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The gut microbiota plays an essential role in maintaining the health and fitness 
of the host organism. As a critical environmental variable, temperature exerts 
significant effects on animal survival and reproduction. Elevated temperatures 
can influence the composition and function of the animal gut microbiota, 
which may have potentially detrimental effects on the host. The crocodile lizard 
(Shinisaurus crocodilurus) is an ancient and currently endangered reptile species 
due to human hunting and habitat destruction. Given the predicted shifts in global 
temperatures in the next century, it is important to understand how warming 
affects the gut microbiota of these vulnerable lizards, which remains unclear. To 
determine how the microbial communities change in crocodile lizards in response 
to warming, we analyzed the gut microbiota under five temperature conditions 
(22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput sequencing. 
Results showed that the dominant phyla, Proteobacteria and Bacteroidetes, in 
gut microbiota were not significantly affected by temperature variations, but 
increasing temperature altered the structure and increased the community 
richness of the gut microbiota. In addition, warming changed the abundance of 
Pseudomonas aeruginosa and Actinobacteria, which may have negative effects 
on the physiological health of the crocodile lizards. Functional prediction analysis 
demonstrated that the functional pathways enriched in crocodile lizards were 
mainly related to metabolism, with no significant differences observed in these 
pathways at KEGG pathway level 1 after warming. These results provide valuable 
insights into the ecological adaptations and regulatory mechanisms employed 
by crocodile lizards in response to warming, which may be of benefit for their 
conservation.
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Introduction

The gut microbiota exhibits remarkable diversity and unique functional characteristics, 
playing an important role in host development (Sommer and Baeckhed, 2013), metabolism 
(Flint et al., 2012; Tremaroli and Backhed, 2012), immunity (Kau et al., 2011; Thaiss et al., 2016), 
and social behavior (Raulo et al., 2018). Maintaining a healthy gut microbiota is vital for the 
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normal physiological functions and overall well-being of the host, 
with alterations in its composition disrupting normal physiological 
processes, even contributing to disease (Holmes et al., 2011; Clemente 
et al., 2012). Despite relatively extensive research on gut microbiota in 
mammals (Ley et al., 2008a,b), there remains a dearth of studies on 
reptilian gut microbiota (Colston and Jackson, 2016; Siddiqui et al., 
2022), although factors such as captivity (Kohl et al., 2017; Zhou et al., 
2020), diet (Jiang et  al., 2017), altitude (Zhang et  al., 2018), and 
temperature (Bestion et al., 2017; Sepulveda and Moeller, 2020; Zhang 
Z. et al., 2022) have been implicated as potential influences.

Long-term monitoring has indicated that the global climate is 
undergoing considerable changes due to the increase in greenhouse 
gas concentrations (Hughes, 2000; Root et al., 2003). Global average 
surface temperatures have risen at a rate of 0.2 ± 0.1°C per decade and 
are projected to increase by 1.5°C compared to pre-industrial levels by 
the middle of the 21st century (Hoegh-Guldberg et al., 2019). Global 
warming has driven the extinction of several amphibian species, with 
one in six species on Earth now at risk of extinction (Pounds et al., 
2006; Urban, 2015). As a critical environmental factor, temperature 
significantly influences animal growth, development, and 
reproduction (Gillooly et al., 2002; Angilletta et al., 2010), with global 
warming posing a particular threat, especially to ambient-temperature 
reliant reptiles (Root et al., 2003; Xu et al., 2017; Leung et al., 2020). 
Notably, in reptiles, temperature can exert substantial effects on 
various ecological and reproductive factors (Meiri et  al., 2013), 
including digestive performance (Pafilis et al., 2007), offspring sex 
determination (Janzen, 1994; Warner and Shine, 2008), metabolism 
(Milsom et al., 2008), and athletic ability (Liu et al., 2022). Recent 
research has also revealed that temperature changes can impact the 
composition and function of the gut microbiota (Sepulveda and 
Moeller, 2020; Liu et al., 2022). For example, temperature increases 
have been shown to reshape the gut microbiota in Eremias argus, 
leading to altered and destabilized composition in response to 
adaptive states (Zhang Z. et al., 2022). Similarly, an increase of 2–3°C 
has been found to cause a significant decrease in the gut microbial 
diversity of Zootoca vivipara (Bestion et al., 2017). In addition, an 
increase of 10°C has been demonstrated to significantly affect the 
composition and dynamics of the gut microbiota in Sceloporus 
occidentalis, with potential implications for the physiological 
performance and fitness of natural populations (Moeller et al., 2020). 
Thus, these studies emphasize the crucial role of temperature in 
influencing the equilibrium of animal gut microbiota, further 
underscoring the potential adverse effects of warming on host survival 
and fitness.

