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Introduction: Non-baumannii Acinetobacter species are increasingly isolated in 
the clinical setting and the environment. The aim of the present study was to 
analyze a genome database of 837 Acinetobacter spp. isolates, which included 
798 non-baumannii Acinetobacter genomes, in order to define the concordance 
of classification and discriminatory power of 7-gene MLST, 53-gene MLST, and 
single-nucleotide polymorphism (SNPs) phylogenies.

Methods: Phylogenies were performed on Pasteur Multilocus Sequence Typing 
(MLST) or ribosomal Multilocus Sequence Typing (rMLST) concatenated alleles, or 
SNPs extracted from core genome alignment.

Results: The Pasteur MLST scheme was able to identify and genotype 72 species in 
the Acinetobacter genus, with classification results concordant with the ribosomal 
MLST scheme. The discriminatory power and genotyping reliability of the Pasteur 
MLST scheme were assessed in comparison to genome-wide SNP phylogeny 
on 535 non-baumannii Acinetobacter genomes assigned to Acinetobacter pittii, 
Acinetobacter nosocomialis, Acinetobacter seifertii, and Acinetobacter lactucae 
(heterotypic synonym of Acinetobacter dijkshoorniae), which were the most 
clinically relevant non-baumannii species of the A. baumannii group. The Pasteur 
MLST and SNP phylogenies were congruent at Robinson-Fould and Matching cluster 
tests and grouped genomes into four and three clusters in A. pittii, respectively, and 
one each in A. seifertii. Furthermore, A. lactucae genomes were grouped into one 
cluster within A. pittii genomes. The SNP phylogeny of A. nosocomialis genomes 
showed a heterogeneous population and did not correspond to the Pasteur MLST 
phylogeny, which identified two recombinant clusters. The antimicrobial resistance 
genes belonging to at least three different antimicrobial classes were identified in 
91 isolates assigned to 17 distinct species in the Acinetobacter genus. Moreover, the 
presence of a class D oxacillinase, which is a naturally occurring enzyme in several 
Acinetobacter species, was found in 503 isolates assigned to 35 Acinetobacter species.

Conclusion: In conclusion, Pasteur MLST phylogeny of non-baumannii 
Acinetobacter isolates coupled with in silico detection of antimicrobial resistance 
makes it important to study the population structure and epidemiology of 
Acinetobacter spp. isolates.
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Introduction

Acinetobacter spp. are aerobic, non-fermentative, Gram-negative 
coccobacilli that are widely distributed in the environment and are 
responsible for infections in animals and humans (Bouvet and Grimont, 
1986; Cosgaya et al., 2017; Wong et al., 2017; Cools et al., 2019). The genus 
Acinetobacter includes 77 child taxa with a validly published and correct 
name (https://www.bacterio.net/genus/acinetobacter; accessed on June 
2023). As the identification of Acinetobacter isolates at the species level has 
been difficult to obtain using standard phenotypic methods (Bouvet and 
Grimont, 1986; Cools et al., 2019), Matrix-Assisted Laser Desorption-
Ionization-Time of Flight (MALDI-TOF) mass spectrometry (Marí-
Almirall et al., 2017; Šedo et al., 2018) or genotypic methods, which use 
partial rpoB sequencing (Gundi et al., 2009) or ribosomal MLST analysis 
(Jolley et al., 2012), have been applied for correct Acinetobacter species 
assignment. The above techniques have identified Acinetobacter 
baumannii as the most clinically relevant species of the Acinetobacter 
genus, which has been demonstrated to cause community and healthcare-
associated infections (Wong et al., 2017; Whiteway et al., 2022). Genomic 
epidemiology of A. baumannii isolates has shown the global spread of 
distinct clonal lineages, which have been selected because of their 
resistance to a broad range of antimicrobials, including carbapenems 
(Wong et al., 2017) and have been responsible for epidemics worldwide 
(Gaiarsa et  al., 2019; Hamidian and Nigro, 2019). In addition to 
A. baumannii, A. nosocomialis, A. pittii, A. seifertii, and A. lactucae 
(formerly identified as A. dijkshoorniae) have been increasingly isolated 
from humans and reported to be responsible for infections (Cosgaya et al., 
2017). A. baumannii, A. nosocomialis, A. pittii, A. seifertii, and A. lactucae 
showed closely related phenotypic and genotypic features and were 
considered members of the A. baumannii group (Cosgaya et al., 2017; 
Marí-Almirall et  al., 2017). Epidemics caused by multidrug-resistant 
(MDR) and carbapenem-resistant A. nosocomialis, A. pittii, and A. seifertii 
have been increasingly reported (Chen et al., 2018, 2019; Chopjitt et al., 
2021; Li et al., 2021).

