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Complex interplay of gut
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Obesity is an important risk factor and common comorbidity of childhood

asthma. Simultaneously, obesity-related asthma, a distinct asthma phenotype,

has attracted significant attention owing to its association with more severe

clinical manifestations, poorer disease control, and reduced quality of life. The

establishment of the gut microbiota during early life is essential for maintaining

metabolic balance and fostering the development of the immune system in

children. Microbial dysbiosis influences host lipid metabolism, triggers chronic

low-grade inflammation, and a�ects immune responses. It is intimately linked to

the susceptibility to childhood obesity and asthma and plays a potentially crucial

transitional role in the progression of obesity-related asthma. This review article

summarizes the latest research on the interplay between asthma and obesity, with

a particular focus on the mediating role of gut microbiota in the pathogenesis of

obesity-related asthma. This study aims to provide valuable insight to enhance

our understanding of this condition and o�er preliminary evidence to support the

development of therapeutic interventions.
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1. Introduction

Asthma and obesity are important public health concerns affecting children’s health.

According to data from the 2021 Global Asthma Network Stage I cross-sectional study,

approximately 9.1% of children and 11% of adolescents had asthma in the previous year,

with nearly half experiencing severe symptoms (Asher et al., 2021). In 2016, the worldwide

prevalence of obesity among children and adolescents in boys and girls aged 5–19 years were

7.8 and 5.6%, respectively (Bentham et al., 2017). An estimated 206 million children and

adolescents will experience obesity worldwide by 2025; this number is expected to reach

254 million by 2030 (Jebeile et al., 2022). Obesity and asthma are not simply coexisting

conditions; research indicates that obese children have a >50% higher risk of developing

asthma than normal-weight children (Malden et al., 2021). In 2017, the Centers for Disease

Control and Prevention identified obesity as a significant risk factor for asthma (Grossman

et al., 2017).

The increased risk of childhood asthma due to obesity may be attributed to early-

life experiences or parental factors. Notably, rapid weight gain during the initial 6–18

months after birth is strongly linked to a 2.1–3.3 times higher risk of non-atopic asthma;

this correlation is particularly pronounced among boys (Ho et al., 2022). Furthermore,

there is a linear relationship between the risk of childhood asthma and an increase in
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maternal pre-pregnancy body mass index (BMI) (Rosenquist et al.,

2023). Clinical symptoms tend to be more severe in children

with comorbid asthma and obesity, who experience more frequent

exacerbations. Additionally, disease control is often poorer in this

group and characterized by reduced responsiveness to inhaled

corticosteroids and an increased likelihood of unresponsiveness to

bronchodilators (Peters et al., 2018). In 2014, the Global Initiative

for Asthma identified “asthma with obesity” as an asthmatic

phenotype (Reddel et al., 2015). The above evidence suggests a

correlation between asthma and obesity and that obesity-related

asthma has specific mechanisms and treatments.

Obesity complicates asthma phenotypes, and previous research

highlighted its possibility associated with obesity-induced lipid

status disturbances and chronic systemic inflammation (Miethe

et al., 2020). In addition to classical atopic asthma, children with

obesity-related asthma exhibit CD4+ T cells polarizing toward

Th1 and Th17 profiles (Nyambuya et al., 2020; Leija-Martínez

et al., 2022). With technological advancements in the microbiome

field, increasing evidence has linked obesity, asthma, and dysbiosis

of the gut microbiota. The human body consists of trillions of

microbes that congregate in the intestine to form a complex

community known as the gut microbiota (Adak and Khan, 2019).

The gut microbiota is a complicated and dynamic ecosystem that

coevolves with the host, develops during infancy, and plateaus

during adulthood (Bäckhed et al., 2015). It plays a role in regulating

host lipid metabolism and the inflammatory response as well as

stimulating the development of the immune system by assisting

the host in digesting food and releasing nutrients (Yu et al.,

2019; Zhuang et al., 2019). The disruption of healthy and timely

microbial colonization has long-term health effects, particularly

increased susceptibility to allergic and metabolic diseases (Lloyd

and Marsland, 2017; Zhang and Dang, 2022). Increasing evidence

suggests that the gut microbiota may play a bridging role in the

mechanisms underlying the increased risk of obesity and asthma.