The crocodile lizard (Shinisaurus crocodilurus) is an ancient reptile 
in the family Shinisauridae and order Squamata. It is a class I protected 
animal in China and is listed as an endangered species on the IUCN 
Red List of Threatened Species (Yu et al., 2009). This species is a semi-
aquatic lizard, preferring mountainous streams within evergreen 
broadleaf forests and bamboo forests (Li et al., 2019; Yang et al., 2020). 
The crocodile lizard is distributed in a few isolated sites in southern 
China (Guangdong Province and Guangxi Zhuang Autonomous 
Region) and northern Vietnam (Quang Ninh and Bac Giang 
provinces) (van Schingen et al., 2014, 2016). Due to the pressure of 
being hunted, environmental changes, and habitat destruction, wild 
populations of crocodile lizards have declined dramatically, decreasing 
from approximately 6,000 in 1978 to 1,200 in 2004 across eight wild 
populations in southern China (Huang et al., 2008, 2014; Jiang et al., 

2017). Recent field surveys have also shown that wild populations in 
Vietnam have decreased to fewer than 150 individuals (van Schingen 
et al., 2016).

According to previous studies, crocodile lizards prefer relatively 
low temperatures and they are able to thermoregulate better in the 
lower thermal quality environment (Yang et al., 2020). In contrast, as 
a result of increasing temperatures, the offspring survival of crocodile 
lizards may be hampered (Li et al., 2019). What’s worse, in a future 
global warming scenario, the potential range of crocodile lizards will 
continue to shrink (Zhang X. et al., 2022). Therefore, rising ambient 
temperatures may impose a threat on the survival and reproduction 
of crocodile lizards. Furthermore, considering the significant impact 
of the gut microbiota on the survival and fitness of host organisms, it 
is crucial to examine the factors influencing the gut microbiota of 
endangered crocodile lizards for their effective conservation. Existing 
research has revealed the influence of diet and captivity on the 
community structure of the gut microbiota in crocodile lizards (Jiang 
et al., 2017; Tang et al., 2020). However, the effects of temperature on 
the gut microbiota of crocodile lizards remain unexplored. Therefore, 
we conducted a laboratory experiment to examine the changes in the 
gut microbiota of crocodile lizards under five temperature gradients 
(22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput 
sequencing. This study should provide insights into how the gut 
microbiota of crocodile lizards responds to warming, thereby 
facilitating effective conservation measures for this endangered species.

Materials and methods

Experimental design

The crocodile lizards used in this study were from the Daguishan 
Crocodile Lizard National Nature Reserve. The experiment was 
conducted between June and July 2020  in a controlled artificial 
greenhouse located within the reserve, and the average temperature 
of outdoor enclosures was 26.06°C ± 1.81°C in June and 
26.91°C ± 1.59°C in July. A total of seven healthy adult crocodile 
lizards of similar age and size were selected from the crocodile lizards 
breeding pond. The morphological characteristics of the crocodile 
lizards, including weight, total length, head length, head width, and 
head height, were measured and recorded (Supplementary Table S1). 
Additionally, food intake and body temperature of the crocodile 
lizards was recorded in each temperature experiment 
(Supplementary Tables S2, S3).