The present study aimed to perform phylogenomic analysis of 837 
isolates assigned to 72 distinct species in the Acinetobacter genus using 
the Pasteur MLST scheme, compare phylogenetic congruence with 
genome-based and ribosomal MLST (rMLST)-based phylogenies of 
A. baumannii group genomes, and identify antimicrobial resistance 
genes in Acinetobacter spp. genomes.

Materials and methods

Genome dataset

Bacterial genomes included in the analysis were manually selected 
from the PubMLST database1 until January 2022. In detail, we selected 39 
A. baumannii complete genomes assigned to international clonal lineages 
ICI, ICII, and ICIII, which corresponded to Pasteur ST1, ST2, and ST3, 
respectively, and to additional epidemic clonal lineages assigned to 
Pasteur ST10, ST25, ST32, ST52, ST78, and ST79 (Gaiarsa et al., 2019). 
Furthermore, we collected from the National Center for Biotechnology 
Information (NCBI) high-quality complete genomes and, when not 

1 https://pubmlst.org/organisms/acinetobacter-baumannii/

available, scaffolded sequences of all species into the Acinetobacter genus. 
The “parameters” to consider the genomes of “high quality” were: 
N50 ≥ 10,000 bp; number of contigs ≤1,000; identification of the correct 
species through rMLST (Jolley et al., 2012). The Acinetobacter selected 
genomes were typed by A. baumannii Pasteur MLST scheme (Diancourt 
et al., 2010) and rMLST (Jolley et al., 2012) using the BIGSdb software 
available at https://pubmlst.org/organisms/acinetobacter-baumannii/ 
(Jolley et al., 2018). The characteristics of the genomes were included in 
Supplementary Table S1 and available at https://pubmlst.org/
bigsdb?db=pubmlst_abaumannii_isolates&page=project&project_id=8.

Phylogenetic and statistical analyses

The allelic profiles of Pasteur and ribosomal MLST schemes were 
extracted from all the genomes, and then the sequences were aligned 
using Muscle (Edgar, 2004) to generate the neighbor-joining trees 
using the BIGSdb software (Jolley et al., 2018). The core genome 
single-nucleotide polymorphisms (SNPs) were detected using the 
tools of PARSNP v1.1.2 (Treangen et  al., 2014), and the SNP 
alignment was performed considering the ascertainment bias using 
the Lewis correction (Lewis, 2001). In detail, each genome was 
aligned to the reference genome NC_010611.1 of ACICU, and the 
alignments were then concatenated using Muscle (Edgar, 2004). The 
maximum-likelihood phylogenies of 574 genomes belonging to the 
A. baumannii group (A. baumannii, A. pittii, A. seifertii, A. lactucae, 
and A. nosocomialis) were performed using the concatenated alleles 
of the Pasteur and ribosomal MLST schemes and a reference 
phylogeny using genome-wide data (a core genome of 372 high-
quality genes and an alignment of 17,072 SNPs). The phylogenies of 
Pasteur MLST, ribosomal MLST, and core SNP alignments were 
inferred through the GTR-GAMMA model at 100 bootstrap 
replicates using RAxML v.8 (Stamatakis, 2014). GTR’s GAMMA 
model was used for its ability to optimize the transition/transversion 
speed ratio and the α parameter of the gamma rate heterogeneity 
distribution (Stamatakis, 2014). The phylogenetic trees and 
annotations were visualized using the iTol v6 software.2

Statistical analyses

The statistical analyses were performed using the Robinson-Fould 
(R-F) and Matching clusters (M-C) topology-based tests employing 
TreeCmp (Bogdanowicz et  al., 2012). The M-C test calculates the 
number of topological changes that must be made to transform a tree 
into a reference tree. The R-F test counts the number of splits that are 
unique to one of the two trees. In both cases, the two analyzed trees 
are identical if the value is zero. The likelihood-based Shimodaira-
Hasegawa (SH) test (Shimodaira and Hasegawa, 1999) was performed 
with RAXML (Stamatakis, 2014). In this test, a null hypothesis 
assumes that two compared trees are both a correct interpretation of 
an alignment. The tested hypothesis is that one or more trees better 
represent the data. p-values lower than 0.05 indicate that the two trees 
are significantly different.