However, this series of complex mechanism changes has yet to

be fully elucidated and interconnected. This article summarizes

the latest research on the correlation between obesity and asthma

and provides a detailed explanation of the potential mediating

mechanisms of the gut microbiota.

2. Impact of early-life gut microbiota
colonization on asthma and obesity

2.1. Factors influencing early-life gut
microbiota colonization

The postnatal period is often referred to as the “window of

opportunity,” a critical time for microbial colonization as well

as the rapid maturation and development of various systems in

children, including the immune and metabolic systems (Johnson

and DePaolo, 2017; Robertson et al., 2019). These systems evolve

in tandem and are highly interdependent, strongly supporting

children’s growth. Maternal pregnancy status, delivery mode, diet,

and early-life antibiotic treatment are important factors that

influence gut microbial colonization and development (Gibson

et al., 2015; Wu et al., 2016a; Lundgren et al., 2018) (Figure 1).

Whether the fetus environment in the womb is sterile remains

inconclusive; however, scholars concur that themother’s nutritional

and immune inflammatory state during pregnancy can affect the

offspring’s growth and development and that the gut microbiota

potentially plays a mediating role in this process (Chu et al.,

2016; Theis et al., 2019). A study reported that the placentas of

women who experience excessive weight gain during pregnancy

and preterm delivery are characterized by an increased abundance

of Firmicutes, Actinobacteria, and Cyanobacteria and a decreased

abundance of Proteobacteria (Antony et al., 2015).

Mode of delivery affects the neonatal gut microbiota. The

microbiota of newborns delivered vaginally closely resembles

that of the mother’s birth canal, whereas that of newborns

delivered via cesarean section closely resembles that of the mother’s

skin. The guts of newborns delivered vaginally is predominantly

populated by Lactobacillus, Prevotella, Atopobium, and Sneathia

spp., whereas that of newborns delivered via cesarean section

is predominantly populated by Staphylococcus, Corynebacterium,

and Propionibacterium spp. with delayed colonization by the

Bifidobacterium and Bacteroides genera (Dominguez-Bello et al.,

2010; Jakobsson et al., 2014; Rutayisire et al., 2016).

Diet influences the composition and function of the gut

microbiota. Compared to formula feeding, breastfeeding increases

the diversity of gut microbiota species and alters the levels

of specific bacterial genera by increasing the abundance of

Bifidobacterium spp. and decreasing the abundance of Clostridium

spp. and Bacteroides spp. (Savage et al., 2018). Changes in dietary

patterns shape the gut microbiota of children as they age; these

changes occur over a short period (David et al., 2014). One study

reported that a high-fat diet (HFD) led to a decrease in microbial

populations, alterations in species abundance, and increased in

intestinal permeability (Turnbaugh et al., 2009). A low-fat diet

decreases the relative abundance of Actinobacteria and Firmicutes,

whereas a low-carbohydrate diet increases the relative abundance

of Proteobacteria, Bacteroidetes, and Firmicutes phyla (Fragiadakis

et al., 2020).

Antibiotic administration eliminates antibiotic-sensitive

bacteria and reduces the abundance and diversity of the

gut microbiota in children. A previous study reported that

azithromycin exposure reduces microbiota alpha diversity

(McDonnell et al., 2021). It takes approximately 1 month for

microbial diversity to recover after antibiotic administration in

children (Yassour et al., 2016). However, exposure to antibiotics

may increase the total microbial load in the gut by eliminating

of sensitive bacteria and increasing in the reproduction of

antibiotic-resistant microbiota (Panda et al., 2014; Liu et al., 2021).

Furthermore, the inappropriate use of antibiotics can stimulate

bacterial resistance, which can be transferred from the mother to

the newborn (Karami et al., 2006).

2.2. Gut microbiota dysbiosis increases
risks of childhood obesity and asthma

Delayed maturation and inappropriate development of the

microbiome can disrupt the host’s normal growth trajectory,

leading to overnutrition and an immune imbalance (Gensollen and

Blumberg, 2017). Numerous clinical studies and epidemiological

data have consistently indicated that alterations in the diversity and

specific species of the gut microbiota are associated with childhood
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FIGURE 1

Early-life gut microbiota colonization is disturbed by a variety of factors, including pregnancy status, delivery mode, diet, and antibiotic treatment,

leading to alterations in microbial diversity, abundance, and specific microbes, which ultimately contribute to dysfunction and disease in the host.

obesity and asthma (Zhang et al., 2015; Garcia-Larsen et al.,

2016). Themother’s dietary pattern during pregnancy can influence

the infant’s gut microbiot; this exposure factor may affect the

offspring’s risk of asthma (Alsharairi, 2020). Breastfeeding increases

the diversity of the gut microbiota in infants, which protects against

childhood asthma and obesity (Oddy, 2017; Forbes et al., 2018).