The experimental temperature range was set at 22–30°C, 
considering their potential reduction in activity or hibernation in 
lower temperatures and potential adverse effects on their well-being 
at excessively high temperatures. The experiment comprised a total of 
five temperature groups (T1: 22°C, T2: 24°C, T3: 26°C, T4: 28°C, and 
T5: 30°C), with a temperature gradient of 2°C to ensure the accuracy 
of the temperature control instrument. The experiment was carried 
out in a controlled artificial greenhouse, where the temperature was 
adjusted to the designated level using air conditioning and 
temperature-controlled wooden breeding boxes 
(50 cm × 30 cm × 30 cm). To simulate the natural breeding pond 
environment and minimize external interference, an imitation 
porcelain basin (33 cm × 15 cm × 2 cm) filled with water was placed 
inside the breeding boxes. Throughout the experiment, all crocodile 
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lizards were provided with consistent food and water under a 12 h/12 h 
light/dark cycle (on at 07:00, off at 19:00). Sampling was performed on 
day 8, marking the completion of the temperature gradient 
experiment. Subsequently, the process was repeated by adjusting the 
temperature of the breeding boxes to the next designated experimental 
temperature until all planned sampling procedures were completed.

Sample collection

Cloacal swabs (Puritan Calgiswab Sterile Urogenital Calcium 
Alginate Sampler 25-801A50, Puritan Medical Products Company 
LLC, Guilford, ME, United States) were used for sampling measuring 
14 cm, which have been established as a reliable method for 
non-destructive sampling of gut microbiota in reptiles (Jiang et al., 
2017). Following the capture of crocodile lizards, the external cloaca 
was carefully cleansed with alcohol to reduce the interference of 
environmental microbiota and ensure that the collected cloacal swabs 
predominantly contained the gut microbiota. Subsequently, the swab 
was gently inserted into the cloaca, taking care to insert into the large 
intestine instead of beyond the coprodeum, rotated 3–5 times to 
facilitate adherence of gut secretions to the swab, and then withdrawn 
and placed into a sterile cryopreservation tube. After recording sample 
details, the sterile cryopreservation tubes were temporarily stored in 
a −20°C refrigerator, then placed in a −80°C refrigerator upon return 
to the laboratory.

DNA extraction, polymerase chain reaction 
amplification, and sequencing

DNA extraction and sequencing were conducted by the Majorbio 
Corporation (Shanghai, China), according to established protocols. 
Total DNA of the gut microbiota was extracted using an E.Z.N.A.® 
Soil DNA kit (Omega Bio-tek, Norcross, GA, United  States). 
We pulverized the samples and added buffer, and then used magnetic 
beads to extract DNA. Extract quality was assessed using 1% agarose 
gel electrophoresis, while DNA concentration and purity were 
determined using a NanoDrop  2000 UV–vis spectrophotometer 
(Thermo Fisher Scientific, Wilmington, DE, United States).

Amplification of the hypervariable V3–V4 region of the bacterial 
16S rRNA gene was carried out using primer pairs 338F 
(5’-ACTCCTACGGGAGGCAGCAGCAG-3′) and 806R (5’-GGA 
CTACHVGGGTWTCTAAT-3′) with an ABI GeneAmp  9,700 
thermocycler (ABI, CA, United States) (Mori et al., 2014). The PCR 
assay was as follows: initial denaturation at 95°C for 3 min, 27 cycles 
of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and 
extension at 72°C for 45 s, final extension at 72°C for 10 min, followed 
by storage at 4°C. For the PCR test, TransGen AP221-02: TransStart 
FastPfu DNA polymerase was used in a 20-μL reaction system 
containing 4 μL of 5 × TransStart FastPfu buffer, 2 μL of 2.5 mM deoxy-
ribonucleoside triphosphates (dNTPs), 0.8 μL of forward primer 
(5 μM), 0.8 μL of reverse primer (5 μM), 0.4 μL of TransStart FastPfu 
polymerase, 10 ng of template DNA, and 20 μL of ddH2O. The PCR 
assay was performed in triplicate. The PCR products were extracted 
with 2% agarose gel and purified using an AxyPrep DNA Gel 
Extraction Kit (Axygen Biosciences, Union City, CA, United States), 
then subsequently detected using 2% agarose gel electrophoresis, and 

quantified using a Quantus™ Fluorometer (Promega, United States). 
The sequencing libraries were then established using a NEXTFLEX 
Rapid DNA-Seq Kit (Bioo Scientific, Austin, TX, United States). High-
throughput sequencing was performed on the Illumina MiSeq PE300 
platform (Majorbio, Shanghai, China).

