 15 selected genes and CDS of Glucose-6-
Phosphate Dehydrogenase (G6PD) gene as internal control (Reddy 
et al., 2016). RNA was extracted by using RNA isolation kit (Qiagen) 
from control and treatment plants of KWR 108 and cDNA was 
synthesized from RNA using the cDNA synthesis kit following the 
manufacturer’s protocol (Himedia, HiGenoMB). The gene 
expression analysis was done by using the cDNA template and 2× 
AB HS SYBR Green qPCR Mix (Thermo Scientific) in a qRT-PCR 
(Stratagene Mx3000P, Agilent). The details of real-time PCR 
primers specific to the ERF transcription factor family used in the 
experiment are listed in Table 1.

2.10. Data analysis and graphing

Sample comparison was made for GL 13001 (control vs. 
treatment) and KWR 108 (control vs. treatment), respectively, for 
differential expression analysis. The analyses were performed in the 
edge R package to identify differentially expressed genes. Reads per 
million mapped reads or Counts per million mapped reads for both 
control and treatment samples, LogCPM (Log10 of CPM value), 
Log2Fold Change [the logarithm (base 2) of the fold change], pval 
(value of p for the statistical significance of this change), FDR [FDR 
adjusted value of p (q-value)], and the criteria used to identify 
significantly down and up-regulated transcripts were log2FC > 0 
(means up-regulated), log2FC > 0 and q value<0.05 (means 
significantly up-regulated), log2FC < 0 (means down-regulated), 
log2FC < 0 and q value <0.05 (means significantly down-regulated). In 
real-time PCR analysis, the mean and standard deviation were 
calculated based on three pieces of biological replicated data and, 
using the Livak method (Schmittgen and Livak, 2008), the relative 
gene expression was calculated with G6PD as the internal reference 
gene. The rest of the data statistics and graphing were performed using 
MS Excel. The reliability of the RNAseq data was confirmed by 
comparing the expression data of selected genes using a linear 
regression model in Excel.

3 https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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3. Results

3.1. Transcriptome data generation, 
transcript mapping, and assembly

In the present investigation, the total reads obtained from four 
samples, i.e., GL 13001 (control and treatment) and KWR 108 (control 
and treatment), ranged from 33.19 million reads in GL 13001-Control 
to 42.43 million reads in KWR 108-Treatment (Table 2).

The QC passed reads were then subjected to reference-based 
transcript assembly. The genome size for Cicer arietinum is 531 Mb. 

There are a total of 30,236 genes and 220,289 CDS as per the GFF file 
of the NCBI chickpea reference genome. The transcript assembly was 
performed by mapping clean reads of control and treatment samples 
of GL 13001 and KWR 108 on the reference genome using STAR 
(v 2.7.10a). The mapping statistics of HQ reads against the reference 
genome are presented in Table 3.

The number of assembled transcripts varied from 36,081 to 39,186 
with an average transcript size of 2003.40 bp and 1992.60 bp in control 
and treated GL 1300, respectively. Similarly, the number of assembled 
transcripts ranged from 37,496 and 37,304 with an average transcript 
size of 2005.90 bp and 1984.60 bp in control and treated KWR 108 

TABLE 1 List of qRT PCR primers specific to selected genes that showed significant up-regulation in KWR 108 in shoot transcriptome data for validation 
of RNA sequencing-based shoot transcriptome data.

Sl. no. ERF gene Id Forward primer sequence Reverse primer sequence Expt. A. size 
(bp)