Children born via cesarean section are more prone to developing

asthma and obesity than those born vaginally owing to disrupted

gut microbiota colonization patterns; this effect continues during

adolescence and adulthood (Yuan et al., 2016; Gürdeniz et al.,

2022). Repeated exposure to antibiotics before 6 months of age

is associated with weight gain during childhood (Saari et al.,

2015). As antibiotic prescriptions decrease and the gut microbiota

is protected, the incidence of childhood asthma has declined in

certain regions of Europe and North America (Patrick et al.,

2020).

An increased ratio of Firmicutes to Bacteroidetes is a marker

of gut microbial dysbiosis in obese children (Bervoets et al.,

2013). The fecal microbiota of ob/ob and HFD-induced obese

mice showed an increased abundance of Firmicutes and decreased

abundance of Bacteroidetes (Ley et al., 2005; Jo et al., 2021).

Firmicutesmay mediate susceptibility to overweight/obesity during

pregnancy and in offspring aged 1–3 years (Tun et al., 2018).

A clinical trial reported a 20% increase in Firmicutes abundance

resulting in a 150-kcal increase in energy absorption (Jumpertz

et al., 2011). This suggests that a microbiota dominated by

Firmicutes exhibits a higher energy extraction efficiency than that

dominated by Bacteroidetes. Compared with the gut microbiota

of their lean littermates, the gut microbiota of obese ob/ob mice

is characterized by a higher abundance of indigestible dietary

polysaccharides, such as starch, sucrose, and galactose, as well

as Mollicutes, suggesting that obese ob/ob mice have a greater

capacity to extract energy from food (Turnbaugh et al., 2006,

2008).

Several specific gut microbiota are correlated with asthma.

Lower Bifidobacterium and Akkermansia loads and higher Candida

and Rhodotorula loads are reportedly associated with atopic

asthma in children (Fujimura et al., 2016). Significantly lower

relative abundances of Lachnospira, Veillonella, Faecalibacterium,

and Rothia genera early in life place infants at risk of later

developing asthma (Arrieta et al., 2015). Probiotic intervention

protects against allergic diseases in infants delivered via cesarean

section who are at high risk of allergies; this beneficial effect

was similarly observed in mice (Hogenkamp et al., 2015; Kallio

et al., 2019). Lactobacillus supplementation ameliorates clinical

symptoms in children with asthma, whereas Bifidobacterium

supplementation reduces neutrophil and eosinophil infiltration

in severely asthmatic mice (Huang et al., 2018b; Raftis et al.,

2018).

Lactobacillus speciesmay be involved in obesity-related asthma.

Supplementation with Lactobacillus reportedly reduces airway

inflammation and asthma symptoms in school-aged children while

restoring anti-inflammatory fatty acid (FA)metabolites in infants at

high risk for asthma (Chen et al., 2010; Durack et al., 2018). In obese

individuals, treatment with Lactobacillus ameliorates body weight

and reduces fat levels (Kadooka et al., 2010; Crovesy et al., 2017).

Moreover, it significantly reduces adipose tissue accumulation in

HFD-induced obese mice (Lee et al., 2021). In a recent study of

asthma in obese mice, nitro-oleic acid treatment reduced lung

and total respiratory elasticity, which has been associated with

elevated Lactobacillus abundance (Heinrich et al., 2023). This study

suggests a relationship between Lactobacillus and obesity-related

asthma; however, the specific mechanisms involved require further

investigation.
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3. Mediating role of gut microbiota
between childhood obesity and
asthma

3.1. Lipid metabolism

3.1.1. Obesity-accompanied dysregulated lipid
metabolism contributes to asthma development

Lipids are crucial components and energy reserves of cells

with significant regulatory functions in metabolism, inflammation,

immunity, and various other pathways. Lipid metabolism disorders

are considered primary pathological factors contributing to obesity.