2 https://itol.embl.de/
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Analysis of antimicrobial resistance genes

The antimicrobial resistance genes were detected using abricate3 
based on the ResFinder 4.0 database (Bortolaia et  al., 2020). The 
presence of the gene and percentage of identity were indicated in the 
matrix in Supplementary Table S2. The threshold identity of 80%, the 
minimum length of 80% matches, and the coverage value of more than 
90% were selected for each gene. The following acquired resistance 
genes were analyzed: class A, B, C, D β-lactamase, folate pathway 
inhibitors, rifampicin, aminoglycoside, chloramphenicol, colistin, 
macrolide, quaternary ammonium salts, and tetracycline resistance 
genes (Supplementary Table S2). The multiple alignment and 
phylogeny of class D β-lactamase genes were performed using Clustal 
W (Thompson et  al., 1994) and RAXML v.8 (Stamatakis, 2014), 
respectively. The genomes of Acinetobacter genus were classified as 
MDR if they carried antimicrobial-resistant genes for at least three of 
the nine classes of antimicrobials considered by Magiorakos 
et al. (2012).

Clustering of Pasteur MLST and core SNPs 
phylogenies

The clusters of Pasteur sequence types (STs) were determined 
using the eBURST algorithm as described previously (Feil et al., 2004). 
Minimum spanning trees of STs were built with Phyloviz using the 
goeBURST algorithm (Ribeiro-Gonçalves et al., 2016). Minimum-
spanning trees were generated from the seven alleles of each MLST 
scheme, and species were assigned based on clustering with reference 
STs. Additionally, SNP analysis by PARSNP was visualized using 
Gingr (Treangen et al., 2014), which provided an interactive display of 
multi-alignment variants and a phylogenetic tree estimated from the 
core genome alignment. Then, the values of the maximum unique 
matches and the data were evaluated to study the cluster phylogeny of 
SNPs (Treangen et al., 2014).

Results

Acinetobacter genus database

The database consisted of 837 genomes assigned to 72 distinct 
species in the Acinetobacter genus, which were identified at genus and 
species levels using the ribosomal MLST scheme (Jolley et al., 2012) 
and showed a genome size range of 2.85–4.85 Mpb 
(Supplementary Table S1). The Pasteur MLST scheme (Diancourt 
et al., 2010) was able to assign an allelic profile and an ST to all 837 
genomes belonging to 72 species in the Acinetobacter genus; while, the 
ribosomal MLST scheme assigned an ST to 806 out of 837 genomes 
because from 1 to 20 alleles could not be identified in the genomes 
belonging to A. baumannii, A. nosocomialis, A. bereziniae, A. pittii, 
A. radioresistens, and A. seifertii. In addition, the rMLST scheme 
identified paralogues in 11 out of 53 loci paralogous in 57 Acinetobacter 
spp. (Supplementary Table S1). The genome-wide distances of the 

3 https://github.com/tseemann/abricate

whole database analyzed using the minimum spanning tree (MST) 
with the Pasteur MLST scheme showed that the most abundant 
species were A. pittii (n = 282), A. nosocomialis (n = 175), A. seifertii 
(n = 61), A. baumannii (n = 39), and A. lactucae (n = 14), while 263 
genomes were assigned to other 67 species of Acinetobacter genus 
(Figure 1). The 574 genomes assigned to the above five species have 
been considered the most clinically relevant species and were included 
in the A. baumannii group (Cosgaya et al., 2017). Among genomes 
within the A. baumannii group, the genetically closest species were 
A. pittii with A. lactucae or A. seifertii, showing 5 and 6 locus variants 
(LVs) genome-wide distance, respectively. The A. nosocomialis 
genomes assigned to ST782 and to the most frequent ST279 showed 
4 and 5 LVs genome-wide distances with respect to CC2 A. baumannii 
genomes, respectively (Figure 1).

