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Fruits are crucial components of a balanced diet and a good source of natural

antioxidants, that have proven efficacy in various chronic illnesses. Various

kinds of waste generated from fruit industries are considered a global concern.

By utilizing this fruit waste, the international goal of “zero waste” can be

achieved by sustainable utilization of these waste materials as a rich source

of secondary metabolites. Moreover, to overcome this waste burden, research

have focused on recovering the bioactive compounds from fruit industries and

obtaining a new strategy to combat certain chronic diseases. The separation

of high-value substances from fruit waste, including phytochemicals, dietary

fibers, and polysaccharides which can then be used as functional ingredients for

long-term health benefits. Several novel extraction technologies like ultrasound-

assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid

extraction (SFE) could provide an alternative approach for successful extraction of

the valuable bioactives from the fruit waste for their utilization as nutraceuticals,

therapeutics, and value-added products. Most of these waste-derived secondary

metabolites comprise polyphenols, which have been reported to have anti-

inflammatory, insulin resistance-treating, cardiovascular disease-maintaining,

probiotics-enhancing, or even anti-microbial and anti-viral capabilities. This

review summarizes the current knowledge of fruit waste by-products in

pharmacological, biological, and probiotic applications and highlights several

methods for identifying efficacious bioactive compounds from fruit wastes.

KEYWORDS

fruit wastes, bioactive compounds, nutraceuticals, diseases, secondary metabolites,
pharmacological potential

Introduction

Food is a fundamental element necessary survival and life. Food waste is generated
in different phases, i.e., during industrial manufacturing, processing, distribution, and
agricultural production. Household activities contribute to about 42% of the total food
waste, 39% by the food processing industries, 14% by the food service sector, and 5% during
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distribution. It was estimated that food waste may rise to 126
million tonnes by 2020 if improvements are not implemented
(Mirabella et al., 2014; Baig et al., 2019). India, which has
a population of more than 1.4 billion, generates more than
0.5 kg of organic waste per person per day (Paulraj et al.,
2019). By separating high-value components such proteins, fibers,
phytochemicals, flavor compounds, and polysaccharides, which can
then be employed as functional ingredients and nutraceuticals,
this prevention can be achieved (Baiano, 2014). There have been
a number of initiatives in recent years to create strategies for
therapeutically utilizing food (vegetable and fruit) waste. The agro-
industrial waste is, however, utilized in huge quantities in the form
of animal feed or fertilizers (Rudra et al., 2015).

Some recent reports showed that high-value products were
developed by these types of fruit and agro-wastes and used in
regular human lifestyles, such as (medicines, food items, and
cosmetics) (Rudra et al., 2015; Kandemir et al., 2022). Researchers
are looking for natural bioactive substances for treating and
preventing several human diseases (Kandemir et al., 2022). These
substances efficiently interact with biological molecules, including
proteins, DNA, and others, to achieve the desired effects, which
are then used to create natural therapeutics (Ajikumar et al.,
2008). According to current research, consumers are becoming
increasingly interested in food bioactives because of their potential
to help people in various ways, such as preventing sickness and
promoting good health. To achieve beneficial functional fruit
products, it is essential to gather detailed information about
the bio-actives (Kumar, 2015). Among these, nutraceuticals are
therapeutic foods that significantly improve one’s health, increase
immunity, and prevent and cure several diseases. Phytochemicals,
on the other hand, have a specific role in showing positive effects

on human health (Bansal and Priyadarsini, 2022). Currently,
phytochemicals having potential cancer-preventive attributes are
prioritized more (Kumar and Kumar, 2015). In recent years,
there has been a growing trend in the food industries for the
development of functional and nutraceutical products. Due to
increasing consumer preference for “healthy” foods, this new
category of food products has attracted much attention in the
food industry. Hence, finding recent naturally occurring bioactive
molecules that can be employed as nutraceuticals, functional
food additives, or medicines has become of common interest to
the pharmaceutical and food industries (Joana Gil-Chávez et al.,
2013; Vilas-Boas et al., 2021). Fruit wastes provide a reliable
source of secondary metabolites for the development of possible
food additives, functional foods, preservatives, and nutraceuticals
(Bhardwaj et al., 2022). Fruits and vegetable wastes represent the
simplest form of functional foods because they are highly rich in
several bioactive compounds. Fruits waste containing polyphenols
and carotenoids showed antioxidant activity and reduce the risk
of acquiring certain types of cancers (Day et al., 2009). The
isolated bioactive molecules and by-products can be used to
develop several functional foods in food processing industries and
medicinal or pharmaceutical preparations (Baiano, 2014). Pomaces
and other wastes from different fruits keep nutrients and bioactive
substances, including phenolic acids, flavonoids, anthocyanins, and
carotenoids, with a variety of biological functions (Das et al., 2021;
Suri et al., 2022).

Fruit waste is becoming more appealing for research
because these residues are a significant source of polyphenols
(Lucarini et al., 2021). Fruit peel is the principal waste product
in the food processing industries that use fruits as raw material,
such as the manufacturing of fruit juices, jams, and dried fruits.
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Recently, researchers have become increasingly interested in
exploring the antioxidant effects of fruit waste, such as peel and
pomaces (Arias et al., 2022; Bello et al., 2023). Antioxidants can
influence the expression of transcription factors involved in the
immune response, reduce pro-inflammatory cytokine expression,
and block crucial immune signaling pathways (Yahfoufi et al.,
2018). The nuclear factor kappa B (NF-κB) family is one of the
most significant signaling pathways that govern immunological
responses and inflammation (Lawrence, 2009). The most abundant
complex is p65/p50, which regulates gene expression of interleukin
(IL)-1, IL-6, IL-8, inducible nitric oxide synthase (iNOS), IFN-γ,
tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2
(Modak and Bhattacharjee, 2022). Irregular activation of these
pathways leads to several inflammatory diseases and even
autoimmune diseases like rheumatoid arthritis (RA) and even
cancer. Plasma-membrane-bound ligands, including toll-like
receptor (TLR) and IL-1, can activate this pathway, resulting in
the phosphorylation of IκB and its breakdown. As a result, NF-κB
translocates into the nucleus and begins to upregulate transcription
factor genes, which regulate cell inflammatory responses and
survival (Modak and Bhattacharjee, 2022).

Among the most common non-communicable diseases,
cardiovascular disease (CVD) accounts for around 17.7 million
deaths worldwide (WHO, 2016). India accounts for around one-
fifth of these deaths worldwide (Kumar and Sinha, 2020). CVDs
have wide variety of outcomes, including cerebrovascular disease,
stroke, atherosclerosis, diabetes, coronary heart disease, obesity,
and hypertension (Petrie et al., 2018). High blood cholesterol
is also essential in the development of CVD (American Heart
Association, 2012). Dietary patterns rich in lipids and cholesterol
increase the risk of atherosclerosis, leading to CVD (Stocker
and Keaney, 2004; Carson et al., 2020). Atherosclerosis indicates
the accumulation of cholesterol within the arterial walls, thereby
narrowing the arteries and forming atherosclerotic plaques (Brody,
1999). The disease manifestation of atherosclerosis is mainly due
to endothelial damage (Caliceti et al., 2022). Currently, long-
term pharmacological therapy is the most common strategy to
control CVDs. However, most of these therapeutic approaches are
inefficient for all patients and often elicit several side effects (Zhao
et al., 2017). So, there is a growing interest in identifying alternative
natural resources to combat the increasing incidence of CVD.
In this context, natural compounds with potent antioxidant and
free radical scavenging activities have drawn increased attention
from the scientific community (Fu et al., 2011). Numerous studies
support the direct relationship between a diet rich in vegetables
and fruits and with low risk of CVDs (Figure 1; Cicero et al., 2017;
Marracino et al., 2022).