Patients with asthma exhibit significant alterations in phospholipid

and sphingolipid levels, suggesting that abnormalities in lipid

metabolism are involved in asthma development (Murphy et al.,

2021; Rago et al., 2021). Adenosine monophosphate activated

protein kinase (AMPK) is a key regulator of lipid metabolic

balance in vivo (Herzig and Shaw, 2018). AMPK suppresses

the process of de novo fatty acid synthesis (FAS) by causing

inhibitory phosphorylation of Acetyl-CoA Carboxylase 1 (ACC1)

(Jeon, 2016). Simultaneously, it promotes fatty acid oxidation

(FAO) by facilitating inhibitory phosphorylation of ACC2, leading

to the activation of Carnitine Palmitoyltransferase-1 (CPT-1)

activity (Fang et al., 2022). AMPK levels are negatively correlated

with obesity and asthma (Herzig and Shaw, 2018; Garcia et al.,

2019). The AMPK pathway was inhibited in an obesity-related

asthma model constructed through ovalbumin sensitization and

stimulation; however, AMPK activation alleviated both airway

inflammation and airway hyper-responsiveness (AHR) in a mouse

model (Zhu et al., 2019).

Lipid mediators produced via arachidonic acid (AA)

pathway influence asthma (Monga et al., 2020). AA is stored

in membrane phospholipids and released by phospholipase A2

(PLA2) upon exposure to allergens (Wang et al., 2021). PLA2

induces the enzymatic and non-enzymatic oxidation of AA to

prostaglandins, leukotrienes, and other bioactive mediators,

exerting receptor-specific stimulatory and inhibitory effects

that influence the pathophysiology of asthma (Samuchiwal

and Boyce, 2018). Increased protein expression of sPLA2-

X in the airway epithelial cells of patients with asthma is

associated with AHR (Hallstrand et al., 2013). In asthma models,

prostaglandins E2 reduces lung inflammation and remodeling,

showing beneficial effects in asthma patients (Insuela et al.,

2020).

The adipocytokines leptin and adiponectin regulate lipid

metabolism by influencing appetite. Leptin inhibits orexic neurons

and stimulates anorexic proleptin neurons to regulate appetite

(Obradovic et al., 2021). Adiponectin, on the other hand, increases

during fasting, and activates the AMPK pathway by binding to

its receptor AdipoR1 (Okada-Iwabu et al., 2013). In the adipose

tissue of individuals with obesity, adipocyte cytokine leptin levels

increase, whereas adiponectin levels decrease (Frithioff-Bøjsøe

et al., 2020). Both adipocytokines and their receptors are expressed

in human lungs and are associated with asthma severity in

children. Leptin levels are positively correlated with the prevalence

and severity of childhood asthma, whereas adiponectin levels

are negatively correlated, particularly in boys (Assad and Sood,

2012).

3.1.2. Gut microbiota regulates asthma lipid
metabolism: the key role of SCFAs

The impact of the gut microbiota on host lipid metabolism has

been extensively demonstrated in both human and animal models.

Implementing energy restriction and dietary interventions in obese

individuals can increase the microbiota gene abundance while

simultaneously reducing blood lipid levels (Cotillard et al., 2013).

Conventional mice had a 60% higher body fat content and insulin

resistance level than germ-free (GF) mice (Bäckhed et al., 2004).

GF mice exhibited HFD-induced insulin resistance and improved

cholesterol metabolism, which might be related to an increase in

FAO in the peripheral tissues owing to enhanced AMPK activity

in vivo (Rabot et al., 2010). The transplantation of gut microbiota

from ob/ob mice into GF mice resulted in a notable increase

in both body weight and body fat content (Turnbaugh et al.,

2006). Young mice treated with antibiotics showed an altered gut

microbiota composition and elevated levels of hormones related to

carbohydrate, lipid, and cholesterol metabolism (Cho et al., 2012).