Maximum-likelihood phylogeny of 
Acinetobacter baumannii group

The core genome-SNP, Pasteur MLST, and rMLST maximum-
likelihood phylogenies of 574 genomes belonging to the A. baumannii 
group (A. baumannii, A. pittii, A. seifertii, A. lactucae, and 
A. nosocomialis) showed similar inter- and intra-species distributions 
of branch lengths and nodes (Figure  2). In particular, the branch 
lengths of SNPs and rMLST phylogenies had values between ~10−6 
and ~ 10−2 (Figures 2A,C), while the branch lengths of Pasteur MLST 
phylogeny were between ~10−6 and ~ 10−3 (Figure  2B). The core 
genome SNPs and Pasteur MLST phylogenies showed bootstrap 
values greater than 50 for ancestral nodes of all species belonging to 
the A. baumannii group (Figures 2A,B). In addition, rMLST phylogeny 
assigned bootstrap values greater than 50 to the ancestral nodes of 
A. baumannii, A. seifertii, and A. lactucae species, while bootstrap 
values of 36 for A. pittii ancestral node and more uneven values 
ranging from 21 to 94 were assigned across A. nosocomialis genomes 
(Figure 2C). The above data demonstrated that all three phylogenies 
identified A. baumannii, A. pittii, A. seifertii, A. lactucae, and 
A. nosocomialis as distinct species in the A. baumannii group and a 
strong genomic similarity between A. lactucae and A. pittii species. 
Moreover, all three maximum-likelihood phylogenies showed high 
genomic heterogeneity among A. nosocomialis genomes (Figure 2). 
The statistical comparison between core genome SNP phylogeny and 
Pasteur MLST or rMLST phylogenies using the R-F and M-C tests 
showed similar statistical values and concordance among phylogenies 
(Table 1).

Clustering of core SNP and Pasteur MLST 
phylogenies of Acinetobacter baumannii 
group

To evaluate the discriminatory power of the core genome SNP 
phylogeny and the Pasteur MLST phylogeny, we  analyzed and 
compared the clusters identified by the two phylogenies. Clustering of 
core SNP phylogeny identified three clusters (1–3) in A. pittii genomes, 
one cluster (4) in A. seifertii genomes, and no clusters in A. nosocomialis 
genomes (Figure 3A). Cluster analysis of Pasteur MLST phylogeny 
showed four clusters in A. pittii having ST63, ST119, ST207, and 
ST396 as ancestral STs; two clusters in A. nosocomialis with ST410 and 
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ST279 as ancestral STs; and one cluster in A. seifertii with ancestral 
ST553. Acinetobacter baumannii genomes showed three clades 
assigned to ST1, ST2, and ST10; and A. lactucae genomes counted 14 

singletons and no clades (Figure 3B). Interestingly, A. pittii clusters 1, 
2, and 3 of the core SNP phylogeny corresponded to A. pittii ST396, 
ST119, and ST207 clusters in the Pasteur MLST phylogeny, 

FIGURE 1

Minimum spanning tree of 837 genomes inferred by the Pasteur MLST scheme. The different colors indicate the 24 Acinetobacter species that are 
represented by more than 6 isolates, while the blue color indicates the 48 Acinetobacter species that are represented by less than 6 genomes. The 
numbers within each circle indicate the ST. The size of the circle is proportional to the number of genomes belonging to the same ST. The figure was 
obtained using the eBURST algorithm with the Phyloviz software (Ribeiro-Gonçalves et al., 2016).

FIGURE 2

Phylogeny of A. baumannii group genomes. Maximum-likelihood phylogeny of 574 A. baumannii group genomes, including 39 A. baumannii (yellow 
labels), 285 A. pittii (red labels), 175 A. nosocomialis (blue labels), 61 A. seifertii (pink labels), and 14 A. lactucae genomes (green labels), was inferred on 
coreSNPs (A), Pasteur MLST (B), and rMLST (C) using RAxML. Bootstrap values are indicated in blue on tree branches, while the lengths of the branches 
are indicated in black. The figures were obtained using iTol v6 (https://itol.embl.de/).
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respectively; A. seifertii cluster 4 of the core SNP phylogeny 
corresponded to A. seifertii ST553 cluster of the Pasteur MLST 
phylogeny (Figure 3).