Data processing and analysis

Following sequencing, the original sequences underwent quality 
control using Fastp (v0.19.61) (Chen et al., 2018), with paired-end 
double-ended sequence splicing conducted using FLASH (v1.2.112). 
The sequences were then clustered into operational taxonomic units 
(OTUs) at a 97% similarity threshold and chimeric sequences were 
removed using UPARSE (v7.13) (Edgar, 2013). For species 
classification, the RDP classifier (v11.54) was used against the SILVA 
database (Silva Release 138) with the threshold set to 0.8.

Rarefaction curves were constructed at the OTU level, which were 
generated to evaluate species abundance across samples with varying 
sequencing data, allowing for the assessment of the adequacy of 
sequencing data (Xu et al., 2014).

The relative abundance of bacterial taxa at the phylum and genus 
levels was quantified and presented as mean ± standard deviation (SD) 
using R tools. Differences in the top  15 dominant bacteria at the 
phylum and genus levels in the gut microbiota among the five 
temperature groups were analyzed using the Kruskal-Wallis rank-sum 
test, with false discovery rate (FDR) correction for p-values. Alpha 
diversity, reflecting community diversity (Shannon and Simpson 
indices) and community richness (Ace and Chao indices), was 
calculated using Mothur (v1.30.25). The Kruskal-Wallis rank-sum test 
was used to evaluate differences in alpha diversity among the groups. 
The beta diversity distance matrix was computed using QIIME 
(v1.9.16). Principal coordinate analysis (PCoA) based on unweighted 
and weighted UniFrac distance metrics was performed at the OTU 
level. Partial least squares discriminant analysis (PLS-DA) was 
performed to differentiate the gut microbiota among the different 
temperature groups. The differential abundances of microbiota at 
various taxonomic levels were compared and the effect size of each 
selected classification was evaluated using linear discriminant analysis 
(LDA) effect size (LEfSe) (Segata et  al., 2011), with significance 
determined at LDA score > 4 and p < 0.05. Functional profiles of the 
gut microbiota were predicted using PICRUSt2 [phylogenetic 
investigation of communities by reconstruction of unobserved states 
2 (v2.2.07)] (Langille et al., 2013), and differences in functional Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways among the 
different groups were determined using the Kruskal-Wallis rank-sum 
test with IBM SPSS (v23.0).

1 https://github.com/OpenGene/fastp

2 https://ccb.jhu.edu/software/FLASH/index.shtml

3 http://www.drive5.com/uparse/

4 https://sourceforge.net/projects/rdp-classifier/

5 https://www.mothur.org/wiki/Download_mothur

6 http://qiime.org/install/index.html

7 https://github.com/picrust/picrust2/
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Results

A total of 1,459,544 original sequences were obtained from the 
hypervariable V3–V4 region of the 16S rRNA gene across 35 samples. 
After undergoing quality control, the sequencing results were 
standardized based on the minimum number of sample sequences, 
then annotated to obtain a total of 23 phyla, 48 classes, 121 orders, 222 
families, 478 genera, 680 species, and 1,060 OTUs. Analysis of the 
rarefaction curves indicated that the rarefaction curve tended to 
be flat and remained constant as sequencing data volume increased, 
suggesting that the amount of sequencing data was sufficient, reliable, 
and met the analytical requirements in terms of depth and accuracy 
(Supplementary Figure S1).

General analyses of gut microbial 
community structure in crocodile lizards

Among the total sequences, most bacteria were classified into 
10 phyla (Figure 1A). The dominant phyla in the gut microbiota of 
the experimental crocodile lizards included Proteobacteria 
(40.06% ± 6.72%) and Bacteroidetes (35.54% ± 6.83%), followed by 

Fusobacteria (6.19% ± 1.96%), Firmicutes (4.39% ± 2.25%), 
Campilobacterota (3.97% ± 3.50%), Patescibacteria (3.67% ± 1.29%), 
Actinobacteria (3.48% ± 1.72%), and Deinococcota (2.16% ± 1.57%) 
(Supplementary Table S4). The top 15 dominant genera in the gut 
microbiota of the experimental crocodile lizards were listed and the 
most abundant taxa were Proteiniphilum (14.62% ± 3.27%), 
Chryseobacterium (13.06% ± 4.08%), Testudinibacter 
(8.34% ± 3.41%), Morganella (6.72% ± 1.67%), and Fusobacterium 
(6.19% ± 1.96%) (Figure 1B; Supplementary Table S5).

