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Species utilizing the same resources often fail to coexist for extended periods of

time. Such competitive exclusion mechanisms potentially underly microbiome

dynamics, causing breakdowns of communities composed of species with

similar genetic backgrounds of resource utilization. Although genes responsible

for competitive exclusion among a small number of species have been

investigated in pioneering studies, it remains a major challenge to integrate

genomics and ecology for understanding stable coexistence in species-

rich communities. Here, we examine whether community-scale analyses of

functional gene redundancy can provide a useful platform for interpreting and

predicting collapse of bacterial communities. Through 110-day time-series of

experimental microbiome dynamics, we analyzed the metagenome-assembled

genomes of co-occurring bacterial species. We then inferred ecological

niche space based on the multivariate analysis of the genome compositions.

The analysis allowed us to evaluate potential shifts in the level of niche

overlap between species through time. We hypothesized that community-scale

pressure of competitive exclusion could be evaluated by quantifying overlap of

genetically determined resource-use profiles (metabolic pathway profiles) among

coexisting species. We found that the degree of community compositional

changes observed in the experimental microbiome was correlated with the

magnitude of gene-repertoire overlaps among bacterial species, although
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the causation between the two variables deserves future extensive research.

The metagenome-based analysis of genetic potential for competitive exclusion

will help us forecast major events in microbiome dynamics such as sudden

community collapse (i.e., dysbiosis).

KEYWORDS

community stability, competition, dysbiosis, ecological niche, metabolic interactions,
shotgun metagenomics, microbial functions, time-series dynamics

Introduction

Classic niche theory predicts that coexistence of species
requires interspecific difference in resource use patterns (Volterra,
1928; Gause, 1934; Hardin, 1960; Zaret and Rand, 1971; Grime,
1973; Mayfield and Levine, 2010). Although some specific
mechanisms can promote stable coexistence even with complete
resource overlap (e.g., spatial structure of habitats and temporal
variability in resource availability), similarity/dissimilarity in
basic resource dependency among species is the basic factor
determining the occurrence of competitive exclusion (Chesson,
2000, 2018; Letten et al., 2017). Therefore, evaluating the
overlap of “fundamental niches,” which are defined by species’
fundamental resource requirements and resource-use capabilities
(Hutchinson, 1957; Chase and Leibold, 2004), is an essential step
for understanding and predicting community-level dynamics.

Insights into fundamental niches are encrypted in species’
genomes (Palomo et al., 2018; Smith et al., 2019; Régimbeau et al.,
2022; Malard and Guisan, 2023): as species’ traits are encoded
in their DNA, genomic information provides the ultimate basis
for evaluating target species’ fundamental niches (Muller, 2019;
Alneberg et al., 2020; Fahimipour and Gross, 2020). Thus, potential
strength of competitive interactions within ecological guilds or
communities could be evaluated based on the distribution of
species’ gene repertoires within ecological niche space inferred with
metagenomic data (Alneberg et al., 2020; Fahimipour and Gross,
2020; Herold et al., 2020; Régimbeau et al., 2022), also referred to as
“metagenomic niche space.” Although overlap of niches does not
always cause competitive exclusion (Chesson, 2000, 2018; Letten
et al., 2017), higher levels of gene repertoire overlap within a
community may impose greater impacts on population dynamics
of constituent species.

In considering coexistence of microbial species, it is essential
to examine whether such competition-driven population-level
phenomena underly drastic ecological events observed at the
community level. Microbial communities sometimes show sudden
and substantial changes in species and/or taxonomic compositions
(Ravel et al., 2013; Carding et al., 2015; Fujita et al., 2023b;
Yajima et al., 2023). Human gut microbiomes, for example, have
been reported to show drastic shifts from species-rich states to
“imbalanced” states with low α-diversity and overrepresentation of
pathogenic species (David et al., 2014; Lahti et al., 2014; Kho and
Lal, 2018; Kriss et al., 2018) (e.g., Clostridium difficile). Elucidating
the ecological mechanisms causing such drastic community-level
events provide fundamental insights into microbiome dynamics
(Costello et al., 2012; Huttenhower et al., 2012; Kriss et al., 2018).