1. LOC101488294 ACACTCGTCAAGTTGCTGCT TGAGGGTCCTTGAGAAGAAGG 98

2. LOC101489178 CCAACGCCAACAACCTCAAC GCCTTCTTCTAACCCCTCGG 90

3. LOC101490960 GTCCTTGGGGGAAATACGCA GCAGCTTCTTCAGCTGTTTGG 94

4. LOC101494217 TCCGAAACCGGAGGTGATTG TTTCCCCACGGTCTTTGTCT 90

5. LOC101495836 AGTTCAGAGGCGTAAGGCAG CCGCCGTGTTAAAAGTTCCG 102

6. LOC101496212 GGAAATTCGCGGCGGAGATA AAGCAAGTGCTGCTGCTTCA 93

7. LOC101501427 ATACTGCGCTTAGCGTTGGT CGCTCATAATCCACGACGGA 106

8. LOC101502122 CGCTGAGATTCGTCTCCCTC CTTAAAAGCTTCGCGGTCGT 100

9. LOC101502737 CAGCAGAGATTCGTGACCCA ACATCATAAGCACGTGCAGC 91

10. LOC101504196 TCTGTCTCCGGTGGAGTTCA ACAACGGTGGAGGTTCGTTT 106

11. LOC101505842 GAAGATTGATACCGTTTCTGGAG GCTGTCTGTTGTACTTCTTCCAC 110

12. LOC101508871 CGCTTCCTCTGTTTCCTGGT GAAGGTGGTAAACCCGACCC 100

13. LOC101512924 AGAAGGCCATGGGGGAAATG TAGCAGCTTCCTCAGCAGTG 100

14. LOC101515629 GGTCAAGGAAGAACCTCAACCT GCCCATTTTCCCCAAGGTCT 93

15. LOC105852724 CTGCTTCCTCCTCCTCCTCT CGGGTCGGGTGACTCATAAC 107

16. G6PD GCAATTTGCAACACCTTAGTGG GTGGTTGAACAACTTCAGCGT 83

Expt. A. size (bp) is the expected amplicon size (base pair).

TABLE 2 The transcriptome data statistics (A) for clean data after removal of the adapter and low-quality bases.

Sample name Total reads (R1  +  R2) Total bases (R1  +  R2) Total data (~Gb)

GL 13001 (Control) 33,192,474 4,94,41,97,791 4.94

GL 13001 (Treatment) 37,251,762 5,55,45,96,976 5.55

KWR 108 (Control) 35,184,976 5,24,08,35,996 5.24

KWR 108 (Treatment) 42,432,918 6,30,99,29,526 6.31

R1 and R2, two technical replicates; Gb, Gigabase.

TABLE 3 Highlights of mapping statistics high-quality reads derived from shoot transcriptome mapped to chickpea reference genome using STAR 
aligner.

Sample name Total reads Mapped reads 
(no.)

Mapped read (%) Uniquely mapped 
reads (no.)

Uniquely mapped 
reads (no.)

GL 13001 (Control) 33,192,474 29,327,660 88.36 27,482,244 82.80

GL 13001 (Treatment) 37,251,762 35,757,750 95.99 33,881,974 90.95

KWR 108 (Control) 35,184,976 33,512,528 95.25 32,497,028 92.36

KWR 108 (Treatment) 42,432,918 40,655,068 95.81 23,111,318 54.47
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TABLE 5 The statistics of transcripts showing differential expression.

Transcripts 
combinations

Total 
transcripts

Down-
regulated

Up-
regulated

Significant-
down-

regulated

Significant-up-
regulated

Total 
significant 
transcripts

GL 13001 (Treatment vs. 

Control)

32,430 15,428 17,002 2,835 4,669 7,504

KWR 108 (Treatment vs. 

Control)

31,038 15,789 15,249 3,139 3,559 6,698

The statistics of calculating up and down-regulated genes were log2FC > 0 (up-regulated), log2FC < 0 (Down-regulated), log2FC > 0 and q value < 005 (significantly up-regulated) and log2FC < 0 
and q value < 0.05 (significantly down-regulated).

leaves samples, respectively. Simultaneously, StringTie’s merge resulted 
in several transcripts assembled as 51,353 with an average transcript 
size of 1898 bp in merge data (Table 4).

StringTie’s merge function was used because individually in some 
of the samples, transcripts might only be partially covered by reads, 
leading to the assembly of only a partial version of those transcripts in 
the initial StringTie run. Thus, the set of transcripts that are consistent 
in all four samples was created to be compared in the subsequent steps 
using the merge step.

3.2. Novel transcripts and novel isoform 
transcripts identified

A total of 4,111 novel transcript isoforms corresponding to or 
encoded by 2,918 genes were identified as potential novel isoforms. 
Interestingly, 167 novel transcripts in KWR 108 and 170 novel 
transcripts in GL 13001, which were not available in the annotation 
file of the reference genome, were identified. The detailed list of novel 
transcripts and novel isoform transcripts identified are enlisted in 
Supplementary raw data file S1.

3.3. Identification of differentially 
expressed transcripts

Large numbers of transcripts were shown to be  differentially 
expressed as revealed by differential expression analysis using edgeR 
software. Simultaneously, 7,504 and 6,698 transcripts were found to 
be significantly differentially expressed in GL 13001 and KWR 108, 
respectively (Table 5).