Differences in composition and abundance 
of gut microbiota

Based on the Kruskal-Wallis rank-sum test, significant 
differences were observed in the abundances of Campilobacterota, 
Actinobacteria, Deinococcota, Desulfobacterota, Unclassified_k__
norank_d__Bacteria, and Cyanobacteria in the five temperature 
groups at the phylum level. Actinobacteria showed lower 
enrichment at higher temperatures, with a significantly higher 
relative abundance at 22°C compared to 28°C and 30°C 
(Supplementary Figure S2). At the genus level, Helicobacter, 

FIGURE 1

Composition of the gut microbiota of crocodile lizards at the phylum (A) and genus levels (B).
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Deinococcus, and unclassfied_f__Rhodocyclaceae exhibited 
significant differences between the groups (Figure  2). The 
opportunistic pathogen Pseudomonas aeruginosa was also detected 
in the gut microbiota of the crocodile lizards. Based on the Kruskal-
Wallis rank-sum test, significant differences were observed among 
the five temperature groups, with the relative abundance of 
P. aeruginosa found to be significantly higher at 30°C than at 22°C 
and 24°C (Supplementary Figure S3).

The LEfSe analysis identified significant differences in 18 
intestinal bacterial taxa among the different groups (Figure 3). The 
LEfSe distribution bar chart displayed a positive correlation 
between the length of the bars and the significance of the differences 
observed in the taxa, with longer bars representing higher levels 
of significance.

Differences in alpha and beta diversities of 
gut microbiota

The Kruskal-Wallis rank-sum test showed no significant 
differences in community diversity in the different temperature groups 
(p > 0.05). However, significant differences in community richness 
were detected (p < 0.05), with significantly higher richness in the T4 
and T5 temperature groups than in the T1 temperature group after the 
post-hoc test (Table 1; Figure 4).

The PCoA results based on unweighted UniFrac metrics 
revealed distinct separation among the gut microbiota of crocodile 

lizards from the different temperature groups, but no observable 
separation between groups based on weighted UniFrac (Unweighted 
UniFrac: R2 = 0.3005, p = 0.001; Weighted UniFrac: R2 = 0.0350, 
p = 0.226) (Figure  5). The PLS-DA results demonstrated clear 
differentiation and clustering of the gut microbiota from crocodile 
lizards in the different temperature groups, indicating distinct 
structural variations among the gut microbiota at these 
temperatures (Figure 6).

Functional profile prediction of gut 
microbiota

According to the PICRUSt2 results, the primary functions of 
the gut microbiota were related to metabolism (79.72% ± 0.82%), 
followed by genetic information processing (7.28% ± 0.56%), 
environmental information processing (6.01% ± 0.77%), cellular 
processes (4.11% ± 0.42%), human diseases (4.04% ± 0.30%), and 
organismal systems (1.86% ± 0.10%) at the KEGG pathway level 1 
(Supplementary Table S6). Furthermore, the Kruskal-Wallis 
rank-sum test revealed no significant differences in the six 
functional pathways of the gut microbiota among the five 
temperature groups. However, among the 46 functional pathways 
detected at KEGG pathway level 2, significant differences in the cell 
growth and death, immune system, and sensory system pathways 
were observed in the gut microbiota of the five temperature groups 
(Figure 7).

FIGURE 2

Differences of gut microbiota composition in crocodile lizards at the phylum (A) and genus levels (B). *p  ≤  0.05, **p  ≤  0.01.
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Discussion

Previous studies on reptiles have consistently reported the 
predominance of Bacteroidetes, Firmicutes, and Proteobacteria in the 
gut microbiota of snakes (Costello et al., 2010), lizards (Zhang et al., 
2018; Zhang Z. et  al., 2022), and tortoises (Yuan et  al., 2015). In 
crocodiles, however, the dominant phyla have been identified as 
Fusobacteria, Firmicutes, and Bacteroidetes (Keenan et al., 2013; Lin 
et al., 2019). In our study on crocodile lizards, we found Proteobacteria 
and Bacteroidetes to be the predominant phyla, in accordance with 
previous research exploring the relationship between the gut 
microbiota of crocodile lizards and diet and disease (Jiang et al., 2017). 
However, another study reported Firmicutes and Proteobacteria as the 
main phyla in crocodile lizards (Tang et  al., 2020), with these 
variations potentially due to differences in sampling methods. 
Moreover, studies on the response of gut microbiota in E. argus to 
environmental temperatures reported relative stability of the main 