In this respect, an important challenge is to test the hypothesis
that high levels of gene-repertoire overlap are observable prior
to drastic community compositional changes. However, tests of
this hypothesis have remained elusive due to the paucity of time-
series observations of microbiomes with substantial compositional
changes. Even if such microbiome time-series data are available,
analyses of potential niche (gene repertoire) overlap require
another line of information. Specifically, we need data of respective
species’ genomes at multiple time points (Herold et al., 2020).
Therefore, developing research systems that can overcome these
constrains will deepen our understanding of microbiome ecological
processes.

In this study, we examine the degree to which gene-repertoire
overlap changes through dynamics of species-rich microbial
communities. By targeting an experimental microbial system
showing rapid and substantial changes in taxonomic compositions
(Fujita et al., 2023b), we infer niche space depicting species’ gene
repertoires. A previous study in this system using a metabolic
modeling analysis suggested that interactions between species
were keys to understand the drastic microbiome dynamics (Fujita
et al., 2023a). Now, by compiling the shotgun metagenomic data
collected at 13 time points across the 110-day time-series of the
experiment, we reveal temporal shifts in the magnitude of gene
repertoire overlap among microbial species. We then examine
whether a high level of fundamental-niche overlap is observed prior
to drastic changes in community structure. Overall, we explore
how signs of drastic shifts in community structure are detected
by inferring community-scale degree of fundamental niche overlap
with the aid of genomic information. The knowledge will lead us
to develop platforms for forecasting and preventing unfavorable
shifts of microbiome compositions and those for recovering and
designing functionally benign microbial ecosystems based on the
evaluation of niche overlap levels.

Materials and methods

Time-series data of experimental
microbiomes

We focused on the experimental microbiome showing drastic
shifts in taxonomic compositions (Fujita et al., 2023b). In our
previous study (Fujita et al., 2023b), a 110-day monitoring of
microbiomes was performed with six experimental settings. To
set up experimental microbiomes with high diversity of bacterial
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species/taxa, we used natural microbial communities derived
from soil or pond-water ecosystems as source inocula, rather
than “synthetic” communities with pre-defined diversity. In the
experiment, microbiomes differing in the magnitude of community
compositional shifts were constructed across the six treatments
defined by the combinations of two inoculum source microbiomes
and three types of media. One of the source microbiomes derived
from the soil collected from the A layer (0–10 cm in depth) in the
research forest of Center for Ecological Research, Kyoto University,
Otsu, Japan (34.972◦N; 135.958◦E). The other source inoculum
was prepared by collecting water from a pond (“Shoubuike”) near
Center for Ecological Research (34.974◦N, 135.966◦E). Each of the
source inocula was introduced into oatmeal (Medium-A), oatmeal-
peptone (Medium-B), or peptone (Medium-C) broth media with
eight replicates. Thus, in total, 48 experimental microcosms (two
source microbiomes × three media × eight replicates) were
constructed in a deep-well plate (1,000-µl-scale culture in each
well). The plate was kept shaken at 1,000 rpm at 23◦C. After 5-
day pre-incubation, 200 µl out of the 1,000-µl culture medium
was sampled from each well every 24 h for 110 days. In each
sampling event, 200 µl of fresh medium was added to each well
so that the total culture volume was kept constant. In total, 5,280
samples (48 communities/day × 110 days) were collected through
the time-series experiment. After DNA extraction, the samples were
subjected to the amplicon sequencing analysis of the 16S rRNA
region (Fujita et al., 2023b).

To quantify the speed and magnitude of community shifts
through time, the “abruptness” index was calculated through the
time-series of each replicate microcosm in each experimental
treatment (Fujita et al., 2023b). Specifically, an estimate of the
abruptness index for time point t was obtained as the Bray–
Curtis β-diversity between average community compositions from
time points t − 4 to t and those from t + 1 to t + 5 (i.e.,

dissimilarity between 5-day time-windows). The Bray–Curtis β-
diversity (Legendre and de Cáceres, 2013) was calculated as∑n

i = 1
∣∣Xij−Xik

∣∣∑n
i = 1

(
Xij+Xik

) ,
where Xij and Xik denoted relative abundance of microbial
amplicon sequence variant (ASV) i in the compared time windows
(j, from t − 4 to t; k, from t + 1 to t + 5). An abruptness
score larger than 0.5 indicates that turnover of more than 50%
of community compositions occurred between the time-windows
(Fujita et al., 2023b). Based on the calculated magnitude of
time-series changes in community compositions (Fujita et al.,
2023b; Figure 1A), we focused on a water-inoculum/oatmeal-
medium replicate community showing the most abrupt (rapid
and substantial) changes in community compositions among the
48 microbiomes examined as described in a study on metabolic
interactions between species (Fujita et al., 2023a; Supplementary
Figure 1).