Fruit waste extract also represents a novel strategy for
combating harmful bacteria and viruses. Polyphenols are secondary
metabolites generated from various portions of edible fruits wastes
(apple, citrus, banana, pomegranate, grape, and pear) that include
one or more phenolic groups (Gerardi et al., 2021; Ko et al.,
2021; Zardo et al., 2021; Hasan et al., 2022). They not only
have numerous human health benefits such as anti-diabetic, anti-
cancer, antioxidant, and cardioprotective, but additionally, they
possess anti-microbial-and antifungal properties (Guo et al., 2020;
Saleem and Saeed, 2020; Budiati et al., 2022; Elbandrawy et al.,
2022; Ko and Ku, 2022; Lee et al., 2022). Furthermore, there is an
increasing prevalence of drug resistance to harmful bacteria, which

is a severe threat to humanity. Thus, it is crucial to select the most
appropriate antibiotics and employ them properly (Figure 1; Bains
and Chawla, 2020). The potential of fruit wastes may be increased
by using them as a base for the discovery of bioactive compounds,
which could have significant positive effects on the food industry
and medicinal fields.

As a source of secondary
metabolites, anti-oxidant, and
anti-inflammatory agents

Apple pomace or peel is a by-product of the extraction process
used to make apple juice and cider, and it is one of these
sources that is considered as having substantial potential as a
food ingredient (Kolodziejczyk et al., 2007). It is a solid mass
that makes up to 30% of the fruit’s weight and comprises leftover
peel, seed, stem, and pulp. Due to the presence of phenolics
such as chlorogenic acid, quercetin glycosides, epicatechin, its
dimer, phloridzin, and 3-hydroxyphloridzin, apple pomace has
high antioxidant capabilities (Lu and Foo, 2000). According
to several reports, apple pomace possesses good ferric-reducing
ability power (FRAP) activity and 2,2′-diphenyl-1-picrylhydrazyl
(DPPH)-scavenging move (Garcia-Montalvo et al., 2022; Llavata
et al., 2022). Identification and quantification of significant
phenolics by reverse phase-HPLC study show the presence of
quercetin, phloretin, and phloridzin in apple pomace (Rana et al.,
2015). In a recent survey polyphenolic composition was determined
using UHPLC-DAD-ESI-MS and results showed that apple pomace
composed of quercetin 3-O-arabinofuranoside (13%), quercetin-
3-O-rhamnoside (23%), quercetin-3-O-galactoside (27%), and the
dihydrochalcone phloretin-2-O-glucoside (14%) (Fernandes et al.,
2019). Various novel extraction techniques like ultrasound-assisted
extraction (UAE) ultra-turrax extraction (UTE), are used nowadays
to isolate phenolics compounds like phloridzin from fruit wastes.
Recent studies showed that the UAE method yields slightly higher
phloridzin content (55.86–71.19 µg GAE/g of fresh apple pomace)
compared to the UTE method (58.39–64.43 µg/g of fresh apple
pomace) (Pollini et al., 2021). However, several other studies
have reported slightly lower phloridzin content while extracting
polyphenols using the UAE method from various apple pulps,
ranging from 11.40 to 40.91 µg/g of fresh pulp (Li et al.,
2019). Similarly, when utilizing the UTE method on freeze-dried
apple pulps, the reported phloridzin content ranged from 39.9
to 77.0 µg/g of dry weight (Santarelli et al., 2020). The by-
products from the processing of pear fruit, called pear pomace,
remain rich in bioactive substances, carbohydrates, and fibers
that can be used medicinally. According to a study of phenolic
compounds in various pear sections, pulps have the lowest phenol
concentration containing bioactive molecules, which are after that
more abundant in skins and seeds (Kolniak-Ostek and Oszmiański,
2015). Because of this, pear pomace is a rich source of these
bioactive components. According to HPLC studies, five phenolic
acids (chlorogenic acid, gallic acid, ferulic acid, vanillic acid,
and p-coumaric acid), two triterpene compounds (oleanolic acid
and ursolic acid), one phenolic glucoside (arbutin), and three
significant flavanols (catechin, epicatechin, and rutin) were all
detected in pear pomace (Li et al., 2014). According to quantitative
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FIGURE 1

Pharmacological attributes of various edible fruit wastes. Figure generated using Microsoft PowerPoint 2021, 64-bit (Version 2302, Build
16130.20306).

studies of the total phenols, triterpenes, and flavonoids content,
all components discovered in the peel were 6–20 times more
concentrated compared to the pulp (Li et al., 2014).

Several phenolic and flavonoid compounds, including
nobiletin, tangerine, and coumaric acid, have been identified and
quantified from dried orange peel using HPLC-DAD (Shu et al.,
2020). According to Czech et al. (2021), the peel of all citrus fruits
had substantially more phenolic components than the pulp and
among citrus fruit peel, green grapefruit peel had the highest
concentration of ascorbic acid (67.36 mg/100 g) and lemon had
the lowest (7.83 mg/100 g). The same study reported that limes,
lemons, and mandarins have more DPPH radical scavenging ability
than their pulp counterparts (Czech et al., 2021). Lee et al. (2010)
successfully extracted polymethoxyflavones (PMFs) like nobiletin
and tangeretin from Citrus depressa Hayata peels by supercritical
fluid extraction (SFE) technique. Their results showed that these
PMFs’ yield increased significantly when 85% aqueous ethanol was
used as a modifier with 9.1% supercritical CO2 (Lee et al., 2010;
Chien et al., 2022).

Another food product is pomegranate and due to its
multiple medicinal properties, pomegranates have been utilized
as traditional medicine for decades. In this context, pomegranate
peels come into consideration as the peel also contains a mixture
of bioactive components, and the synergistic interaction of
various components can result in a wide range of physiological
actions (Mo et al., 2022). Phytochemical screening showed that
pomegranate peels contain high amounts of flavonoids, tannins,
alkaloids, carbohydrates, terpenoids, and possess antioxidant
activity (Khokar et al., 2021). Studies found that pomegranate
peel extracts have the highest soluble phenolic content and higher
antioxidant activity than other wastes (Gulsunoglu et al., 2019).
The soluble phenolics of pomegranate peel extract contained
derivatives of ellagic acid, gallic acid, punicalagin, and cyaniding

(Table 1). Punicalagin was shown to be the most hydrolyzable
tannin in pomegranate husks, followed by gallic acid, catechin,
epicatechin, and ellagic acid (Gulsunoglu et al., 2019). A recent
study by Parisi et al. (2020) reported that ellagic acid (ellagitannins)
and gallagic acid derivatives (gallagyl esters) are the primary
components of pomegranate peel (Parisi et al., 2020). A recent
study by García et al. (2021) have successfully extracted punicalagin
(17 ± 3.6 mg/g DW) from pomegranate peel extract (PPE)
using pressurized liquid extraction (PLE) technique under optimal
conditions of 200◦C temperature and 77% ethanol (García et al.,
2021). The phenolic compound punicic acid was also extracted
from pomegranate seed using the SFE technique at optimized
temperature (60◦C) and pressure (320 bars) (Natolino and Da
Porto, 2019). Grape pomace is rich in the phenolic compounds such
as resveratrol, anthocyanins (cyanidin, delphinidin, malvidin, and
petunidin derivatives), flavonols (quercetin, laricitrin, syringetin,
and myricetin glycosides), and flavan-3-ols (catechin/epicatechin
and their procyanidin oligomers), as detected in LC-MS/MS
analysis (Table 1; Parisi et al., 2020). Duba et al. (2015) have
successfully extracted polyphenols from grape peels and seeds
using the sub-critical water extraction (SBWE) technique in semi-
continuous mode, yielding 44.3–77 and 44–124 mg/g from peels
and seeds, respectively (Duba et al., 2015). Other novel extraction
methods like UAE and pulsed electric fields were also used to
extract anthocyanins and other phenolic compounds from grape
peel and pomace (Ghafoor et al., 2011; Maza et al., 2019). Ashraf-
Khorassani and Taylor (2004) have successfully removed more
than 79% of catechin and epicatechin from grape seeds using
SFE with 40% methanol-modified CO2 (Ashraf-Khorassani and
Taylor, 2004). Around 29–40% of all pineapple waste is made up
of pineapple peel and is abundant in epicatechins, catechins, ferulic
acids, and gallic acid, all of which can be used as active antioxidant
components (Jatav et al., 2022). This naturally occurring ferulic
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TABLE 1 Biological activities of various edible fruit waste and their secondary metabolites.