By transforming the data onto A (mean average) and M (log ratio) 
scales, the differences between measurements taken in control and 
treatment samples were visualized in MA plot. Simultaneously, a 

volcano plot that arranges differentially expressed transcripts along 
dimensions of statistical as well as biological significance was obtained 
from the edgeR software (Figures 2A–D). Similarly, the heatmap of 25 
highly significant down and up-regulated genes (total 50 transcripts) 
based on q-value (i.e., least q value) and transcripts with proper 
annotations generated for both the genotypes are represented in 
Figures 2G,H.

3.4. Validation of RNAseq-based 
transcriptome data using a real-time PCR

The reliability of sequencing data was confirmed by real-time-
based expression analysis of 15 selected genes that showed significant 
up-regulation in the resistant genotype under Fusarium wilt infection 
as revealed by RNAseq data. Similar to RNA sequencing results, the 
real-time PCR data of 15 selected genes showed significant differential 
expression of the genotype KWR 108 (Figure  2E). The linear 
regression analysis of RNAseq and real-time PCR-based expression 
data also showed significant similarity (R2 = 0.871), which confirmed 
that the RNAseq data were reliable for further analysis (Figure 2F).

3.5. Reference genome-based transcript 
identification

Identification of genes encoding differentially expressed transcripts 
revealed that, in GL 13001, 427 genes were significantly  
down-regulated and 794 were significantly up-regulated 
(Supplementary raw data file S2). Similarly, in KWR 108, 495 genes 
were significantly down-regulated and 608 genes were significantly 
up-regulated (Supplementary raw data file S2). When the genes that 
showed significant differential expression were compared between two 
genotypes, i.e., GL 13001 and KWR 108, it was revealed that 81 genes 

TABLE 4 The statistics of merged transcripts (generated by the combination of all four samples as well as reference genome) and individual transcript 
assembly using StringTie assembly and merge function.

Sample name Assembled transcripts 
(no.)

Total assembled (bp) Mean transcript size 
(bp)

Max transcript size 
(bp)

Merged 51,353 9,74,67,567 1,898 33,235

GL 13001 (Control) 36,081 7,22,83,697 2,003.40 33,235

GL 13001 (Treatment) 39,186 7,80,82,916 1,992.60 33,235

KWR 108 (Control) 37,496 7,52,13,757 2,005.90 33,235

KWR 108 (Treatment) 37,304 7,40,32,603 1,984.60 33,235
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were down-regulated and 211 genes were up-regulated in both the 
genotypes. Ninety-one and 172 genes showed significant down-
regulation and up-regulation only in GL 13001 and 93 and 97 genes 
showed significant down-regulation and up-regulation only in KWR 
108, respectively. Similarly, 111 genes were significantly up-regulated 
in GL 13001 but significantly down-regulated in KWR 108 and 50 
genes were significantly down-regulated in GL 13001 but significantly 
up-regulated in KWR 108.

3.6. Gene ontology enrichment analysis

The GO enrichment analysis of significant differentially expressed 
genes (DEGs) summarized the genes into three main GO categories, 
namely cellular component, molecular function, and biological 
process (Supplementary raw data file S2). The GO enrichment results 
of the top 50 significantly up-regulated and down-regulated genes in 
two genotypes are represented as pie charts (Figure 3).

FIGURE 2

MA plot and volcano plot showing differentially expressed transcripts in treatment vs. control combination in GL 13001 (A,B) and KWR 108 (C,D). Red 
corresponds to transcripts with adjusted p value/q value <0.05. Validation of RNA-Seq data by qRT-PCR by using primers specific to 15 genes which in 
RNA-Seq result showed significant differential expression in KWR 108 (E,F). The heatmap of 25 highly significant down and up-regulated transcripts 
based on q value (i.e., least q value) in GL 13001 (G) and KWR 108 (H). The color coding ranges from red to green, where shades of red represent high 
transcript expression and shades of green represent low transcript expression. T means treatment sample and C means control sample.
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FIGURE 3

Gene ontology (GO) enrichment graphs of the top 50 up and 50 down-regulated genes in KWR 108 and GL 13001. Moss green color bar represents 
Cellular Compartments, Orange color bar represents Molecular functions, and Blue color bar represents biological processes in which the top 50 
DEGs are involved.