Shotgun metagenomics

Focusing on the replicate microcosm in which the most rapid
and substantial turnover of community compositions was observed
(replicate no. 5 of Water/Medium-A treatment; Figure 1A and
Supplementary Figure 1), shotgun metagenomic sequencing was
conducted by targeting 13 samples (day 1, 10, 20, 24, 30, 40, 50,
60, 70, 80, 90, 100, and 110) as described elsewhere (Fujita et al.,
2023a). Specifically, each DNA sample was processed with Nextera
XT DNA Library Preparation Kit (Illumina) and sequenced with
the DNBSEQ-G400 (BGI; 200-bp paired-end sequencing). From
the output data, sequencing adaptors were removed using Cutadapt
(Martin, 2011) 2.5 and quality filtering was performed with Fastp
(Chen et al., 2018) 0.21.0 (option settings: -q 20 -3 -W 6 -M 20;
hereafter, default option settings were used unless remarked): ca.
10 Gb/sample was subjected to the analysis [in total, 159.96 Gb

FIGURE 1

Community and ecosystem dynamics. (A) Time-series data of community structure. For the replicate microcosm that showed the most abrupt
community compositional changes through the 110-day microbiome experiment (Fujita et al., 2023b; Supplementary Figure 1), family-level
taxonomic compositions inferred with 16S rRNA sequencing are shown. The blue line represents the speed and magnitude of community
compositional changes around each time point [“abruptness” index (Fujita et al., 2023b); see section “Materials and methods”]. The red line indicates
α-diversity (Shannon’s H’) of microbial ASVs (Fujita et al., 2023b). Note that a value larger than 0.5 represents turnover of more than 50% of microbial
ASV compositions. See Supplementary Figure 1 for color profiles of bacterial families. Reproduced from the data of a previous study (Fujita et al.,
2023b). (B) Taxonomic compositions inferred with shotgun metagenomic sequencing. At each of the 13 time points through the time-series of the
target microcosm, the relative abundance of each MAG was estimated based on the normalized read coverage value (reads per kilobase of genome
per million reads mapped). (C) Genome size and GC nucleotide content of the MAGs detected in the target microcosm. See panel (B) for colors and
symbols.
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(1000.301 M reads)]. The sequences of each sample were assembled
with metaSPAdes (Bankevich et al., 2012) 3.15.2 (option settings:
-k 21,33,55,77,99,121). Binning was performed with metabat2,
maxbin2, and concoct, and then bins with >50% completion and
<5% contamination were reassembled using MetaWRAP (Uritskiy
et al., 2018) 1.3.2, followed by quality assessing with CheckM
(Parks et al., 2015) 1.1.3. The identity between metagenome-
assembled genomes (MAGs) were calculated using FastANI
(Jain et al., 2018) 1.33 and MAGs with >99% identity were
dereplicated through the time-series (Supplementary Table 1).
In the dereplication, the MAGs with the highest completeness
and N50 statistics were selected as representative MAGs. Read-
coverage was then calculated with CoverM (Woodcroft, 2021)
0.6.0, followed by taxonomic annotation was performed using
GTDB-Tk (Chaumeil et al., 2020; Parks et al., 2022) 1.6. Only
the MAGs with >80% completeness and <5% contamination
were used in the downstream analyses [32 MAGs belonging to 20
genera (16 families; 12 orders)] (Fujita et al., 2023a; Figures 1B,
C, 2, Supplementary Figure 2, and Supplementary Table 1).
Gene annotation was performed with Prokka (Seemann, 2014)
1.14.6, yielding 6,999 annotated genes (Supplementary Data
1). To conduct additional functional annotation of genes, the
orthology numbers of Kyoto Encyclopedia of Genomes (KEGG)
were retrieved using GhostKOALA (Kanehisa et al., 2016) 2.2.
For respective microbial MAGs (bins), completeness of metabolic
pathways was estimated with KEGG decoder (Graham et al.,
2018) 1.3. Based on the matrix representing KEGG metabolic
pathway/process profiles of respective MAGs (Supplementary
Data 2), a heatmap showing pathway/process completeness was
drawn (Supplementary Figure 3).