phyla within the gut microbiota following warming experiments 
(Zhang Z. et  al., 2022). Similarly, research conducted on Andrias 
davidianus demonstrated that after acclimation to increased 
temperatures (Day 80), the two phyla with the highest relative 
abundance in the gut microbiota were Firmicutes and Fusobacteria 
(Zhu et al., 2021). Proteobacteria contribute to degrade a variety of 
aromatic compounds and boost the nutrient absorption of their host 
(Rowland et  al., 2018). Bacteroidetes play an important role in 
degrading carbohydrates and proteins in the human large intestine 
(Nuriel-Ohayon et al., 2016; Rinninella et al., 2019). In our study, the 
dominant phyla in the gut microbiota of the crocodile lizards 
remained consistent in the different temperature groups, suggesting 
that the responses of the dominant microbiota to temperature may 
be conserved within the temperature range of 22°C–30°C, and their 
functions may be retained.

Temperature has been identified as a crucial factor influencing the 
composition of gut microbiota in amphibians and reptiles in various 

FIGURE 3

LEfSe analysis of the gut microbiota in crocodile lizards.
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studies (Kohl and Yahn, 2016; Bestion et al., 2017; Fontaine et al., 
2018; Li et  al., 2020; Moeller et  al., 2020). Consistent with these 
findings, our study revealed significant differences in the beta diversity 
and structure of the gut microbiota among the five temperature 
groups, indicating temperature-dependent changes in the community 
structure of gut microbiota in crocodile lizards. Interestingly, previous 
research on fish reported a greater richness of microbiome 
composition under warmer temperatures, potentially attributed to 
selective pressure (Kokou et al., 2018). Furthermore, an increase in 
microbial diversity and richness with temperature increases has been 
reported in Rana chensinensis tadpoles, possibly due to a higher 
prevalence of pathogenic taxa (Niu et  al., 2022). In our study, 
we  observed significantly higher community richness of the gut 
microbiota in crocodile lizards at 28°C and 30°C than at 22°C. This 
suggests that warmer temperatures may create an optimal and 
permissive environment for the growth and reproduction of gut 
microbiota in crocodile lizards, leading to greater microbial variability 
and richness. Our findings provide further evidence supporting the 
important role of temperature as a key factor influencing microbial 
community structure and richness.

Given the primary role of gut microbiota in host metabolism 
(Nicholson et al., 2012; Sepulveda and Moeller, 2020), our study 
also found that the dominant functional pathways of the gut 
microbiota in crocodile lizards was related to metabolism, 
paralleling findings in other studies on lizards (Tang et al., 2020; Du 
et al., 2022). Previous studies have also shown that temperature-
induced changes in the gut microbiota can impact host metabolism 
and facilitate adaptation to thermal environments (Chevalier et al., 
2015; Bestion et  al., 2017; Worthmann et  al., 2017; Chen et  al., 
2022). Firmicutes and Bacteroidetes, which are implicated in 
protein and nutrient metabolism as well as carbohydrate 
degradation, play a positive role in regulating host metabolism 
(Bernini et  al., 2016; Colston and Jackson, 2016). Although an 
increased relative abundance of Firmicutes has been associated with 
heightened host metabolism and food consumption (Zhu et al., 
2021), our study did not observe any significant differences in the 
abundance of Firmicutes and Bacteroidetes with rising temperature. 
Additionally, both food intake and the abundance of metabolic 
pathways remained relatively stable across the different temperature 
experiments. These results suggest that the gut microbiota related 

TABLE 1 Alpha diversity of gut microbiota in crocodile lizards in different temperature groups.