Antimicrobial resistance genes in 
Acinetobacter spp. genomes

We analyzed the presence of antimicrobial resistance genes in the 
837 genomes assigned to 72 distinct Acinetobacter species. The 
ResFinder software identified 188 genes encoding for resistance to 12 
antimicrobial categories (Supplementary Table S2). The presence of 
class A, B, C, and D β-lactamases in the neighbor-joining tree of the 
837 genomes assigned to 72 distinct Acinetobacter species is shown in 
Figure 4. The class A β-lactamase genes blaCARB-8,-2,-14,-16 were found in 
1 A. nosocomialis, 4 A. pittii, 1 A. towneri, and 1 A. bereziniae genomes; 
the class A β-lactamase gene blaSCO-1 was found in 1 A. radioresistens 
genome. In addition, class A β-lactamase genes blaTEM-1A,-1B,-1D were 
found in 9 of 39 A. baumannii genomes; blaPER-1,-2 ESBL genes were 
found in 1 A. baumannii, 2 A. nosocomialis, 1 A. pittii, and 1 
A. radioresistens genomes; blaVEB-1,-7 ESBL genes were found in 1 
A. baumannii and 2 A. pittii genomes. The class B metallo-β-lactamase 
(MBL) genes blaGIM-1, blaIMP-1,-4,-14,-19,-34 blaNDM-1,-16, and blaVIM-2,-4 were 
identified in 12 of 72 species of Acinetobacter genus. Among species, 

34 of 282 A. pittii genomes showed at least one MBL gene. The blaNDM-1 
was the most frequent MBL gene and was found in A. nosocomialis, 
A. pittii, A. lactucae, A. junii, A. bereziniae, A. cumulans, A. wuhouensis, 
A. sichuanensis, A. rongchengensis, A. indicus, and A. variabilis 
genomes. The blaADC-25 class C β-lactamase was found in the five 
species belonging to A. baumannii group and A. calcoaceticus 
genomes, but not in other Acinetobacter spp. (Figure  4; 
Supplementary Table S2). The class D oxacillinase, which is a naturally 
occurring enzyme in several Acinetobacter species, was found in 503 
isolates assigned to 35 Acinetobacter species (Figure  4; 
Supplementary Table S2). In all, 94 class D β-lactamase genes 
belonging to 11 distinct blaOXA family genes (blaOXA-211, blaOXA-134, 
blaOXA-214, blaOXA 294, blaOXA-51, blaOXA-213, blaOXA-274, blaOXA-286, blaOXA-58, 
blaOXA-40, and blaOXA-23) were identified (Supplementary Figure S1). 
Among the five species of A. baumannii group, A. baumannii, A. pittii, 
and A. lactucae genomes showed intrinsic class D β-lactamase 
belonging to blaOXA-51 and blaOXA-213 family genes, respectively, while 
A. nosocomialis and A. seifertii genomes did not show any intrinsic 
class D β-lactamase. Similarly, intrinsic class D β-lactamases were 
identified in other Acinetobacter species, such as blaOXA-134-like in 
A. lwoffii and A. schindleri, blaOXA-211 family in A. johnsonii, blaOXA-213 
family in A. calcoaceticus, blaOXA-214 family in A. haemolyticus, blaOXA-228 
family in A. bereziniae, blaOXA-286 family in A. viviani, A. disperses, and 
A. courvalini genomes, and blaOXA-294 family gene in A. proteoliticus, 

TABLE 1 Statistical comparison of genome-wide SNPs and MLST schemes phylogenies.

Reference tree Tree Robinson-Fould 
cluster

Matching cluster SH-test

D LH SD

SNP Pasteur MLST 475 6143 −414,530,11 91,004,74

SNP rMLST 447 5493 −15,272,756 34,776,25

Pasteur MLST rMLST 486 6729 −42,083,157 90,941,15

FIGURE 3

Cluster analysis of core genome SNP and Pasteur MLST phylogenies. Cluster analysis of core genome SNP (A) and Pasteur MLST (B) phylogenies of 574 
genomes belonging to Acinetobacter baumannii group. (A) The four main clusters identified in the core genome SNP phylogeny are highlighted in 
violet (cluster 1), fuxia (cluster 2), brown (cluster 3), and green (cluster 4). (B) The seven main clusters identified in the Pasteur MLST phylogeny are 
highlighted in blue (cluster ST63), brown (cluster ST207), pink (cluster ST119), violet (cluster ST296), green (cluster ST553), orange (cluster ST410), and 
red (cluster ST279). The phylogenies were analyzed with RAxML, and the figures were obtained using iTol v6 (https://itol.embl.de/).
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A. gyllenbergii, and A. colistinresistens (Figure 4). Also, the presence of 
class D carbapenemase genes belonging to blaOXA-23, blaOXA-40, or blaOXA-

58 family genes were found in 16 of 39 A. baumannii genomes, 27 of 
282 A. pittii genomes, 8 of 145 A. nosocomialis genomes, 2 of 2 
A. seifertii genomes, 9 of 9 A. radioresistens genomes, 5 of 6 
A. cumulans genomes, and 3 of 11 A. colistinresistens genomes 
(Figure 4). Moreover, 46 of 72 Acinetobacter species showed at least 
one antimicrobial resistance gene (Supplementary Table S2), and 91 
isolates assigned to 17 species of the Acinetobacter genus showed at 
least three genes encoding for resistance to three different 
antimicrobial classes and were classified as MDR isolates (Magiorakos 
et al., 2012) (Supplementary Table S2; Figure 4).