Background environmental conditions

For the 13 samples subjected to the shotgun metagenomic
analysis, concentrations of ammonium (NH4

+) and nitrate
(NO3

−) were measured to obtain supplementary information of
background environmental conditions. Colorimetric methods with
a modified indophenol reaction (Kandeler and Gerber, 1988; Hood-
Nowotny et al., 2010) and the VCl3/Griess assay were applied for
the measurements of NH4

+ and NO3
−, respectively. Samples were

run in triplicates via a standard addition method to account for
individual matrix effects (Taylor et al., 2007).

Multivariate analysis of the metagenomic
space

We used the shotgun metagenomic data to evaluate how
the level of gene repertoire overlap among microbes shifted
through time. We anticipated that microbial species with similar
resource-use abilities or restrictions have similar genomic structure.
Therefore, it is expected that species competing for the same
resource tend to form clusters within the space defined based on
the principal coordinate analysis (PCoA) of dissimilarity in gene
repertoires. Thus, based on the whole matrix representing the
presence/absence of the 6,999 genes annotated with the program
Prokka (Seemann, 2014; Supplementary Data 1), the Jaccard

metric of distance was calculated for each pair of the 32 microbial
MAGs (Dij, where i and j represent MAGs). The Jaccard-distance
estimates were then used to perform a PCoA. Using the obtained
principal coordinate scores, all the microbial MAGs detected
through the time-series were plotted on a multivariate space
consisting of the first three PCoA axes (PCoA 1, PCoA 2, and
PCoA 3). Since we did not have a priori knowledge of specific
metabolic pathways keys to the microbe-to-microbe competition
within the experimental microbiome, all datasets were included
in this multivariate analysis. Given general characteristics of
multivariate analysis based on β-diversity metrics, the multivariate
reconstruction of ecological niche space depends greatly on the
genes whose presence/absence profiles vary among species, while
housekeeping genes possessed by most species are expected to
contribute little to the multivariate analysis. To visualize the time-
series shifts in the distribution of microbial genomes, the MAGs
detected with the shotgun metagenomic sequencing (defined as the
MAGs whose relative abundance is greater than 0.1%) at each time
point was plotted on the three-dimensional space defined with the
PCoA axes.

Evaluation of niche overlap level

We quantitatively evaluated dynamics in the magnitude of
community-scale niche overlap within the multivariate space. We
developed two types of simple indices for evaluating community-
scale niche overlap. The one is defined as the overall mean of gene-
repertoire similarity between pairs of MAGs within a community.
For a time point, the niche overlap index is calculated as:

niche overlap score
(
overall mean

)
= 1−

∑
i∈T, j∈T, i6=j Dij

NT (NT − 1)
,

where T is the set of MAGs detected on a focal day (relative
abundance >0.1%), Dij is the Jaccard metric of dissimilarity
(Anderson et al., 2011) in gene compositions, and NT is the number
of MAGs detected on the day. By definition, this niche overlap value
based on Jaccard dissimilarity varies from 0 (completely different
repertoires of genes in all pairs of MAGs) and 1 (completely
identical gene repertoires in all pairs of MAGs), allowing us to
evaluate niche overlap levels of target communities within the
standardized ranges. The other index is defined as mean value of
gene-repertoire similarity with nearest neighbors. The alternative
is calculated as:

niche overlap score (nearest mean) = 1−

∑
i∈T,i 6=j minj∈T

(
Dij
)

NT
.

This index can be modified by incorporating the information of the
relative abundance of MAGs (pi) as follows:

niche overlap score
(
weighted nearest mean

)
=

1−
∑

i∈T,i6=j

pimin
j∈T

(
Dij
)
.

To test whether a high level of fundamental-niche overlap
is observed prior to drastic changes in microbial community
structure, we examined relationship between the above niche
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overlap index and time-series shifts in community structure (Bray–
Curtis β-diversity between present and next time points through
the time-series of the shotgun metagenomic data).