Short-chain FAs (SCFAs), such as acetate, propionate and

butyrate, are the final products of microbial fermentation (Ríos-

Covián et al., 2016; Agus et al., 2021). SCFAs provide substrates

for lipid synthesis and serve as regulatory factors to modulate

lipid metabolism in both brown and white adipose tissues (Gao

et al., 2009; Li et al., 2018; He et al., 2020). SCFAs regulate

host biological processes via ligand receptor interactions with G

protein-coupled receptors (GPRs), while peroxisome proliferator

activated receptors (PPARs) are a key family of ligand activated

transcription factors that serve as crucial mediators in SCFA-

induced regulation of metabolic syndrome (Kim et al., 2013;

Den Besten et al., 2015). SCFAs stimulate secretion of the satiety

hormones glucagon-like peptide-1 and peptide YY (PYY) in a

GPR41- and GPR43-dependent manner and increase leptin levels

in adipose tissue, thereby reducing food intake and weight gain

(Tolhurst et al., 2012; Lu et al., 2016; Larraufie et al., 2018). PPARγ

is predominantly expressed in the adipose tissue, and in mice

with adipose-specific PPARγ destruction, SCFA-induced weight

loss and insulin sensitivity stimulation disappeared (Den Besten

et al., 2015; Yip et al., 2021). In a mouse model of asthma with

GPR43 deficiency, the beneficial therapeutic effects of SCFAs on

inflammation were lost (Maslowski et al., 2009). Higher levels of

butyrate and propionate in stool samples from 1-year-old humans

are associated with reduced atopic sensitization in children and a

reduced likelihood of asthma at 3–6 years of age, indicating that

SCFAs affect a child’s susceptibility to allergic diseases (Roduit et al.,

2019). Treatment with vancomycin reduced the decreased levels of

SCFAs in mice, making them more susceptible to OVA-induced

asthma, and supplementing exogenous SCFAs could alleviate this

effect (Cait et al., 2018). This evidence supports the idea that

SCFAs produced by fermentation of the gut microbiota may be a

significant factor in obesity-related asthma susceptibility (Figure 2).

3.2. Chronic low-grade inflammation

3.2.1. Obesity-associated chronic low-grade
inflammation impacts asthma pathophysiology

Obese individuals exhibit characteristics of systemic chronic

low-grade inflammation driven by relative hypoperfusion or
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increased oxygen consumption and sustained by leptin, leading to

systemic monocyte activation (Lee et al., 2014; Reyes-Angel et al.,

2022).Monocyte chemoattractant protein 1, secreted by the adipose

tissue, binds to the monocyte surface receptor C-C chemokine

receptor type 2 to promote monocyte activation and recruitment

into the adipose tissue to form macrophages (Yao et al., 2022).

Clinical studies revealed an inverse correlation between circulating

monocytes in children with obesity-related asthma and low high-

density lipoprotein levels along with significantly increased levels

of soluble CD163, a measure of macrophage activation (Periyalil

et al., 2015; Rastogi et al., 2015).

Macrophages directly sense pathogens through the

expression of Toll-like receptors (TLR) and nucleotide-binding

oligomerization domain-like receptors (NLR) (Sharma et al.,

2018). FAs enhance TLR activation signals and are associated

with the onset and progression of adolescent metabolic syndrome

and asthma (Hardy et al., 2013; Zuo et al., 2015; Rocha et al.,

2016; Meghnem et al., 2022). TLR recognition ligands activate

various adaptor proteins downstream of myeloid differentiation

factor 88 (MyD88)-dependent or non-MyD88-dependent

pathways, initiating an inflammatory cascade that leads to the

activation of nuclear factor-kappa B (NF-κB), resulting in an

increased release of interleukin (IL)-6, tumor necrosis factor-α

(TNF-α), and IL-1β (Kawai and Akira, 2010; Jialal et al., 2014).

Lipopolysaccharide (LPS) is a classical TLR ligand. Whether LPS

exposure is a protective or aggravating factor against asthma

remains controversial. The role of LPS in airway inflammation has

been observed in children with neutrophil asthma, and it induces

macrophage inflammatory responses in mice (Camargo et al.,

2018; Ciesielska et al., 2022). However, other studies suggested that

the protective effect of the “farm effect” on asthma is specifically

associated with LPS exposure. Importantly, this protective effect

has only been observed during infancy (Schuijs et al., 2015; Gao

et al., 2021).

NLRP3 is an important member of the NLR family (Wang and

Hauenstein, 2020). NLRP3 expression is upregulated in response

to TLR, activated by phosphorylation and deubiquitination, and

then activated by stimuli such as porotoxins, leading to subsequent

oligomerization, and inflammasome assembly (Song and Li,

2018). The assembled NLRP3 inflammasome cleaves pro-Caspase-

1 proteolysis into mature Caspase-1 to promote the release of

the inflammatory factors IL-1β and IL-18, mediating immune

imbalances in asthma (Huang et al., 2021). NLRP3 inflammasome

activation is a key phenotypic feature of obesity-related asthma,

and NLRP3 gene expression in the sputum of patients with obesity-

related asthma is significantly increased and correlated with BMI

(Wood et al., 2019).