Discussion

Acinetobacter baumannii frequently causes healthcare-associated 
infections and is considered the most relevant clinical species of the 
Acinetobacter genus (Wong et al., 2017; Cools et al., 2019). Moreover, 

non-baumannii Acinetobacter species, such as A. nosocomialis, A. pittii, 
A. seifertii, and A. lactucae, showing phenotypic and genotypic 
characteristics similar to those of A. baumannii and included in the 
A. baumannii group, are increasingly reported as responsible for 
infections in humans (Cosgaya et al., 2017). Furthermore, novel taxa are 
currently isolated into the Acinetobacter genus (https://www.bacterio.
net/genus/acinetobacter; accessed on June 2023), which are difficult to 
identify using standard phenotypic (Cools et al., 2019) and molecular 
techniques (Marí-Almirall et al., 2017). The present study analyzed the 
genomic features of 837 isolates assigned to 72 distinct species in the 
Acinetobacter genus. Our data demonstrated that the rMLST and 
Pasteur MLST schemes were able to genotype and identify at species 
levels isolates assigned to 72 distinct species in the Acinetobacter genus, 
thus providing useful and validated tools for the identification and 
characterization of Acinetobacter spp. genomes.

In addition, we analyzed the phylogeny of non-baumannii genomes 
of the A. baumannii group using core genome SNPs, or concatenated 
alleles of the Pasteur MLST and rMLST schemes, and compared clusters 
identified by core genome SNP and Pasteur MLST phylogeny. In keeping 

FIGURE 4

Antimicrobial resistance genes in a neighbor-joining tree of 837 Acinetobacter spp. genomes inferred on the Pasteur MLST scheme. The inner ring indicates 
the following species: A. baumannii (yellow labels), A. pittii (red labels), A. nosocomialis (blue labels), A. seifertii (pink labels), A. lactucae (green labels), and 
other 263 Acinetobacter spp. genomes (gray labels). The second inner ring (orange) indicates class A β-lactamase. The third inner ring (purple) indicates 
class B β-lactamase. The fourth inner ring (claret) indicates class C β-lactamase. The fifth inner ring (violet) indicates class D β-lactamase. The two external 
rings indicate the presence of at least one or two class D β-lactamases using the colored groups shown in Supplementary Figure S1. The external black 
rectangles indicate the isolates classified as MDR. The figure was obtained using iTol v6 (https://itol.embl.de/).
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with previous data (Gaiarsa et al., 2019), core genome SNP phylogeny 
and Pasteur MLST phylogeny concordantly identified distinct clades and 
clonal lineages in A. baumannii genomes. The phylogenies of A. pittii 
genomes showed clusters 1, 2, and 3 identified by core genome SNPs, 
which corresponded to ST396, ST119, and ST207 clusters identified by 
the Pasteur MLST scheme, respectively, and ST63 cluster identified only 
by the Pasteur MLST scheme. This is in agreement with previous data 
showing the prevalence of ST119, ST63, and ST207 genotypic profiles 
among A. pittii isolates (Yang et al., 2012; Kamolvit et al., 2015; Sung 
et  al., 2015; Zhang and Zhou, 2018; Chopjitt et  al., 2021) and the 
identification of a monophyletic bacterial population and distinct 
clusters among A. pittii genomes (Chopjitt et al., 2021). Our data also 
showed that core genome SNP, Pasteur MLST, and rMLST-based 
phylogenies all included A. lactucae genomes into A. pittii genomes and 
identified A. lactucae genomes as singletons. Although A. lactucae 
(formerly A. dijkshoorniae) was identified as a distinct species of the 
Acinetobacter genus (Cosgaya et al., 2017; Marí-Almirall et al., 2017), 
maximum-likelihood phylogenies indicate that A. lactucae genomes 
cannot be  distinguished from A. pittii genomes. Furthermore, core 
genome SNP phylogeny of A. seifertii genomes identified one single 
cluster (cluster 4) corresponding to Pasteur ST553, which emerged as a 
dominant clonal lineage in Asia (Li et al., 2021). As for A. nosocomialis 
genomes, no clades were identified by core genome SNP phylogeny, 
while one prevalent clade, ST410, was identified by Pasteur MLST 
phylogeny. This finding is in agreement with previous studies showing 
the selection of the ST410 genotype among A. nosocomialis epidemics 
(Chen et al., 2018, 2019; Jing et al., 2022). The data shown in this study 
are also in agreement with previous data showing that the population 
structure of A. nosocomialis genomes is highly heterogeneous (Jing 
et al., 2022).