Fruit waste Bioactives Biological activity

Anti-inflammatory
activity

Management of insulin
resistance

Cardiovascular disease Effect on blood lipid profile

Apple pomace Epicatechin, quercetin glycosides,
chlorogenic acid, phloridzin, and
phloretin (Lu and Foo, 2000; Rana
et al., 2015; Fernandes et al., 2019)

Modulation of NF-κB signaling
pathway (Choy et al., 2019; You et al.,
2022); inhibition of secretory
phospholipase, COX-2 activity (Kim,
2015); suppression of NO production
(Lee et al., 2020); downregulation of
IL-1β, TNF-α, IL-6 (Lee et al., 2022)

Improved glucose and lipid by
translocation of GLUT4 (Shen et al.,
2017); enhanced glucose uptake and
insulin sensitivity by activating
PPAR-γ (Kumar et al., 2019);
enhanced glucose absorption (Chen
et al., 2022)

Can lower serum uric acid (SUA) levels by
xanthine oxidase inhibition (Cicero et al.,
2017); iNOS activity regulation in a human
endothelium-derived cell line (Waldbauer
et al., 2016)

In vitro studies confirmed the lowering of
lipid accumulation by pre-adipocytes (Ko
and Ku, 2022); 4 weeks of consumption
can reduce the TC and LDL-cholesterol
levels in humans (Ravn-Haren et al., 2013;
Szabo et al., 2022).

Pear pomace Arbutin, ursolic acid, epicatechin,
catechin, rutin, vanillic acid, gallic
acid, oleanolic acid, chlorogenic acid,
ferulic acid, p-coumaric acid (Li et al.,
2014)

LOX inhibitors (Lončarić et al., 2021);
inhibition of NO, COX-2, iNOS
production (You et al., 2022)

Antihyperglycemic activity in diabetic
models (both alloxan and STZ
induced) (Mechchate et al., 2021;
Yasmin et al., 2021)

Protect against LPS-induced myocardial
injury via the ER pathway (Zhang et al., 2019)

Hypolipidemic potentials in the
dexamethasone-induced diabetic rat
(Velmurugan and Bhargava, 2013)
lowered TG, TC, LDL, and VLDL levels
but increased the cardioprotective lipid
HDL level (Velmurugan and Bhargava,
2013; Chang et al., 2017)

Orange peel Coumaric acid, nobiletin, tangeretin,
ascorbic acid (Matsuo et al., 2019; Shu
et al., 2020; Czech et al., 2021);
hesperidin (Samota et al., 2023)

Membrane stabilization activity,
protection of protein denaturation
(Malik et al., 2021); inhibition of
iNOS, NO, and COX-2 (Rong et al.,
2021); amelioration of acute ear
inflammation (Padilla-Camberos
et al., 2022)

Improve glucose tolerance
(Nguyen-Ngo et al., 2020); increase
insulin action by downregulating the
MEK-ERK1/2 signaling cascade in
hepatocytes (Guo et al., 2020);
protects against β-cell loss in diabetic
mice model (Kaneko et al., 2022)

Protective function against ISO-induced
myocardial infarction in rats (Paul et al.,
2017); can prevent cardiovascular disease by
regulating the systolic and diastolic blood
pressure in diabetic rats (Khan et al., 2021)

Can reduce the TG and TC levels, and
prevent LDL oxidation, thereby inhibiting
atherosclerosis progression (Benavente-
Garcia and Castillo, 2008; Feng et al., 2020)

Pomegranate
peel

Gallic acid, ellagic acid, cyanidin,
punicalagin, catechin (Zahin et al.,
2010; Gulsunoglu et al., 2019; Parisi
et al., 2020)

Inhibition of COX-2, IL-6, TNF-α,
and iNOS (Du et al., 2019);
downregulation of MMPs and NF-κB
pathway (Calabriso et al., 2022)

Decreased hepatic gluconeogenesis
and enhanced glycogenesis (Jin et al.,
2020); protection of pancreatic β-cells
in STZ-induced diabetic rat model
(Abdulhadi et al., 2022; Elbandrawy
et al., 2022)

Cardioprotective effect against Dox-induced
cardiotoxicity in rats via the reduction in
GSH, LDH, and creatine kinase-MB
(Hassanpour Fard et al., 2011); prevents the
onset of atherosclerosis progression by
increasing expression of hepatocyte
paraoxonase 1 expression in a
dose-dependent manner (Khateeb et al.,
2010); decrease advanced atherosclerotic
progression and reduce plaque necrosis in
Apoe−/− mice (Manickam et al., 2022)

Can significantly reduce TG, TC, LDL-
cholesterol, and lipid peroxidation in
hypercholesterolemic rats (Ismail et al.,
2012; Salama et al., 2021)

Grape pomace Resveratrol, quercetin, laricitrin,
syringetin, delphinidin, malvidin
(Parisi et al., 2020; Sabra et al., 2021)

Downregulation of TNF-α, NF-κB,
IFN-γ, IL-1α, IL-1β, and IL-10 (Pistol
et al., 2019); inhibition of COX-2
enzyme (Lončarić et al., 2021)

Attenuated insulin resistance on
animal model (Lanzi et al., 2016);
improved fasting insulinemia
(Martínez-Maqueda et al., 2018);
improved insulin sensitivity and
reduced ectopic fat deposition (Daniel
et al., 2021)

Can significantly attenuate atherosclerosis
development in SR-B1 KO/ApoER61h/h
mice (Rivera et al., 2019), Inhibit LDL
oxidation and thereby can prevent the onset
of atherosclerosis development
(Pérez-Jiménez and Saura-Calixto, 2008);
in vivo studies showed cardioprotective
effects by measuring creatine kinase levels
and by ECG monitoring (Pop et al., 2018)

Can significantly reduce blood TG and
VLDL level, with a slight increment of
HDL level, and no alteration of TC level
in high-fat diet-induced rat model (Smith
et al., 2017; Martínez-Meza et al., 2022)

(Continued)
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acid can be extracted using conventional and non-conventional
methods. The Soxhlet extraction using methanol and petroleum
ether as solvents showed the best results for the extraction of
ferulic acid from the pineapple peel powder with a percentage
yield of 90.5% mg (Madhumeena et al., 2021). The percent yield
of pineapple peel extracts through solvent extraction is 82% mg
compared to the product through SFE (79% mg) (Madhumeena
et al., 2021). Lun et al. (2014) also found a higher yield of ferulic
acid from the autoclaved pineapple wastes (3.65 mg/g) compared to
the non-autoclaved pineapple wastes (0.64 mg/g) (Lun et al., 2014).

Due to their synergistic and additive effects, the complex blend
of phytochemical components present in fruit-peel extracts is
more efficient for preventing inflammation than their components.
Polyphenols have shown significant effectiveness in controlling
this pathway at various points. The flavonoids like quercetin,
kaempferol, myricetin, and apigenin have been shown to inhibit
serine/threonine protein kinases (PIK3/AKT) in an antagonistic
manner. They can modulate transcription factors such as NF-κB
(Choy et al., 2019). Gallic acid, resveratrol, and quercetin can
inhibit COX-2 enzymes, whereas lipoxygenase (LOX) inhibitors
include kaempferol, ferulic acid, benzoic acid, quercetin, caffeic
acid, and catechin (Figure 2; Lončarić et al., 2021). In vitro
study demonstrated that the 70% ethanolic apple peel-extract can
substantially inhibit secretory phospholipase, COX-1, COX-2, and
lipoxygenase activity by up to 53.5± 2.3, 13.4± 1.8, 64.8± 5.4, and
44.4 ± 4.5 (percentage ± SD), respectively (Kim, 2015). Another
culture-based study demonstrated that the ethanolic apple peel
extract can suppress nitric oxide (NO) production up to 25% at a
dose of 500 µg/ml in lipopolysaccharide (LPS)-induced Raw 264.7
macrophage cell line (Lee et al., 2020). This study further confirmed
that apple peel extract effectively inhibited LPS-induced production
of pro-inflammatory iNOS and COX-2, as well as phosphorylation
of NF-κB subunit p65 and further real-time PCR confirmed the
expression of pro-inflammatory biomarkers like prostaglandin E
synthase 2 (PTGES2), monocyte chemoattractant protein-1 (MCP-
1), IL-6, and IL-1β were also significantly downregulated in an
in a dose-dependent way (Lee et al., 2020). A more recent study
by the same research group revealed that isoquercitrin was the
main bioactive extracted from green ball apple peel extract (Lee
et al., 2022). Isoquercitrin can inhibit NF-κB, COX-2, iNOS, and
p65 protein expressions along with proinflammatory markers like
TNF-α, IL-6, and IL-1β in a concentration-dependent fashion in
LPS-treated Raw 264.7 macrophage cell line (Figure 2; Lee et al.,
2022). A recent study reported that the ethanolic extract of pear
pomace can also enhance LPS-induced inflammation in RAW 264.7
cells by decreasing NF-κB expression and NO production (You
et al., 2022). Another work by Martins et al. (2017) reported that
extracts of grape pomace containing phenolic compounds (in the
concentration of 100 µg/ml) can decrease COX-2, prostaglandin
(PGE)-2, and IL-8 production in Caco-2 cells pre-treated with
leukocyte IL-1. Further HPLC analysis indicated that this extract
had a high amount of flavonoids, including catechin, gallic acid, and
epicatechin, which may help to modulate PGE-2 and IL-8 release
(Martins et al., 2017).