Results

Functional dynamics of microbiomes

As indicated in the amplicon sequencing analysis (Fujita et al.,
2023b; Figure 1A), drastic shifts from taxon-rich community
states to oligopolistic states was observed around day 20 in
the shotgun sequencing analysis (Figure 1B). After the drastic
community compositional change, the system reached a quasi-
stable state represented by the dominance of a Hydrotalea
(Chitinophagaceae) bacterium (Figure 1B). The MAG of the
Hydrotalea was characterized by relatively low GC content (38%)
and relatively small genome size within the community (ca.
3.1 Mb; Figure 2). In contrast, the two bacterial MAGs consistently
coexisted with the dominant Hydrotalea through the time-series
(i.e., Terracidiphilus and Mangrovibacter) had larger genome
size (4.2 and 5.4 Mb, respectively; Figure 1C), characterized by
various genes absent from the Hydrotalea genome (Figure 2
and Supplementary Figure 3). Specifically, the Terracidiphilus
MAG showed metabolic pathways/processes for degrading plant-
derived biopolymers (e.g., cellulose; Figure 2). Meanwhile, the
Mangrovibacter MAG had pathways/processes related to starch
degradation (e.g., amylase) and vitamin-B12 transportation, which
were absent from the genomes of Hydrotalea, Terracidiphilus,
and the other MAG (Rhizomicrobium) detected on day 40–60
(Figure 2).

Multivariate analysis of gene repertoires

Within the three-dimensional space defined with the
gene repertoires (Figure 3A), alphaproteobacterial and
gammaproteobacterial MAGs respectively constituted some
clusters within the niche space reconstructed based on the
multivariate analysis early in the microbiome dynamics (days 1–20;
Figure 3B). This state with high niche overlap and potential within-
guild competition for resources then collapsed into a simpler
community state represented by Hydrotalea, Mangrovibacter,
Terracidiphilus, and Rhizomicrobium as detailed above (Figure 3B).
The space once occupied by many alphaproteobacterial and
gammaproteobacterial MAGs remained unoccupied or sparsely
occupied after the community compositional collapse. Even when
the number of MAGs detectable with our shotgun-metagenomic
sequencing increased again late in the time-series (four MAGs
during days 40–50 vs. eight MAGs on day 110), dense aggregations
of microbes with similar genomic compositions remained
unobserved (Figure 3B).

Metagenomic niche overlap

Each of three types of niche overlap indices was the highest
on day 1 or day 10 and then it decreased until day 30 [overall

mean, 0.361 (day 1); nearest mean, 0.551 (day 10); weighted nearest
mean, 0.507 (day 1); Figure 4A]. Although the niche overlap
score remained low between day 40 and 60 [overall mean, 0.304
(day 40–60); nearest mean, 0.349 (days 40 and 50) – 0.378 (day
60); weighted nearest mean, 0.363 (day 50) – 0.368 (day 60)], it
increased again late in the microbiome time-series (Figures 4A, B).
Note that α-diversity of the community showed similar temporal
shifts and it was significantly associated with each of the three
niche overlap indices (overall mean, P = 0.0001; nearest mean,
P < 0.0001; weighted nearest mean, P < 0.0001; Figures 4B,
C). Through the time-series, the estimated niche overlap level
was significantly associated with the magnitude of the observed
community compositional changes (overall mean, P = 0.0003;
nearest mean, P = 0.0011; weighted nearest mean, P = 0.0007;
Figure 5).

Discussion

By developing simple metrics of among-species overlap of
gene repertoires, we examined potential relationship between
community-scale niche overlap and drastic changes in community
structure. Early in the experimental microbiome dynamics,
alphaproteobacterial and gammaproteobacterial species were
present, resulting in relatively high niche-overlap scores at
the community level (Figures 3, 4). The quasi-equilibrium
state of microbial compositions then collapsed into another
quasi-equilibrium represented by a small number of bacteria
varying in genome size and metabolic capabilities. Throughout
the time-series, higher niche overlap levels were associated
with greater changes in microbial community compositions
(Figure 5), although causation between the two variables
deserves further experimental investigations. These findings
lead to the working hypothesis that collapse of microbiome
structure is predicted by the level of potential niche overlap
within multivariate metagenomic space. In light of the “limiting
similarity” rule of ecological niches (MacArthur and Levins,
1967), microbial species that exceed a critical limit of genome
compositional similarity are expected to compete for the same
resources intensively, eventually driving competitive exclusion
processes. Thus, as examined in this study, the information
of similarity/dissimilarity in genetically determined resource-
use properties (i.e., fundamental niches) provides baselines for
inferring consequences of interspecific interactions (Herold et al.,
2020).