The spread of epidemic A. baumannii clonal lineages has been 
favored by their carbapenem resistance and multidrug resistance 
(Zarrilli et al., 2013; Gaiarsa et al., 2019; Hamidian and Nigro, 2019). 
Likewise, A. nosocomialis, A. pittii, A. lactucae, and A. seifertii 
responsible for epidemics are carbapenem-resistant and MDR (Cosgaya 
et al., 2017; Wong et al., 2017). The analysis of antimicrobial resistance 
genes in the genomes of the 72 species of the Acinetobacter genus 
confirmed the presence of carbapenem resistance genes in A. baumannii, 
A. nosocomialis, A. pittii, and A. seifertii genomes belonging to 
A. baumannii group, while only 1 of 14 A. lactucae genomes carried 
blaNDM-1 carbapenemase and several antimicrobial resistance genes. In 
keeping with previous publications (Evans and Amyes, 2014; Cosgaya 
et  al., 2017), the data reported herein showed that A. baumannii, 
A. lactucae, and A. pittii, but not A. nosocomialis and A. seifertii, were 
the species included in the A. baumannii group possessing a naturally 
occurring oxacillinase. The presence of class D beta-lactamases was 
found in 32 additional species of Acinetobacter genomes, thus 
reinforcing the evidence that this is a characteristic of the Acinetobacter 
genus (Evans and Amyes, 2014). In agreement with previous studies 
(Cosgaya et  al., 2017; Hamidian and Nigro, 2019), we  found the 
presence of blaOXA-23, blaOXA-40, and blaOXA-58 carbapenemase genes in 
A. baumannii, A. nosocomialis, A. pittii, A. seifertii, and other 
Acinetobacter species. Notably, all nine A. radioresistens genomes in our 
database showed the blaOXA-23 gene, which reinforced the evidence that 
A. radioresistens is the progenitor of the blaOXA-23 gene and the source of 
carbapenem resistance for A. baumannii (Poirel et al., 2008). Moreover, 
in agreement with previous data showing that the blaNDM type is the 
most common type of metallo-beta-lactamase contributing to 

carbapenem resistance in clinical isolates of A. baumannii (Zarrilli et al., 
2013; Gaiarsa et al., 2019) and other Acinetobacter spp. (Yang et al., 2012; 
Yamamoto et al., 2013; Sung et al., 2015; Pfeifer et al., 2020; Alattraqchi 
et al., 2021), we found blaNDM type genes in the genomes of 12 species of 
the Acinetobacter genus.

Conclusion

The data presented herein analyze a genome collection of isolates 
assigned to 72 distinct species of Acinetobacter genus. The 
non-baumannii Acinetobacter genomes database, which has been 
validated by rMLST and Pasteur MLST, represents a useful tool for 
genome sequencing-based identification at the species level and 
typing of Acinetobacter spp. isolates.

The phylogenies of A. nosocomialis, A. lactucae, A. pittii, and 
A. seifertii genomes belonging to the A. baumannii group demonstrate 
the presence of distinct clades in the A. pittii and A. seifertii genomes, 
while the A. nosocomialis genomes are highly heterogeneous. “In 
silico” analysis of antimicrobial resistance in isolates assigned to 72 
distinct species of the Acinetobacter genus shows the presence of 
carbapenemases and resistance genes to several antimicrobial classes 
in A. baumannii, A. nosocomialis, A. pittii, A. seifertii, and other 
Acinetobacter spp.

Pasteur MLST phylogeny of non-baumannii Acinetobacter isolates 
coupled with in silico detection of antimicrobial resistance is important 
to study the population structure and epidemiology of Acinetobacter 
spp. isolates.
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