According to Malik et al. (2021), Citrus nobilis peel methanolic
extract can protect RBC membrane stabilization by up to 89.67%
and can protect the protein denaturation by up to 87.57% at a
dose of 200 mg/ml concentration. Most biological proteins lose
the three-dimensional structures and their physical function due
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to heat exposure, which triggers several hypersensitive immune
responses and forms chronic inflammatory arthritis (Modak et al.,
2021). Due to the presence of sinensetin, nobiletin, and other
bioactive components, C. nobilis peel methanolic extract may
restore protein integrity by preventing membrane protein rupture
by widening the surface-volume ratio and by reducing the release
of inflammatory mediators (Malik et al., 2021; Modak et al.,
2021). Padilla-Camberos et al. (2022) reported that topical use
of a natural essential oil mix of sweet orange peel, allspice, and
cumin seeds could ameliorate ear inflammation by 66.67% when
compared to the negative control group, and that may be due to
the synergistic or additive effect (Padilla-Camberos et al., 2022).
Further studies revealed that citrus peel flavonoid nobiletin can
exert anti-inflammatory effects by reducing the expression of iNOS,
COX-2, and NO production from both the protein and gene
level in LPS-treated RAW macrophage 264.7 cell line (Figure 2;
Rong et al., 2021).

Ellagic acid, one of the primary bioactive of pomegranate peel
extract, can inhibit the expression of pro-inflammatory cytokines
like IL-6, TNF-α and IL-1, as well as down-regulate the COX-
2 and iNOS expression in macrophage Raw 264.7 cell line (Du
et al., 2019). This study further reported that polyphenols from
pomegranate peel can inhibit the mRNA and protein production
of TLR4 and could inhibit p65 nuclear translocation by inhibiting
NF-κB activation by preventing LPS-induced phosphorylation,
ubiquitination, and degradation of IκB (Figure 2; Du et al., 2019).
Another recent study by Calabriso et al. (2022) showed the anti-
inflammatory effects of red grape pomace on LPS and TNF-induced
inflammation in Caco-2 cells and HMEC-1 cells. According to
their study, they found that treatment with grape pomace reduced
the levels of IL-6 and MCP-1 (monocyte chemoattractant protein-
1) as well as the production of MMP-9 and MMP-2 in a dose
dependant manner in HMEC-1 cell line. Furthermore, they noted
that treatment with the red grape pomace also downregulated the
NF-κB pathway which ultimately inhibited the gene expression
of several pro-inflammatory markers like COX-2, TNF-α, IL-1β,
and macrophage colony-stimulating factor (M-CSF) (Calabriso
et al., 2022). The peels of pineapple and banana has been reported
to possess several phenolic compounds like gallic acid, catechin,
epicatechin, anthocyanins, kaempferol, and isoquercitrin (Jatav
et al., 2022; Zaini et al., 2022). These phenolic compounds and
flavonoids can be successfully extracted using UAE method at
optimal extraction conditions. Using UAE technique at optimal
parameters (30◦C, 5 min, 150 W), 1 g of Musa cavendish peel
can yield up to 23.49 mg of phenolic compounds, 13.11 mg of
proanthocyanidins, and 39.46 mg of flavonoids (Vu et al., 2017).
The presence of such phenolic-rich constituents in banana peel
extract has been reported to exert an anti-inflammatory role by
inhibiting the NF-κB pathway (Eddie-Amadi et al., 2022). Another
recent study found that banana peel can inhibit the expression of
IL-6 production in the LPS-stimulated RAW264.7 cells (Table 1).
According to the in vivo study in mice model, the banana peel
extract has been reported to lower the elevated serum TNF-α, IL-6
levels, and also normalized the activated T-cell population (Hong
et al., 2023). Parisi et al. (2020) reported the anti-inflammatory
activity of herbal formulation comprising of propolis, pomegranate
peel, and aglianico grape pomace extracts (4:1:1) in collagen-
induced arthritis (CIA) model (Parisi et al., 2020). According to
their study, early treatment with the herbal dose (150 mg/kg body

weight) can significantly ameliorated the paw swelling and also
reduced the number of affected paws by 60% when compared with
negative control mice. Furthermore, the downregulation of IL-17
and IL-1β cytokines at protein levels in the treatment group, also
confirmed the anti-rheumatoid activity of the herbal formulation
(Table 1; Parisi et al., 2020).

Management of insulin resistance

Insulin resistance (IR) is one of the major symptoms of a
number of human diseases, including CVD, obesity, type 2 diabetes,
polycystic ovary syndrome, metabolic dysfunction-associated fatty
liver disease and others (James et al., 2021; Li et al., 2022).
Current understanding states that adipose tissue could have an
essential role in the development of IR through the generation
of lipids and other circulating substances that induce IR, as
well as in the insulin-mediated regulation of glucose metabolism
in other organs (Li et al., 2022). In healthy individuals, the
transport of the glucose transporter solute carrier family 2 protein
facilitated GLUT-4 to the cell surface and promotes cellular glucose
absorption from the circulation into tissues (James et al., 2021; Li
et al., 2022). This procedure eliminates high postprandial glucose
from the blood, however, a habitually high glycemic index diet
results in excessive insulin production and increased binding to
the insulin receptor, leading to fatty acid synthesis in addition
to the typical glucose uptake. The PI3K and the MAP kinase
pathway are the two primary pathways that are activated as a
result of all of these activities (Figure 2; Li et al., 2022). Any
change in these two pathways hindered glucose re-uptake in
both the adipose tissues as well as the skeletal muscle tissues,
contributing to the phenomenon of IR. Several studies have shown
that the high anti-oxidant activity of fruit waste can help to
improve and manage IR and type 2 diabetes through their synergic
effects. In differentiated adipocytes, phloretin and phloridzin,
two of the primary active components of apple peel, stimulate
peroxisome proliferator-activated receptor (PPAR)-γ and inhibit
cyclin-dependent kinase (Cdk)-5 to enhance glucose uptake and
insulin sensitivity (Kumar et al., 2019). Phloretin reduces IR in vitro
and improves the glucose and lipid metabolism in streptozotocin-
induced diabetes rats by translocation of GLUT4 (Table 1; Shen
et al., 2017). According to Chen et al. (2022), phloridzin derivatives
are a potential therapy for type 2 diabetes patients who have
IR. In untreated C2C12 myotubes, docosahexaenoic acid-acylated
phloridzin, a new polyphenol fatty acid ester derivative, enhanced
glucose absorption and mitochondrial function via enhancing
AMPK activity (Chen et al., 2022). A novel formulation that has
the potential to be an important replacement for conventional
medications is validated by the synergistic combination of pear
pomace, another rich source of bioactive (Li et al., 2014). The
anti-diabetic formulation containing flavonoids such as catechin,
epicatechin, and rutin showed substantial anti-hyperglycemic
activity at 10 mg/kg body weight dose in the alloxan-induced
diabetic mice model (Mechchate et al., 2021). Ferulic acid,
another important polyphenol from pear pomace also improved
hyperglycemia significantly in STZ-nicotinamide-induced diabetic
rat model (Yasmin et al., 2021). Nobiletin and tangeretin were
important flavonoids identified from the orange peel that also
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FIGURE 2