3.2.2. Gut microbiota influences asthma
inflammation: the significance of LPS and NLRP3

A significant quantity of LPS accumulates in the intestine and

enters the circulatory system by attaching to newly synthesized

chylomicrons in the intestinal cell epithelium or increasing

intestinal permeability, stimulating the immune response, and

activating the TLR signaling pathway (Ghoshal et al., 2009;

Velasquez, 2018). A host’s LPS levels are influenced by the gut

microbiota. Proinflammatory bacteria such as Proteobacteria carry

Gram-negative LPS, and the HFD mice exhibited an increase in

Proteobacteria abundance along with elevated levels of LPS (Mujico

et al., 2013). Antibiotic intervention significantly reduces in LPS

levels in the gut and circulation of HFD and ob/ob mice (Cani

et al., 2008). Additionally, supplementation with Bifidobacterium

reduced mouse intestinal LPS levels and improved gut barrier

function (Cani et al., 2007). The gut microbiota stimulates the

mucosal epithelial cells to release secretory immunoglobulin (Ig)

A, mucin 2, and β-defensin, which are crucial for maintaining

the intestinal mucosal barrier, reducing LPS translocation, and

alleviating lung inflammatory damage (Dicks et al., 2018). Mouse

experiments demonstrated that the gut microbiota activates the

lung TLR4/NF-κB signaling pathway via the lung intestinal

axis, aggravating LPS-induced acute lung injury (ALI) and that

fecal microbiota transplantation can restore intestinal microbiotal

homeostasis, increase intestinal flora diversity, and inhibit LPS-

induced ALI (Tang et al., 2021). A cohort study reported that the

immune response of asthmatic 17q21 risk allele carriers to LPS is

regulated by the gut microbiota (Illi et al., 2022).

The gut microbiota plays a crucial role in mediating NLRP3

activation and inflammatory damage (Pellegrini et al., 2020; Pan

et al., 2022). El Tor Vibrio cholerae triggers the NLRP3-dependent

pathway, which induces IL-1β-mediated inflammatory responses

that drive mouse macrophage death (BMDMs) (Mamantopoulos

et al., 2019). In addition to specific species of gut microbes,

he Rho GTPase activator CNF1, from Escherichia coli (E. coli)

activates NLRP3 in BMDMs and leads to caspase-1 cleavage and

IL-1β (Dufies et al., 2021). Probiotics present in the gut inhibit

inflammasome expression. For instance, Lactobacillus rhamnosus

GR-1 effectively reduces the expression of NLRP3 inflammatory

bodies and caspase-1 induced by E. Coli, thereby limiting the

occurrence of harmful inflammatory responses (Wu et al., 2016b).

In an inflammatory bowel disease mouse model, it was discovered

that NLRP3 mediated lung neutrophilic infiltrative inflammation

in microbial pattern recognition, leading to increased levels of TNF

and IL-1β levels inmurine lungs (Liu et al., 2019). Furthermore, the

gut microbiota exacerbated OVA-induced allergic asthma through

the NLRP3/IL-1β signaling pathway in asthmamodel mice (Huang

et al., 2018a; Zheng et al., 2022) (Figure 2).

3.3. Immune dysregulation

3.3.1. Obesity-related immune dysregulation
influences the onset of asthma

CD4+ T cells play a central role in the pathogenesis of

asthma. Activated CD4+ T cells are divided into two subsets—T

regulatory (Treg) and T effector (Teff) cells (Th1/Th2/Th17) with

the former playing an immune regulatory role and the latter driving

asthma pathogenesis and determining the asthmatic phenotype

(Zhu et al., 2009). Under the influence of obesity, children with

asthma exhibit a tendency for Teff cells to polarize toward Th1

and Th17 profiles. Multiple cytokines secreted by Th1 and Th17

cells mediate the development of neutrophilic asthma and are

associated with asthma severity and steroid resistance (Nyambuya

et al., 2020; Sze et al., 2020). Teff differentiation depends on
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the FAS pathway (Berod et al., 2014). Th17 cells polarization is

boosted by increased ACC1 gene expression and retinoic acid

receptor related orphan receptor-γ t (RORγ t) binding to the IL-

17 gene locus (Zhang et al., 2021). Additionally, Th1 polarization

in obesity-related asthma is influenced by macrophage activation

and correlated with IL-6 and leptin levels (Reyes-Angel et al.,

2022). Monocytes produce large amounts of IL-1β , which mediates

Th17 cell differentiation (Revu et al., 2018). Obesity and atopic

immunity are not mutually exclusive (Reyes-Angel et al., 2022). In

obese children and adolescents, Th2-type asthma is associated with

increased eosinophil infiltration and activity (Grotta et al., 2013).