The results also indicated that niche overlap level does
not necessarily show monotonic decrease through microbial
community processes. Although gene-repertoire overlap level
and detectable species richness sharply declined early in the
microbiome dynamics, both variables gradually increased
again around day 80 (Figures 1A, 4B). In the resurgence
process, however, the dense clusters of alphaproteobacterial
or gammaproteobacterial species detected until day 20 did
not appear again within the niche space (Figure 3B). These
observations suggest that once collapsed, microbial communities
may not return to previous states with highest levels of niche
overlap, but refilling of poorly used niches can occur under the
constraint of limiting similarity within niche space. Although
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FIGURE 2

Metabolic pathway/process profiles of the MAGs. KEGG metabolic pathways/profiles of the reconstructed bacterial genomes (MAGs) are shown. The
detection (relative abundance >0.1%) of each microbial MAG on each day within the shotgun metagenomic data is indicated in the panel below.
Only the microbial MAGs with >80% completeness and <5% contamination were included (Supplementary Table 1). The five MAGs detected at
least once from days 40–60 and metabolic pathways/processes mentioned in the main text (see section “Results”) are highlighted. Only the
metabolic pathways/processes with highly heterogeneous patterns across microbial MAGs and those possessed by a small number of MAGs are
shown. See Supplementary Figure 3 for detailed profiles of the metabolic pathways/processes.

these insights are useful, our present analysis is based only on 13
time points of a microbiome experiment. Due to the limitation,
it remained elusive to separate effects of α-diversity from those

of gene-repertoire overlap (Figures 4B, C). Thus, the statistical
analysis proposed in this study need to be expanded by reducing
the cost of metagenomic sequencing as well as by developing more
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FIGURE 3

Metagenomic niche space. (A) Distributions of MAGs within metagenomic niche space. Based on dissimilarity in gene repertoires, microbial MAGs
that appeared in the time-series of the target microcosm were plotted on the three-dimensional space defined by the principal coordinate analysis
(PCoA) of 6,999 genes. (B) Changes in the distributions of microbial MAGs within niche space. At each time point, detected MAGs (relative
abundance >0.1%) were plotted on the space defined in the multivariate analysis in the in the panel (A).

efficient pipelines for the computationally intensive analyses of
metagenomic datasets.

The approach of systematically evaluating potential overlap of
ecological niches have been previously explored in “community
phylogenetics,” in which phylogenetic overdispersion/clustering is
evaluated based on null model analysis of random assembly from
species pools (Webb et al., 2002; Cavender-Bares et al., 2009;
Mayfield and Levine, 2010). In those studies based on phylogenetic
analyses, similarity of niches has been inferred based on the
assumption that phylogenetically similar species have similar
ecological properties (e.g., resource requirements). Nonetheless,
given that convergent evolution of ecologically important traits
is ubiquitous in the history of life (McCutcheon et al., 2009;

Merhej et al., 2009; Marvig et al., 2015), the assumption of
phylogenetic niche conservatism is not always met (Losos, 2008).
Therefore, because gene repertoires are more direct proxies of
species traits than phylogeny, metagenome-based analyses will
deepen our understanding of community processes driven by
competitive exclusion. Meanwhile, in the present analyses of
gene repertoire overlap, we included whole metagenomic datasets
of the examined microbes due to the lack of a priori insights
into the metabolic pathways/processes playing essential roles
in interspecific competition for resources. In this respect, our
analysis is a preliminary conceptual step for evaluating potential
overlap of fundamental niches at the community level. In future
studies, analyses excluding housekeeping genes (Gibson et al., 2010;
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FIGURE 4