Modulation of intracellular signaling cascades by different edible fruit wastes, their phyto-components, and their physiological events during
homeostasis. Binding with insulin receptors, insulin signals stimulate MAPK kinase pathways and activate PI3K, which in turn activates AKT.
Phyto-components of banana peel can activate this pathway. AKT also interacts with NF-κβ pathways. Activation of the TLR initiates an inflammatory
cascade that leads to the activation of NF-κβ and the production of pro-inflammatory cytokines. Bioactives from several fruit wastes can modulate
the NF-κβ signaling pathways, which results in the downregulation of inflammatory biomarkers. Similarly, the MAPK pathway and AKT eventually
control the metabolic gene expression, which ultimately restores the normal glucose uptake, promoting fatty acid oxidation and controlling blood
cholesterol levels. Src, proto-oncogene tyrosine-protein kinase; TLR, toll-like receptors; Gαq/11, a family of heterotrimeric G protein alpha subunits;
PI3K, phosphoinositide 3-kinase; IRS, insulin receptor substrate; AKT, serine-threonine protein kinase; MAPK, mitogen-activated protein kinase; JNK,
c-Jun N-terminal kinases; ERK, extracellular signal-regulated kinase; NF-κβ, nuclear factor kappa beta; IKB, inhibitor of NF-κβ; IKK, IKB kinase. Figure
generated using Microsoft PowerPoint 2021, 64-bit (Version 2302, Build 16130.20306).

possess anti-diabetic activity (Table 1). Nguyen-Ngo et al. (2020),
reported that nobiletin treatment can substantially boost TNF-
related glucose uptake in human skeletal muscle. Additionally, it
was observed to downregulate the expression of pro-inflammatory
markers at both the mRNA and protein levels in human placenta
and visceral adipose tissue. Furthermore, the study conducted on
gestational diabetes mellitus mice model revealed that, nobiletin
at 50 mg/kg body weight dose can significantly improve glucose
tolerance and can inhibit Akt activation in the placenta (Nguyen-
Ngo et al., 2020). The intragastric injection of tangeretin at a dose
of 50 mg/kg body weight was found to improve glucose homeostasis
and hepatic insulin sensitivity in diabetic mice with genetically
altered leptin receptors. The results suggest that tangeretin may
have the ability to increase insulin action by downregulating the
MEK-ERK1/2 pathways in hepatocytes (Figure 2; Guo et al., 2020).
According to Kaneko et al. (2022), the subcutaneous administration
of nobiletin led to a significant reduction in blood glucose levels
in non-fasting condition and during an OGT test in male diabetic
db/db mice model. Indeed, the study further confirmed that
continuous administration of nobiletin to db/db mice resulted

in a larger β-cell mass and higher insulin content compared to
the vehicle control group. These findings suggest that suggesting
nobiletin not only improves IR but also offers protection against
β-cell loss in the type 2 diabetic db/db mice model (Kaneko
et al., 2022). As per other studies, ellagic acid, cyanidin, and
punicalagin are potentially promising supplements for lowering
diabetes-related insulitis. Treatment with ellagic acid 50 mg/kg can
enhance the islets of Langerhans in STZ-induced diabetic rats by
downregulating TNF-α and IL-6-induced systematic inflammation
(Elbandrawy et al., 2022). Jin et al. (2020) reported that punicalagin
treatments activated the PI3K/AKT signaling pathway, which
decreased hepatic gluconeogenesis and enhanced glycogenesis,
both in glucosamine-induced HepG2 cell line and STZ-induced
mice model (Figure 2). In another study, it was found that
punicalagin exhibited protective effects on β-cells in the pancreas
of STZ-induced diabetic Wistar rats. Additionally, punicalagin was
observed to reduce oxidative stress levels and enhance antioxidant
levels in diabetic rat model (Abdulhadi et al., 2022). Punicalagin’s
effects on the liver and kidney, resulting in hypoglycemic and
anti-inflammatory effects, were primarily mediated by a decrease
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in gluconeogenesis and an increase in glycogenesis, as well as
by activating the PI3K/AKT signaling pathway, controlling the
inflammatory signaling network and by regulating gut microbiota
homeostasis (Jin et al., 2020; Cao et al., 2021). Cyanidin, a different
phenolic compound from pomegranate peel, can also ameliorate
metabolic IR. A recent study by Geng et al. (2022) reported that
cyanidin-3-O-glucoside supplementation improves metabolic IR
in STZ-induced mice models by downregulating inflammatory
cytokines and TLR4/NF-κB inhibitor alpha (IκBα) activation and
restoring the suppressed AKTt/eNOS signaling pathway (Figure
2). Such research continues to be beneficial in revealing a novel
alternative method for treating IR in diabetic complications, which
has a lot of potential in the future that involves turning fruit waste
into a distinctive source of antioxidant-rich by-products.

Management of cardiovascular
diseases and blood lipid profile

Polyphenols extracted from apple pomace were known to
exhibit cardiovascular protective effects by lowering serum uric
acid (SUA) levels (by xanthine oxidase inhibition) and improving
endothelial reactivity (ER) (Cicero et al., 2017). The triterpenic
acids from methanol/water extracts of apple pomace can modulate
the eNOS (endothelial nitric oxide synthase) activity in a cell line
derived from human endothelium (Table 1; Waldbauer et al., 2016).
Apple skin contains phloridzin, chlorogenic acid, and quercetin,
which have the potential to regulate glucose absorption and can
reduce postprandial glycemia (blood glucose levels after a meal)
and insulinemia (insulin levels in the blood) (Makarova et al.,
2015; Cicero et al., 2017). Various in vitro studies also confirmed
the anti-obesity properties of apple peel extract by lowering lipid
accumulation by pre-adipocytes (Ko and Ku, 2022). In healthy
human volunteers, a daily uptake of apple, apple pomace, or
apple juice for a duration of 4 weeks has been shown to lead to
a reduction in both total cholesterol (TC) and LDL-cholesterol
levels (Ravn-Haren et al., 2013). Phloridzin, chlorogenic acid, and
catechin found in apple pomace have the potential to lower serum
triglycerides (TG) and LDL-cholesterol levels while also helping in
regulating glycemia (blood sugar levels) (Table 1; Szabo et al., 2022).

The biomolecules obtained from pear and its extracts has also
many cardioprotective functions. The extracts of Pyrus, commonly
known as Himalayan pear have rich content of arbutin, catechin,
and chlorogenic acid and were known to inhibit the COX-2
activities and reduce IL-6 and TNF-α expression in LPS-stimulated
RAW macrophages (Figure 2; Om et al., 2022). The arbutin
treatment could also protect against LPS-induced myocardial
injury via ER pathway in an in vivo model system through
the modulation of TNF-α and IL-6 levels (Zhang et al., 2019).
Pear and pear by-product extracts also showed hypoglycemic
(blood-sugar lowering) and hypolipidemic (cholesterol lowering)
potentials in the dexamethasone-induced diabetic rat (Velmurugan
and Bhargava, 2013). This extract not only lowered TG, TC, LDL,
and VLDL levels but also increased the cardioprotective lipid HDL
level (Velmurugan and Bhargava, 2013). Chang et al. (2017) found
out that the pear insoluble dietary fiber (IDF) can decrease the LDL-
cholesterol and TC levels in high-fat-induced rats (Table 1; Chang
et al., 2017). Therefore, the pear and its by-product extracts have

the potency to prevent the formation of CVDs like atherosclerosis
and coronary heart disease.

The extracts obtained from both the peel and pulp of the wild
orange, Citrus macroptera, has been found to have cardioprotective
effects. These extracts showed notable protective capabilities
against isoproterenol (ISO)-induced myocardial infarction (MI) in
rats (Paul et al., 2017). Citrus fruits’ peel, pulp, and seeds are rich in
flavanone glycosides, with hesperidin being one of the prominent
compounds in high amounts (Samota et al., 2023). Hesperidin (at
a dose of 100 mg/kg) was found to control blood glucose levels
effectively and showed cardioprotective functions in isoproterenol-
induced MI in STZ-nicotinamide-induced diabetic rats (Kakadiya
et al., 2010). Hesperidin also has blood pressure-reducing effects,
and studies have confirmed its ability to prevent and treat CVDs
by regulating both systolic and diastolic blood pressure in diabetic
rats (Table 1; Khan et al., 2021). Various flavanone derivatives, such
as hesperidin and naringin, in the juices of Citrus fruits has been
verified to exhibit cholesterol-lowering activity in human subjects.
The essential oils from the lemon and citrus peel can also reduce
triglycerides and TC levels, and prevent LDL oxidation, thereby
inhibiting atherosclerosis progression (Figure 2; Benavente-Garcia
and Castillo, 2008; Feng et al., 2020).