Temperature 
group

T1
22°C

T2
24°C

T3
26°C

T4
28°C

T5
30°C

p value

Shannon 2.43 ± 0.44 2.80 ± 0.55 2.79 ± 0.66 2.75 ± 0.31 2.93 ± 0.55 0.455

Simpson 0.19 ± 0.10 0.11 ± 0.05 0.14 ± 0.09 0.14 ± 0.04 0.11 ± 0.05 0.338

Ace 190.46 ± 39.95 225.08 ± 46.80 237.89 ± 50.35 271.92 ± 31.19 283.96 ± 72.22 0.040

Chao 187.55 ± 46.54 211.27 ± 60.67 227.81 ± 50.81 283.34 ± 41.58 277.11 ± 69.66 0.007

FIGURE 4

Differences in alpha diversity of gut microbiota in crocodile lizards at different temperatures. (A) Shannon index; (B) Simpson index; (C) Ace index; 
(D) Chao index. *p  ≤  0.05.
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to metabolism may be able to regulate and acclimate to warming 
within the experimental temperature range, thereby maintaining 
metabolic function in the crocodile lizards. Furthermore, the 
experiment design, which consisted of a gradual shift across five 
temperature gradients, may also have contributed to the 

maintenance of gut microbiota stability and resilience in the 
crocodile lizards.

In addition to its role in host metabolism, the gut microbiota also 
plays an important role in providing protection against pathogen 
infection, with individuals showing low immune function often 
harboring an abnormal gut microbiota (Lozupone et  al., 2013; 
Sepulveda and Moeller, 2020; Zhu et al., 2021; Siddiqui et al., 2022). 
Increasing ambient temperature is associated with a significant 
decrease in the relative abundance of microbiota that provide host 
protection through the production of antifungal metabolites, 
potentially compromising the ability of the host to resist pathogens 
(Becker et  al., 2009; Fontaine et  al., 2018). Our study revealed a 
significant decrease in the relative abundance of Actinobacteria with 
increasing temperature. These bacteria are known to produce a variety 
of antimicrobial secondary metabolites and serve as a major source of 
new antibiotics for pharmaceutical applications (Berdy, 2012; 
Jakubiec-Krzesniak et al., 2018). The positive effects of Actinobacteria-
produced antibiotic compounds on host growth may disappear under 
increasing ambient temperature (Horvathova et  al., 2019). 
Consequently, increasing temperatures may have a negative impact 
on the antibacterial capacity and gut homeostasis of crocodile lizards. 
To date, studies on the protective roles of Actinobacteria against 
animal pathogens have been limited to insect species (Kaltenpoth, 
2009; Kaltenpoth and Engl, 2014). Thus, further investigations are 
necessary to comprehensively understand the regulatory effects of 
Actinobacteria in crocodile lizards. In contrast, P. aeruginosa is an 
opportunistic pathogen known to cause skin infections in humans 
and reptiles, including crocodile lizards (Milivojevic et  al., 2018; 
Xiong et al., 2022). Here, we observed a higher relative abundance of 
P. aeruginosa at 30°C compared to 22°C and 24°C, indicating that 
elevated temperature may be  beneficial for the survival of these 
bacteria. Thus, these findings suggest that an increase in temperature 
may negatively affect host health by affecting the abundances of 
Actinobacteria and P. aeruginosa. Therefore, it is important to 
implement appropriate cooling measures and strengthen disease 
prevention during the high-temperature season to reduce the risk of 
infections in crocodile lizards. Furthermore, considering that these 
pathogens can spillover to humans, it is recommended that personal 
hygiene be maintained before and after contact with crocodile lizards.

Conclusion

In conclusion, our study revealed that temperature has a 
significant impact on the microbial community structure of crocodile 
lizards. Notably, our results showed that community richness 
increased significantly with increasing temperatures, while community 
diversity and dominant microbiota were largely retained. Furthermore, 
metabolic function and related microbiota also remained relatively 
stable across the different temperature groups, possibly due to 
regulatory and acclimation processes. However, notable changes in the 
abundances of P. aeruginosa and Actinobacteria in response to 
warming may have implications for the health and physiology of 
crocodile lizards. These findings provide valuable insights into the 
responses and ecological adaptations of crocodile lizards to warming. 
In future research, it will be  important to identify the potential 
mechanisms underlying of response of microbiota to warming and 
further understand the contributions of microbial alterations to the 
hosts in their natural environment.

FIGURE 5

PCoA based on Unweighted UniFrac metrics (A) and Weighted 
UniFrac (B) of gut microbiota in crocodile lizards in different 
temperature groups.

FIGURE 6

PLS-DA of gut microbiota in crocodile lizards at different 
temperature groups.
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