Dynamics of niche-overlap level. (A) Community-level profiles of metabolic pathways/processes and niche overlap index. The niche overlap indices
were defined based on the Jaccard similarity/dissimilarity of gene compositions between pairs of the microbial MAGs detected at a target time
point. Three types of niche overlap indices are shown on a PCoA surface representing community-level compositions of genes. On the PCoA
surface, time points are distributed based on the sum of the gene repertoires of the detected MAGs. (B) Dynamics of niche-overlap levels. Niche
overlap scores are shown across the time-series. The magnitude of community compositional changes (Bray–Curtis β-diversity between present
and next time points through the time-series of the shotgun metagenomic data) and α-diversity indices of the communities are shown as well. The
values of each index were rescaled between 0 (minimum through the time series) to 1 (maximum through the time series) through the time series.
(C) Relationship between α-diversity and niche overlap scores. The lines represent linear regressions (with 95% confidence intervals).

FIGURE 5

Niche overlap level and community compositional shifts. The magnitude of community compositional changes observed in the microbiome was
regressed on each niche overlap index obtained based on the shotgun metagenomic analysis. Niche overlap index at each time point and
time-series shifts in community structure (Bray–Curtis β-diversity between present and next time points through the time-series of the shotgun
metagenomic data) are shown along horizontal and vertical axes, respectively. The regression lines are shown with 95% confidence intervals.

Maiden et al., 2013) or those focusing on specific functional groups
of genes [e.g., carbohydrate degrading genes (Flint et al., 2012)]
may provide more reliable inference of niche overlap (Herold et al.,
2020). Moreover, antagonistic interactions between species will be
more accurately evaluated by focusing on genes responsible for

direct interspecific interactions, such as antibiotics production and
antimicrobial resistance genes (Boolchandani et al., 2019). Because
such selection of genes can critically influence threshold niche-
overlap values for anticipating abrupt community compositional
changes, setting a commonly applicable criterion of choosing target
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gene sets will help us perform comparative analyses across a wide
range of microbial communities.

The simple framework for evaluating overlap of fundamental
niches is applicable to diverse types of microbiomes. Given that
our Jaccard-dissimilarity-based indices are standardized within
the range from 0 to 1, the next crucial step is to examine
how threshold niche overlap values for anticipating microbial
community collapse vary among different types of ecosystems. Such
threshold values can vary among ecosystems depending on their
basic levels of sustainable functional redundancy. In our laboratory
microbiome, for example, the lack of spatial structure (e.g.,
refuges for inferior species) and environmental fluctuations (e.g.,
temperature fluctuations) might have severely limited coexistence
of functionally similar species (species with similar metabolic
capabilities). In contrast, in human gut microbiomes, spatial
complexity (Earle et al., 2015; Tropini et al., 2017) and temporally
fluctuating environmental conditions (David et al., 2014) may
reduce the risk of competitive exclusion, allowing higher levels of
niche overlap within communities. Thus, extension of time-series
metagenomic analyses to diverse types of ecosystems (Venter et al.,
2004; Fierer, 2017; Jansson and Hofmockel, 2020; Trivedi et al.,
2020) will enhance our knowledge of relationship among ecosystem
properties, functional redundancy, and community stability. The
accumulation of such knowledge will advance not only basic
ecology but also applied microbiology. Insights into the dynamics
of microbial species compositions and functional profiles, for
example, will allow efficient selective enrichment of uncultivated
microbes (Overmann et al., 2017) for industrial application.

While genomic information provides an ultimate platform
for inferring fundamental niches (Palomo et al., 2018; Smith
et al., 2019; Régimbeau et al., 2022), overlap of gene repertoires
may not always result in competitive exclusion of species
within communities. Even in a pair of species with similar
gene repertoires, differentiation in gene expression patterns may
occur to avoid overlap of resource-use patterns between species,
allowing coexistence of the two species in an environment.
Such differentiation of “realized niches (Chase and Leibold,
2004)” through phenotypic plasticity is potentially evaluated
by transcriptomic or metabolomic analyses (Pereira and Berry,
2017; Muller, 2019; Nowinski and Moran, 2021; Malard and
Guisan, 2023). Consequently, integration of (meta)transcriptome
and (meta)metabolome analyses (Turner et al., 2013; Heintz-
Buschart and Wilmes, 2018; Schirmer et al., 2018) with
metagenome-based analyses (Herold et al., 2020) will reorganize
our understanding of deterministic processes in microbiome
dynamics.
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