Pomegranate, Punica sp.’s peels, and juice have various
therapeutic potentials related to cardiovascular complications.
Almost 92% of the antioxidant property of the fruit is mainly due
to the presence of multiple flavonoids (such as anthocyanins and
catechins) and tannins (such as gallic acid, ellagic acid, punicalin,
and punicalagin) concentrated in the peels of pomegranate
(Zahin et al., 2010). The hydroethanolic extract obtained from
pomegranate peel, rich in polyphenols (such as punicalagin),
showed a significant reduction of plaque necrosis and advanced
atherosclerotic progression in Apoe−/−mice via the suppression of
MerTK cleavage and elevation of lesional macrophage efferocytosis
(Table 1; Manickam et al., 2022). The water extract derived from
pomegranate aril, rind, and seeds has been found to possess
a cardioprotective effect against doxorubicin (Dox)-induced
cardiotoxicity in rats via the reduction in glutathione, lactate
dehydrogenase (LDH), and creatine kinase-MB (Hassanpour Fard
et al., 2011). The pomegranate peel extract, owing to its rich
antioxidant content, can enhance the hepatocyte paraoxonase
one expression in a dose-dependent manner, thereby preventing
the onset of atherosclerosis progression (Khateeb et al., 2010).
Another study in hypercholesterolemic mice showed elevated
eNOS expression and inhibition of atherosclerosis progression by
uptake of punicalagin-enriched pomegranate juice (De Nigris et al.,
2007). Studies in human subjects also suggest the importance of
daily uptake of pomegranate juice as it can attenuate atherosclerosis
and prevents hypertension (Wang et al., 2018). The long-
term consumption of pomegranate peel powder can significantly
reduce TC, TG, LDL-cholesterol levels, and lipid peroxidation in
hypercholesterolemic rats (Figure 2; Ismail et al., 2012; Salama
et al., 2021).

The bioactives obtained from grape extract (Vitis sp.) also
possess many cardioprotective functions. Bioactive molecules like
resveratrol and quercetin have been effective as anti-hypertensive
and treatment of cardiac damage (Theodotou et al., 2017; Sabra
et al., 2021). Grape pomace (GP) is a by-product of the winery
industry that contains a high concentration of polyphenols and
dietary fiber (Taladrid et al., 2022). Studies have suggested the
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in vivo cardioprotective effects of the pomace extract by measuring
creatine kinase levels and ECG monitoring (Pop et al., 2018).
Recent studies have demonstrated that red wine grape pomace can
significantly attenuate atherosclerosis progression in mice with SR-
B1 KO/ApoER61h/h (Rivera et al., 2019). The polyphenolics from
grape extracts inhibit LDL oxidation and thereby can prevent the
onset of atherosclerosis development (Pérez-Jiménez and Saura-
Calixto, 2008). Grape pomace can also regulate blood lipid profile.
Studies on the high-fat diet model (AIN-93G-induced) for ten
weeks showed that with the increasing concentration of grape
pomace, there was a noteworthy reduction in blood TG and VLDL
level, with a slight increment of HDL level and no alteration of TC
level (Table 1; Smith et al., 2017).

Lupeol (also known as Fagarsterol) is a naturally occurring
pentacyclic triterpene predominantly found in high concentrations
in mango peels (Han and Bakovic, 2015). Lupeol can be extracted
from the mango peel using the UAE method as it enhances the
extraction efficiency by shortening time and increasing yield (Ruiz-
Montañez et al., 2014). Due to these pentacyclic triterpenoids,
mango peel may possess cardioprotective functions. Studies in
high-cholesterol-fed rats found that consumption of lupeol and its
derivatives can reduce the TC triglyceride, and decrease the activity
of cardiac enzymes like LDH, aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and alkaline phosphatase (ALP),
thereby suggesting the cardioprotective effects of triterpenoids
(Sudhahar et al., 2007). Mango peel powder has shown significant
cardioprotective effects in obese females by protecting against
vascular damage caused by LDL oxidation (Arshad et al., 2021).
Both mango peel extract and mangiferin have been found to
produce significant reductions in TG, LDL, and VLDL-cholesterol
in the alloxan-induced type I diabetic rat (Table 1; Mistry et al.,
2023).

Antimicrobial and antiviral
properties of fruit waste products

Apple pomace contains flavonoids, phenolic acids, carotenoids,
and anthocyanins that have various anti-microbial and anti-viral
activities (Kuznetsova et al., 2017; Barreira et al., 2019; Zardo
et al., 2021). Polyphenolic bioactives from apple pomace showed
antimicrobial activity against Paenibacillus larva (American
foulbrood in honeybees) (Giménez-Martínez et al., 2020).
Lipophilic compounds from different species of Malus (apple
pomace) consist of saturated, unsaturated, and polyunsaturated
fatty acids, along with polyphenols, phytosterols, and four
homologs of tocopherol were found to exhibit inhibitory effects
on the growth of a few Gram-positive and Gram-negative
bacterial cultures such as Escherichia coli, Pseudomonas aeruginosa,
Enterococcus faecalis, Streptococcus pyogenes, Bacillus cereus,
Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus
(Table 2; Alberto et al., 2006; Fratianni et al., 2011; Zhang et al.,
2016; Kuznetsova et al., 2017; Radenkovs et al., 2018; Zardo et al.,
2021). Phenolic compounds isolated from different extraction
solvent varies in antimicrobial activities (Zhang et al., 2016; Zardo
et al., 2021; Santos et al., 2022). Bioactive compounds such as
phloridzin, phloretin, epicatechin, floridzine, procyanidin B2,
chlorogenic acid, and quercetin were found to possess significant

anti-bacterial activities against S. aureus and E. coli (Zhang et al.,
2016; Zardo et al., 2021). Hydro-ethanolic extract of apple pomace
also showed antibacterial activity against Gram-negative bacteria
Propionibacterium acnes and Proteus mirabilis with minimal
inhibition concentration (MIC) of 2.5 and 10 mg/ml, respectively
(Table 2; Arraibi et al., 2021). However, in another study, it
was shown that volatile components from apple pomace have
anti-bacterial potential against S. aureus, Salmonella typhimurium,
and E. coli with MIC of >12.5 mg/ml for the tested bacterial strains
(Carpes et al., 2021).

In vitro studies reported that polyphenols from the methanolic
extract of apple pomace can inhibit both type 1 and 2 of
herpes simplex virus (HSV) viral replication at the concentration
of 1,200 µg/ml (Table 3; Suárez et al., 2010). Phytochemicals
such as quercitrin and procyanidin B2 were the most important
compounds to have a role in the inhibition of HSV viruses by
inactivating extracellular virions or inhibiting early viral replication
events (Alvarez et al., 2012; Figure 3).

Polyphenol extracts from muscadine grape shells, as well as
seeds, had a significant bactericidal effect against Gram-positive
bacteria like S. aureus and Listeria monocytogenes in vitro, but
only an inhibitory effect against Salmonella enteritidis (Gram-
negative) (De-Souza et al., 2014; Xu et al., 2016). The variations
of antibacterial and bactericidal activities depend on not only the
concentration of polyphenolic compounds but also the presence
of specific components with different combinations that may
result from the synergistic effect those components (Xu et al.,
2014). Recent studies reported that hydroethanolic extract of
skin/seed or skin-seed mixture has antibacterial activities against
both the Gram-positive and harmful bacterial strains such as
E. faecalis, L. monocytogenes, Listeria innocua, E. coli, P. aeruginosa,
Klebsiella pneumoniae, Morganella morganii with MIC ranges from
5 mg/ml to 20+ mg/ml (Peixoto et al., 2018; Gerardi et al., 2021;
Gómez-Mejía et al., 2021). Both the seed and pomace extract of
grape showed a more potent impact on Gram-positive bacteria
(S. aureus, L. monocytogenes, and E. faecalis) than Gram-negative
ones (Table 2; Pfukwa et al., 2019; Gerardi et al., 2021). This
is due to the lipopolysaccharide cell wall, which may prevent
polyphenols from entering the cell effectively (Gerardi et al., 2021).
The inhibitory effect of grape pomace or seed extract substantially
correlates with flavonoid, anthocyanin, and proanthocyanidins,
potent bioactives of the grape extract (Pfukwa et al., 2019).