The GO enrichment results of the top 50 significantly up and 
down-regulated genes revealed that the proteins encoded by most of 
these genes are the components of the membrane and nucleus. The 
products of most of the top 50 genes down-regulated in GL 13001 

have nucleotide binding, catalytic, metal ion binding, transferase, and 
hydrolase activity involved in biological processes like metabolic 
processes, mRNA processing, DNA repair, oxidation–reduction 
process, and macroautophagy. Apart from membrane and nucleus, 

https://doi.org/10.3389/fmicb.2023.1265265
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bhutia et al. 10.3389/fmicb.2023.1265265

Frontiers in Microbiology 09 frontiersin.org

many of the proteins encoded by the top 50 genes up-regulated in GL 
13001 are the components of proteasome and ribosome having 
nucleotide binding, catalytic, metal ion binding, oxidoreductase, and 
transferase activity involved in biological processes like metabolic 
processes, translation, DNA repair, and oxidation–reduction process.

Similar to the GO terms of the top 50 genes significantly up and 
down-regulated in GL 13001, the GO terms of the top 50 genes down-
regulated in KWR 108 showed the highest cellular component as 
membrane and nucleus and molecular functions as nucleotide 
binding, metal ion binding, transferase, catalytic, and nuclear pore 
activities. However, the GO terms of the top 50 genes up-regulated in 
KWR 108 revealed that, apart from membrane and nucleus, the 
products of the genes are the components of ribosome and cytosol 
having molecular functions such as kinase activity, oxidoreductase 
activity, nucleotide binding, transferase, and metal ion binding 
activities involved in biological processes such as phosphorylation, 
oxidation–reduction process, metabolic and biosynthetic process, and 
cell redox homeostasis (Figure 3).

3.7. Pathways involving differentially 
expressed genes

KEGG enrichment analysis of the significant DEGs identified in 
both the genotypes of chickpea was performed to estimate the 
numbers of significant DEGs involved in different KEGG pathway 
levels. It revealed that, in the susceptible genotype, i.e., GL 13001, the 
number of significantly up-regulated genes involved in different 
pathways such as DNA replication and DNA repair, cell motility, lipid 
metabolism, carbohydrate metabolism, and DNA degradation is 
significantly higher than in KWR 108. Whereas the number of DEGs 
specifically involved in energy metabolism and environmental 
adaptation pathways are significantly higher in KWR 108 than in GL 
13001 (Figure 4A). The same genes that were up-regulated in GL 
13001 but down-regulated in KWR 108 were observed to be higher in 
most of the pathways; more specifically, the genes involved in cell 
motility and membrane transport were significantly up-regulated only 
in GL 13001 (Figure  4B). However, the same genes involved in 
carbohydrate metabolism were up-regulated in resistant genotype 
KWR 108 but down-regulated in susceptible genotype GL 13001 
(Figure 4B).

4. Discussion

In the present study, transcriptome dissection was done to 
understand the probable molecular mechanisms imparting the ability 
to tolerate Fusarium wilt in the chickpea genotype, particularly in the 
genome background of KWR 108, a highly resistant variety screened 
at TCA-Dholi, Bihar, India (Kumar et al., 2019). The comparative 
analysis of the transcriptome data generated from susceptible 
genotypes GL 13001 and resistant variety KWR 108 was performed to 
identify the pathways and genes involved that are showing differential 
expression under Fusarium wilt stress. Compared to the susceptible 
genotypes, higher numbers of genes belonging to the pathways 
involved in environmental adaptation and energy metabolism showed 
highly significant up-regulation in resistant genotype KWR 108 and, 
along with genes involved in several other processes, more genes 

belonging to DNA repair mechanisms showed significant 
up-regulation in susceptible genotype GL13001 (Figure 4A).