Furthermore, increased IgE levels and eosinophilic activation have

been observed in obese mice (Amorim et al., 2018; Cvejoska-

Cholakovska et al., 2019; Ying et al., 2022). This phenomenon is

positively correlated with serum leptin and TNF-α levels (Grotta

et al., 2013). Additionally, lipid mediators prostaglandin D2 and

cysteinyl leukotriene can also activate Th2 cells and enhance the

production of Th2 cell cytokines (Xue et al., 2015).

Innate lymphoid cells (ILCs) are innate T lymphocytes that

express a profile of effector cytokines similar to those of T

cells, enhance T cell function, and play a crucial role in asthma

progression (Vivier et al., 2018). High ILC3 cell counts and RORC

mRNA expression have been observed in the peripheral blood

circulation of children with obesity-related asthma (Wu et al.,

2018). In the lungs of obesity-related asthma mice, the NLRP3-

IL-1β pathway is activated to induce the expansion of lung IL-

17+ILC3 cells, leading to neutrophilic inflammation (Kim et al.,

2014). In obese mice with AHR, ILC2 counts are increased, acting

as Th2 cells but producing 10 times more IL-5 and IL-13 than

activated Th2 cells (Everaere et al., 2016; Chen et al., 2017).

The proliferation and function of ILC2 are influenced by lipid

metabolism. Lipid droplets provide an energy source for pathogenic

ILC2 responses during airway inflammation (Karagiannis et al.,

2020). FAO and leptin play roles in driving ILC2 proliferation

and maintaining their function (Wilhelm et al., 2016; Zheng et al.,

2017). Under the chemotactic influence of lipids and inflammation,

ILCs migrate within and between organs (Soriani et al., 2018). For

example, sphingosine-1-phosphate mediates the migration of ILC2

to different tissues, thereby promoting the accumulation of ILC2

in lymphoid tissues, the bloodstream, and the lungs (Huang et al.,

2018c).

3.3.2. Gut microbiota modulates asthma immune
response: focusing on CD4+ T cell and ILCs

A series of studies on antibiotic-treated and GF mice support

the role of the gut microbiota in influencing T cell differentiation.

Antibiotic-treated mice showed elevated levels of Th2 cytokines

and IgE (Bashir et al., 2004). GF mice exhibit a loss of Th17 cells

in the intestinal lamina propria and are more likely to produce

a Th2 response (Wu et al., 2010; Herbst et al., 2011). A recent

single-cell transcriptome study revealed that gut Teff are shaped

by the microbiota independent of the typical subgroup regulators,

T-bet, GATA3, or RORγ t (Kiner et al., 2021). Several microbes,

such as Akkermansia muciniphila, Citrobacter rodentium, and

Fusobacteriu varium, induce T cell differentiation (Geva-Zatorsky

et al., 2017; Stockinger, 2021; Liu et al., 2022). The influence of

the microbiota on immune regulation can be transmitted to the

offspring through the mother’s gut microbiota and metabolites,

thus accelerating the postpartum transition of the offspring from a

Th2-dominated immunophenotype to Th1- and Th17-dominated

immunophenotypes (Gao et al., 2021). The microbiota colonizing

in the gut crosstalk pulmonary immunity via the gut lung

axis, influencing host atopy and asthma (Pascal et al., 2018).

CD4+ T cell dysfunction caused by dysregulation of the gut

microbiota has been observed in newborns and is associated with

susceptibility to allergic asthma in childhood (Fujimura et al.,

2016). Segmented filamentous bacteria trigger a strong Th17-cell

response in the gut and are preferentially recruited to the lungs to

trigger immune inflammation (Bradley et al., 2017; Wang et al.,

2019). Ruminiclostridium 6 and Candidatus Arthromitus mediate

Th1/Th2 and Treg/Th17 immune balance in eosinophilic asthma

in mice, suggesting that gut microbes regulate the balance between

Teff subsets and participate in the pathogenesis of asthma (Zhou

et al., 2022).