Whole grape extracts have been reported to inhibit different
enteric viruses and type 1 of HSV (Figure 3; Pascual et al.,
2022). Studies reported that grape seed extract had potent antiviral
activities against human norovirus surrogates and hepatitis A virus
(HAV) (Table 3; Joshi et al., 2015; Oh et al., 2022). Another
report suggested that the active compounds from the grape seed
extract can block the hepatitis C virus (HCV) replication in
HepG2 cells in vitro (Pasqua et al., 2016). An in vitro study
reported that proanthocyanidin, a bioactives from grape seed
extract, had anti-viral activity against respiratory syndrome virus
and porcine reproductive virus infection in cell line (Zhang et al.,
2018). Recently, Chen et al. (2023) demonstrated that grape
seed proanthocyanidins extract inhibits dengue virus (DENV)
replication by reducing COX-2 expression by modulating NF-κB
translocation and ERK/P38 MAPK signaling pathways (Table 3;
Chen et al., 2023).
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TABLE 2 Antibacterial activity of different edible fruit wastes and their secondary metabolites.

Waste part of fruits Bioactive compounds Activity References

Apple pomace Phloridzin, phloretin, quercetin,
chlorogenic acid, floridzine, procyanidin
B2, and epicatechin

Against P. aeruginosa, E. coli,
E. faecalis, B. cereus, M. luteus,
B. subtilis, S. pyogenes, and S. aureus

Alberto et al., 2006; Fratianni et al., 2011;
Zhang et al., 2016; Kuznetsova et al., 2017;
Radenkovs et al., 2018; Zardo et al., 2021

Hydro-ethanolic extract of apple
pomace

Polyphenolic bioactive compounds Against P. acnes and P. mirabilis Arraibi et al., 2021

Grape shells Polyphenols Against S. aureus and
L. monocytogenes

De-Souza et al., 2014; Xu et al., 2016

Hydromethanolic extract of
skin/seed of the grape

Flavonoid, anthocyanin, and
proanthocyanidins

Against E. faecalis, L. monocytogenes,
L. innocua, E. coli, K. pneumonia, M.
morganii, and P. aeruginosa

Peixoto et al., 2018; Gerardi et al., 2021;
Gómez-Mejía et al., 2021

Methanolic extract of
pomegranate peel

Flavonoids, anthocyanins, phenolics,
alkaloids, and tannins

Against S. aureus, B. megaterium, L.
monocytogenes, B. cereus, B. subtilis, P.
aeruginosa, K. pneumonia, E. coli, and
S. typhi

Hasan et al., 2018; Abou El-Nour, 2019;
Belgacem et al., 2020; Alsubhi et al., 2022

Ethyl acetate crude extract of
pomegranate peel

Phenolics and flavonoids Against X. gardneri, P. carotovorum,
and R. solanacearum

Khaleel et al., 2018

Citrus spp. peel γ-Terpinene, narirutin, limonene,
naringin, hesperetin-7-O-rutinoside,
linalool, naringenin, quinic acid, linalyl
acetate, sakuranetin, and
datiscetin-3-O-rutinoside

Against E. coli, Bacillus spp.,
L. monocytogenes, E. faecalis, B.
cereus, S. aureus, and S. typhimurium

Oikeh et al., 2020; Shehata et al., 2021;
Hasan et al., 2022; Cebi and Erarslan, 2023;
Meryem et al., 2023; Saleem et al., 2023

Pear peels and pulp Chlorogenic acid, arbutin, malaxinic acid,
oleanolic acid, rutin, ursolic acid,
epicatechin, and procyanidin B2

Antibacterial effects Li et al., 2014; Hussain et al., 2022

Ethanolic/aqueous/ethyl acetate
extract of banana peel

Malic acid, β-sitosterol, succinic acid, and
palmitic acid

S. typhimurium, B. cereus, S. aureus,
L. monocytogenes, K. pneumoniae, P.
vulgaris, S. pyogenes, and E. coli

Saleem and Saeed, 2020; Maryati et al.,
2021; Hanafy et al., 2021; Hikal et al., 2022;
Anandhi and Rajeshkumar, 2023

TABLE 3 Anti-viral activity of different edible fruit wastes and their secondary metabolites.

Waste part of fruits Bioactive compounds Activity References

Methanolic extract of apple
pomace

Procyanidin B2 and flavonol quercitrin Both type 1 and 2 HSV Suárez et al., 2010; Alvarez et al., 2012

Red grape seed extract Proanthocyanidins human norovirus surrogates, HSV-1,
hepatitis C virus, HAV, porcine
reproductive and respiratory
syndrome virus (PRRSV), DENV

Joshi et al., 2015; Pasqua et al., 2016; Zhang
et al., 2018; Oh et al., 2022; Pascual et al.,
2022; Chen et al., 2023

Pomegranate peel n-butanol and
ethyl acetate extracts

Gallotannins, tannins, and ellagitannins Influenza A virus Moradi et al., 2019

Pomegranate peel Punicalagin HSV-1 Houston et al., 2017

Pomegranate peel ethanolic
extract

Ellagic acid, and punicalagin Adenovirus Karimi et al., 2020

Ethanolic extract of pomegranate Punicalin, punicalagin, and urolithin A SARS-CoV-2 Tito et al., 2021; Suručić et al., 2021

Citrus peel extract Limonene Influenza A virus H1N1 Fadilah et al., 2022

Citrus peel Naringin and hesperetin SARS-CoV-2 Liu et al., 2022; Maulydia et al., 2022

Banana wastes Alkaloids, flavonoids, tannins, saponins,
and glycosides

CHIKV, EV71, and YFV Panda et al., 2020

Several bioactive phytochemicals, such flavonoids,
phenolics, alkaloids, anthocyanins, and tannins are abundant
in pomegranates. It shows a broad spectrum of anti-microbial
activity against various pathogenic and multidrug-resistant
bacterial strains. Several studies reported that pomegranate peel
methanolic extracts had antimicrobial activity against several
pathogenic and foodborne bacterial strains like S. aureus, B. cereus,

L. monocytogenes, P. aeruginosa, K. pneumonia, E. coli, Salmonella
typhi Bacillus megaterium, and B. subtilis (Table 2; Hasan et al.,
2018; Abou El-Nour, 2019; Belgacem et al., 2020; Alsubhi et al.,
2022). Whereas, ethyl acetate crude extract exhibited antibacterial
activity in plant pathogenic bacteria (Xanthomonas gardneri,
Pectobacterium carotovorum, and Ralstonia solanacearum)
(Khaleel et al., 2018).

Frontiers in Microbiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1260071
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1260071 October 19, 2023 Time: 15:25 # 12

Sha et al. 10.3389/fmicb.2023.1260071

FIGURE 3

Mode of action of antiviral properties of secondary metabolites extracted from edible fruit wastes. Secondary metabolites like procyanidin B2 and
quercitrin extracted from apple and grape wastes can inhibit the entry and replication of herpesvirus and hepatitis A and C virus. L and D limonene,
naringin, and hesperetin extracted from wastes of citrus fruit showed anti-influenza and anti-SARS-CoV-2 virus action. Antiviral effects of ellagic
acid, punicalagin, and gallic acid from pomegranate peel extracts were found against adenoviruses. SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; HSV, herpes simplex virus. Parts of the figure were drawn using pictures from Servier Medical Art and generated using Microsoft
PowerPoint 2021, 64-bit (Version 2302, Build 16130.20306).