4.1. Significant up-regulation of genes 
involved in DNA repair mechanism in 
susceptible genotype

In our present study, a comparison between the shoot 
transcriptome of KWR 108 and GL 13001 showed a significantly 
higher number of genes involved in DNA repair mechanisms were 
up-regulated in GL 13001, a susceptible genotype (Figure  4A). 
Although, under normal circumstances, DNA damage can be thought 
of as a frequent occurrence, it is likely to occur even more in response 
to several stress conditions (Nisa et  al., 2019) either directly or 
indirectly due to increased level of reactive oxygen species (ROS; 
Szurman-Zubrzycka et  al., 2023). The resistant or tolerant plants 
protect the DNA from damage by activating enzymatic and 
non-enzymatic antioxidant machinery (Moradbeygi et al., 2020). In 
the present study, the significantly up-regulated genes related to DNA 
repair mechanism in susceptible genotypes are crossover junction 
endonuclease EME1, DNA excision repair protein ERCC-1 & 4, DNA 
mismatch repair protein MLH3, DNA repair and recombination 
protein RAD54 and RAD54-like protein, DNA repair protein REV1, 
DNA-3-methyladenine glycosylase I, flap endonuclease-1, telomere 
length regulation protein, UV excision repair protein RAD23, and 
WD repeat-containing protein 48. This suggests that DNA replication 
and other similar processes of DNA synthesis are more stable in 
resistant genotypes as compared to susceptible genotypes under 
Fusarium wilt stress condition.

4.2. Significant up-regulation of 
environmental adaptations genes in the 
resistant genotype

The genes specifically belonging to environmental adaptation 
pathways are significantly up-regulated in the resistant genotype. 
The environmental adaptation genes basically encode for the 
proteins or enzymes involved in plant-pathogen interaction upon 
infection. In the present study, the significantly up-regulated 
environmental adaptation genes in KWR 108 were calcium-
dependent protein kinase (CDPK), pathogenesis-related genes 
transcriptional activator (Pti5 & Pti6), calmodulin (CaM), 
calmodulin-like proteins (CML), cyclic nucleotide-gated channel 
(CNGC), mitochondrial translation elongation factor Tu (TUFM), 
chitin elicitor receptor kinase 1 (CERK1), enhanced disease 
susceptibility 1 protein (EDS1), disease resistance protein (RPM1/ 
RPS3), mitogen-activated protein kinase 3 (MPK3), mitogen-
activated protein kinase 4 (MPK4), mitogen-activated protein 
kinase kinase 4/5 (MKK4_5), pathogenesis-related protein 1 (PR1), 
and WRKY transcription factor 33 (WRKY33). The important roles 
and involvement of environmental adaptation genes like CDPK 
(Asano et al., 2012; Baba et al., 2019; Wu et al., 2021), Pti5 & Pti6 
(Yang et al., 2020; Wang Y. et al., 2021; Sun et al., 2022), CaM, and 
CML (Zeng et al., 2015; Ranty et al., 2016) in several biotic and 
abiotic stress responses have been extensively studied and reported. 
The plant accumulates Ca+ upon experiencing stress as a secondary 
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messenger to modulate the cellular processes (Luan, 2009). CNGC, 
which showed significant up-regulation under Fusarium wilt in the 
present study, is mostly localized to the plasma membrane and acts 
as ligand-gated cation channels (Chin et  al., 2009) for the 
accumulation of Ca+ in the cell during stress. Several reports 

suggested the potential role of CNGC in plant disease resistance 
through hypersensitive response (Clough et al., 2000; Ahn, 2007; 
Keisa et al., 2011; Ma and Berkowitz, 2011; Guo et al., 2018; Peng 
et al., 2019; Dietrich et al., 2020; Chakraborty et al., 2021; Zhao 
et  al., 2021). Mitochondrial translation elongation factor Tu 