The response of ILCs to the gut microbiota is highly

heterogeneous. ILCs expression are suppressed by microbial signal

deficiency resulting from antibiotic treatment, with a greater

impact observed on the gene expression profiles of ILC1 and

ILC2 than ILC3 (Gury-BenAri et al., 2016). Clostridioides difficile

infection upregulates the expressions of ILC1 and ILC3 in the

colon, whereas Helicobacter typhlonius and Helicobacter apodemus

infections lead to the ILC3 loss in the colon (Abt et al., 2015;

Bostick et al., 2019; Kong et al., 2021). SCFAs activate ILCs via GPR

signaling, promote ILC3 proliferation and IL-22 production, and

inhibit ILC2 amplification (Yang et al., 2020; Sepahi et al., 2021).

Furthermore, the gut microbiota promotes ILC3 production in the

intestinal mucosa by assisting mononuclear phagocytes in secreting

IL-1β and facilitating crosstalk between colony-stimulating factor 2

and RORγ t+ cells (Mortha et al., 2014). The increase in intestinal

ILC3 in the offspring of GF female mice after the implantation of

E. coli HA 107 during pregnancy suggests that ILC formation by

gut microbiota can be transmitted from the parents to the offspring

(Gomez de Agüero et al., 2016). The gut microbiota regulates ILCs

through the gut lung axis and contribute to airway inflammation

and asthma. A previous study reported that Proteobacteria may

promote the accumulation of natural ILC2 in the lungs by

regulating the IL-33-CXCL16-CXCR6 signaling axis and interfering

with the lung immune response (Pu et al., 2021). In a mouse model

of asthma sensitized to house dust mites and characterized by

gut dysbiosis attributed to Candida spp., there was an increase in

lung ILC2 content, which resulted in exacerbated allergic airway

inflammation and worsened disease control (Kanj et al., 2023).

It suggests that gut microbiota imbalance may affect asthma

symptoms through the regulation of ILC2 pathways (Figure 2).

4. Conclusion

Asthma is a complex disease with various phenotypes and

endotypes, and related research should be focused on its well-

defined classifications. The pathological basis of asthma in obese

children is unique and involves multiple pathways, and the gut

microbiota plays a pivotal role. Numerous clinical studies and

basic experiments have confirmed the presence of gut microbiota
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FIGURE 2

The e�ects of the gut microbiota on lipid metabolism, chronic low-grade inflammation, and immunity, as well as the interactions among the three

pathways. PG, prostaglandin; LT, leukotriene; MCP-1, Monocyte chemoattractant protein 1; PGD2 , prostaglandin D2; cysLT, cysteinyl leukotriene; LD,

Lipid droplet.

dysbiosis in both obesity and asthma, indirectly indicating the

involvement of the gut microbiota in the high-risk pathogenesis

of obesity-related asthma. However, relevant clinical studies are

lacking that explore the characteristics of gut microbiota dysbiosis

in obese asthma patients, including the overall changes and

exploration of specific strains. Therefore, the specific mechanisms

by which alterations in the gut microbiota due to obesity lead to

asthma have not yet been fully elucidated.

This article discusses various factors that influence the

colonization and development of the gut microbiota, emphasizing

the significant impact of early-life microbial dysbiosis on the

susceptibility and progression of allergic and metabolic diseases

in children. Furthermore, we elaborated on the role of the gut

microbiota in regulating lipid metabolism, chronic inflammatory

states, and immune responses, highlighting the potential key role of

ecological imbalance in the pathogenesis of obesity-related asthma.

This study’s findings suggest that modulation of the gut microbiota

could serve as an early therapeutic and preventive target for

diseases such as asthma and obesity. However, clinical research on

the characteristics of gut microbiota dysbiosis in obesity-related

asthma, including overall changes and specific bacterial strains,

remains scarce. Whether modulating the gut microbiota can be

used as an early treatment and prevention target for diseases such

as obesity, asthma, and obesity-related asthma requires extensive

clinical and basic research. Relevant animal models must be refined

to closely simulate human clinical conditions with particular

attention paid to incorporating diverse age groups and their specific

physiological and pathological backgrounds.
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