In the Madin-Darby Canine Kidney (MDCK) cell line-based
experiment, pomegranate peels n-butanol and ethyl acetate extract
showed an inhibitory action against influenza A virus having IC50
value that ranges from 5 to 6 µg/ml (Figure 3; Moradi et al.,
2019). According to Houston et al. (2017), punicalagin, a bioactives
of pomegranate peel extract, has potent anti-viral activity against
HSV-1 (Table 3; Houston et al., 2017). Ethanolic fractions of
pomegranate peel containing ellagic acid, punicalagin, and gallic
acid were proven effective in anti-adenoviral activity, having IC50
values of 2.16 mg/ml through inhibiting adsorption and post-
adsorption phases of viral replication in human epithelial (Hep-2)
cell lines (Karimi et al., 2020). Phenolic compounds and tannins
from pomegranate peel extract significantly reduce the number
of human noroviruses (HuNoV) particles, the causative agent of
viral gastroenteritis in different food components (Živković et al.,
2021). A recent in silico and in vitro study reported that ethanolic
extract of pomegranate containing punicalin, punicalagin, and
urolithin A showed effective inhibition of SARS-CoV-2 through
both (Table 3; Tito et al., 2021). The synergistic effects of bioactive
substances prevent SARS-CoV-2 spike protein from interacting
with human angiotensin-converting (ACE)-2 receptors and limit
the viral protease’s activity in vitro, ultimately preventing viral
multiplication and infection (Figure 3; Suručić et al., 2021).

Disc diffusion test confirmed that the essential oils such
as linalool, linalyl acetate, γ-terpinene, narirutin, naringin,
limonene, hesperetin-7-o-rutinoside, naringenin, quinic acid, and
sakuranetin, identified from Citrus spp. showed potent inhibition
of Bacillus spp., E. coli, E. faecalis, L. monocytogenes, B. cereus,

S. typhimurium, and S. aureus. Limonene is the pre-dominant
component contributing to the anti-bacterial potentiality (Table 2;
Oikeh et al., 2020; Shehata et al., 2021; Hasan et al., 2022; Cebi and
Erarslan, 2023; Meryem et al., 2023; Saleem et al., 2023). Another
study reported that in disc diffusion test, the highest inhibitory
activity of orange peel oil was demonstrated against Gram-positive
S. aureus, compared to Gram-negative bacterial strains like E. coli
(Table 2; Kamel et al., 2022).

Citrus peel extract containing essential oils and limonene (both
L and D-limonene) exhibited virucidal activity against influenza A
virus H1N1 (Figure 3; Fadilah et al., 2022). Different inflammatory
disease conditions, such as SARS-CoV-2 infection was shown to
be controlled by the reduction of pro-inflammatory cytokines
iNOS, IL-1β, IL-6, and COX-2 expression, with the exposure of
citrus peel bioactive compounds (active compound – naringin
and hesperetin) both in vitro and in vivo (Figure 2; Liu et al.,
2022). These phytochemicals are the most potent compounds
targeting ACE2 receptor for the blockage of SARS-CoV-2, which
was further validated through an in silico molecular docking
approach (Table 3; Maulydia et al., 2022). Moreover, the peels
and pulp of Citrus contain arbutin, oleanolic acid, malaxinic acid,
ursolic acid, chlorogenic acid, epicatechin, and procyanidin B2 that
exhibited antibacterial effects (Li et al., 2014; Hussain et al., 2022).

Ethanolic banana peel extract was reported to prevent the
growth of S. typhimurium, B. cereus, K. pneumoniae, S. aureus,
L. monocytogenes, Proteus vulgaris, S. pyogenes, and E. coli in vitro
(Table 2; Saleem and Saeed, 2020; Hanafy et al., 2021; Maryati
et al., 2021; Anandhi and Rajeshkumar, 2023; Singh et al., 2023).
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FIGURE 4

An approach for enhancement of probiotic growth by prebiotic supplementation. Figure generated using Microsoft PowerPoint 2021, 64-bit
(Version 2302, Build 16130.20306).

β-Sitosterol, malic acid, succinic acid, and palmitic acid from
banana peel extract (aqueous/ethyl acetate) showed anti-bacterial
activity against food poisoning bacterial strains like S. aureus, B.
subtilis, B. cereus, S. enteritidis, and E. coli (Hikal et al., 2022).
Studies also reported that extracts of banana waste products in
different solvents, including hexane, acetone, ethanol, and water,
showed in vitro antiviral activity against the chikungunya virus
(CHIKV), enterovirus 71 (EV71), and yellow fever virus (YFV)
(Panda et al., 2020).

Fruit wastes as a source of prebiotic

As per FAO/WHO (2002), probiotics are beneficial bacterial
strains that improve the host’s health when taken in sufficient
amounts. Several studies have been done to increase the growth
of probiotics in food and nutritional items by supplementing
them with prebiotics, which may be an approach to obtain
health advantages. A prebiotic is a selective elements that
permits particular changes in the gastrointestinal (GI) tract
microflora’s composition and activity, both of which are
advantageous to the host’s well-being and health (Gibson
et al., 2004). Prebiotic properties are typically present in
non-digestible polysaccharides and oligosaccharides, such as
galactooligosaccharides, fructooligosaccharides, resistant starch,
lactulose, and inulin, that are obtainable from a variety of sources,

including fruits and vegetables (Figure 4; Thammarutwasik et al.,
2009). A few of them, such as inulin, galactooligosaccharides,
and fructooligosaccharides, are major prebiotics marketed for
industrial use. A synbiotic product is created when probiotics
and prebiotics are combined into a single substrate (Donkor
et al., 2007; Sah et al., 2016). Probiotics are consortia of yeasts,
molds, or lactic acid bacteria (Sha et al., 2018, 2019). In recent
days, industrial microbiologists and food biotechnologists have
been very much interested in exploring and introducing new
prebiotic compounds with added functional properties, such
as fiber-rich fractions from grains, fruits, and vegetables, for a
variety of reasons, including industrial significance, and health
benefits. Many research works have been conducted on prebiotics
to boost the development of probiotic microbes by fortification
or enrichment of galactooligosaccharides, fructooligosaccharides,
rich herbal fractions (Chowdhury et al., 2008), cereals (Vasiljevic
et al., 2007), and passion, banana, apple processing fruit wastes or
by-products (Espírito Santo et al., 2012).

Value addition to fruit wastes

Different types of fruit-waste converted into value-added
products, including nutritional foods, bioplastics, biosurfactants,
bioenergy, biofertilizers, and single-cell proteins, have potential
biotechnological significance. A ground-breaking method of
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FIGURE 5

Value addition of various fruit wastes to food, animal feed, energy generation, and medicines production. Figure generated using Microsoft
PowerPoint 2021, 64-bit (Version 2302, Build 16130.20306).

decreasing waste and creating new economic opportunities is
the value addition of fruit waste through the creation of value-
added products based on their bioactive ingredients (Figure 5).
These bioactive substances provide numerous health advantages,
including polyphenols, vitamins, minerals, and prebiotics and raise
the value of the products (Vilas-Boas et al., 2021). It is feasible
to produce rich and functional food components, cosmetics, and
nutritional supplements using fruit waste’s capacity to extract these
substances (Figure 5). This strategy intends to encourage the
development of a circular economy while reducing fruit waste and
generating new sources of income. Future fruit-waste valorization
must consider this waste’s availability throughout time, its techno-
economic potential, and the environmental evaluation of benefits
and costs based on its life cycle to be both environmentally
and economically sustainable (Caldeira et al., 2020). There are
various approaches for converting and recycling fruit waste
into value-added products for the betterment of human beings
(Caldeira et al., 2020).

Conclusion

The fruit wastes operate as enormous bioactive reservoirs with
various health-promoting functions. It has been shown that fruit
waste and its bioactives act as potent anti-inflammatory agents and
help prevent several cardiovascular disorders by modulating serum
cholesterol. Additionally, the secondary byproducts demonstrated
their synergistic role in combating hypoglycemic activity and
regulate IR. Moreover, this review also supports the anti-viral
and anti-bacterial potency of various secondary metabolites
derived from fruit waste as well as these fruit waste contains

galactooligosaccharides, fructooligosaccharides in rich fractions,
regarded as prebiotics that promotes growth of probiotic consortia
of human gut and hence, provides various health benefits. Value
addition of various fruit wastes into various products like food,
animal feed, energy generation, and medicines production can
be done for human welfare. Due to the field’s rapid evolution,
this review may not fully reflect the most recent developments or
newly emerging research on therapeutic applications of fruit waste-
derived secondary metabolites in human health. However, this
comprehensive review summarizes the current achievements and
will enlighten the reuse of various fruit wastes toward sustainable
use of these neglected bioactive chemicals and by-products in
diverse biological and pharmacological applications that might help
the world attain its “zero waste” objective and human welfare.
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