FIGURE 4

KEGG enrichment/Pathway analysis results (A) genes significantly up-regulated and down-regulated in two genotypes of chickpea, i.e., KWR 108 and 
GL 13001 and (B) genes significantly up-regulated in KWR 108 but down-regulated in GL 13001 and vice versa. ‘Y’ axis represents the number of 
significant DEGs.
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(TUFM) is a mitochondrial protein encoded by the nuclear genome 
that potently inhibits RLR (RIG-I-like receptors) signaling and 
promotes autophagy during a pathogen infection, particularly 
viruses (Lei, 2011; Wu et al., 2022). In the study, TUFM showed 
significant up-regulation in Fusarium wilt-resistant genotype KWR 
108, suggesting its potential role in imparting resistance against 
fungal pathogens and other stresses as reported in crops like maize 
(Rao et al., 2004) and soybean (Yin et al., 2009). Chitin, which is an 
essential unit of fungal cell walls including chickpea wilt, causes 
F. oxysporum to act as an elicitor of plant immunity (Gong et al., 
2020). Chitin elicitor receptor kinase 1 (CERK1), which showed 
significant up-regulation in resistant genotypes in the present study, 
is a heterotrimeric complex (Gigli-Bisceglia and Testerink, 2021) 
required for the perception of chitin and subsequent activation of 
the chitin-responsive cellular processes as well as for triggering the 
innate immunity of the plants against abiotic stress (Espinoza et al., 
2017). CERK1 mutant (cerk1) plants showed increased susceptibility 
to fungal pathogens like Erisiphe cichoracearum, Alternaria 
brassicicola, and Blumeria graminis (Gigli-Bisceglia and Testerink, 
2021), indicating its vital role in perceiving pathogen signals and 
subsequent induction of defense mechanism in resistant plants. The 
enhanced disease susceptibility 1 (EDS1) gene, which showed 
significant upregulation in KWR 108 in the present study, encodes 
a lipase-like protein that has been reported to be  essential for 
resistance against biotrophic pathogens (Ochsenbein et al., 2006). 
In plants, it is basically required by Toll/Interleukin-1 receptor 
(TIR) domain of NLR (nucleotide-binding leucine-rich repeat) 
immune receptors (Johanndrees et  al., 2023) and for inducing 
expression of PR (pathogen-related) proteins through the salicylic 
acid (SA) pathway against several pathogens (Yan et  al., 2016; 
Bhandari et al., 2019; Neubauer et al., 2020). Likewise, RPM1/RPS3 
(disease resistance protein), which in the present study showed 
significant up-regulation in the resistant genotype, is basically a 
CC-NBS-LRR protein that was first identified as a protein in 
Arabidopsis essential for resistance mechanism against P syringae 
pv. Maculicola. It was later reported to have roles in resistance 
against diseases caused by other pathogens like Puccinia striiformis 
f. sp. tritici through hypersensitive response and Ca+ concentration 
dynamics (Grant et  al., 2000; Wang et  al., 2020). In the present 
study, mitogen-activated protein kinases (MAPK) such as MPK3, 
MPK4, and MKK4_5 showed significant up-regulation in resistant 
genotypes that are basically involved in intracellular responses 
(Sinha et al., 2011). In plants, MAPKs are reported to induce stress 
tolerance (Lin et al., 2021) including biotic stresses (Zhang and 
Zhang, 2022) through JA (Jasmonic acid) and SA signaling 
pathways (Jagodzik et al., 2018). The SA signaling in plants under 
stress including fungal infection induces the expression of defense 
proteins like PR1 (pathogenesis-related protein 1; Almeida-Silva 
and Venancio, 2022; Anuradha et al., 2022). Antifungal and several 
other antimicrobial activities of PR1 have been well-reviewed and 
reported (Kattupalli et al., 2021; Almeida-Silva and Venancio, 2022; 
Anuradha et al., 2022; Pečenková et al., 2022). Similar to all these 
reports, in the present study also, PR1 genes showed significant 
up-regulation in chickpea under Fusarium wilt stress, confirming 
its role as a defense mechanism against Fusarium wilt disease. 
Likewise, in plant defense responses, an important oxidoreductase 
enzyme is peroxidase, which is involved in cell wall modifications 
and the generation of reactive oxygen species (ROS; Chang et al., 
2021). Xue et  al. (2017) reported that, in common bean, the 

peroxidase gene PvPOX1 enhanced resistance against Fusarium 
wilt. In the present study, a large number of peroxidase genes 
up-regulated in KWR 108, but none in GL 13001, suggesting its role 
in resistance against Fusarium wilt in chickpea also. Similarly, 
WRKY33, an important member of WRKY transcription factor 
family in plants, showed significant up-regulation in the resistant 
genotype. The role of WRKY transcription factor has been studied 
extensively and it plays a role in responses to several stimuli 
irrespective of physiological, biotic, or abiotic stress (Phukan et al., 
2016; Cheng et al., 2021).

4.3. Significant up-regulation of energy 
metabolism genes in the resistant 
genotype

The important metabolites involved in redox homeostasis of 
plant cells are nicotinamide adenine dinucleotide (NAD) and its 
other derivatives, which are mostly nucleotide coenzymes (Kapoor 
et al., 2015). The redox state of NAD, i.e., NAD (P)+/NAD(P)H (ratio 
of oxidized to reduced form) in the cell plays an important role as a 
signal to ameliorate the bridge between cellular metabolic state and 
gene expression under various conditions, including biotic and 
abiotic stress condition (Kapoor et  al., 2015), and are vital for 
homeostasis of cellular energy in plant cells under stress condition 
for optimum growth and development. In the present study, genes 
related to NAD (P)H, such as NADH-dependent glutamate synthase, 
NAD(P)H-quinone oxidoreductase subunit 4, NADH dehydrogenase 
(ubiquinone) Fe-S protein, NADH:quinone reductase, and NADH–
ubiquinone oxidoreductase, showed significant up-regulation in 
resistant genotypes, confirming its role in energy homeostasis in 
plants under stress conditions. Other than NADH-related genes, 
shoot transcriptome data of resistant genotypes in the present study 
also showed significant up-regulation of other genes involved in 
energy metabolism, such as phosphoenolpyruvate carboxylase (Wang 
et al., 2016; Waseem and Ahmad, 2019), alcohol dehydrogenase (Su 
et al., 2020), alanine transaminase (Bashar et al., 2020), ATP citrate 
(pro-S)-lyase (Liu F. et al., 2022), ATPase (Li J. et al., 2022; Li Y. et al., 
2022), carbonic anhydrase (Rudenko et  al., 2021), cytochrome c, 
cytochrome c oxidase (Guerra-Castellano et al., 2018; Analin et al., 
2020), fructose-bisphosphate aldolase (Lv et  al., 2017; Cai et  al., 
2022), malate dehydrogenase (Song et  al., 2022), 
6-phosphofructokinase 1 (Wang H. et al., 2021), photosystem II P680 
reaction center D1 protein (Landi and Guidi, 2022), phosphoserine 
aminotransferase (Wang et  al., 2022), pyruvate-orthophosphate 
dikinase (Yadav et al., 2020), and serine O-acetyltransferase (Mulet 
et al., 2004; Liu D. et al., 2022), and their molecular mechanism and 
role in energy homeostasis in different crops is well reviewed. It 
indicates that the significant up-regulation of the genes involved in 
energy metabolism in KWR 108 might have helped it to cope with 
Fusarium wilt stress by maintaining energy homeostasis in cells 
under stress conditions.

The genes particularly involved in environmental adaptation, 
energy metabolism, and others which showed significant 
up-regulation in wilt-resistant genotypes will be  a target for 
designing gene-based markers for marker-trait association 
studies. The marker-trait association study, especially for the 
traits attributing to wilt resistance and yield under wilt infection, 
will be our next target to check whether these up-regulated genes 
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have any roles in imparting resistance against Fusarium wilt 
through some desirable phenotypic traits or whether there are no 
roles in phenotypic traits of chickpea under wilt. If these gene-
based marker/s are found to be robustly associated with Fusarium 
wilt-resistant traits, then they could be utilized in marker-assisted 
breeding to develop a wilt-resistant high-yielding variety 
of chickpea.

5. Conclusion

The present study was conducted to gain insight into the 
molecular mechanism imparting resistance against Fusarium wilt 
infection in chickpea using an RNA sequencing-based shoot 
transcriptome approach. The shoot transcriptome data derived 
from two contrasting genotypes of chickpea, namely KWR 108 
(wilt resistant variety) and GL 13001 (wilt susceptible variety), 
revealed that the resistant genotype efficiently maintains the 
energy homeostasis in the cell under stress conditions by 
up-regulating the large sets of genes responsible for maintaining 
the cellular energy homeostasis. The up-regulation of significant 
numbers of genes involved in environmental adaptation, 
particularly host-pathogen interaction in resistant genotypes, 
suggests that the resistant genotypes efficiently deploy the defense 
mechanism starting from perceiving and transduction of 
pathogen signal to activation and implementation of the defense-
related mechanism. Similarly, the susceptible genotype showed 
significant up-regulation of genes involved in several mechanisms, 
including the DNA repair mechanism, thus it can be perceived 
that the DNA molecules of the susceptible genotype were more 
unstable and damaged than the DNA molecules of the resistant 
genotype, which showed optimum growth under Fusarium wilt 
stress. Therefore, it can be  concluded that efficient energy 
metabolism, activation of environmental adaptation mechanisms, 
and DNA stability were key to resistance against Fusarium wilt 
infection in chickpea genotypes.
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