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Novel chlorinated and 
nitrogenated azaphilones with 
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Two novel chlorinated and nitrogenated azaphilones, namely N-butyl-2-aza-2-
deoxychaetoviridin A (1) and N-hexyl-2-aza-2-deoxychaetoviridin A (2), along 
with a previously identified analogue, chaetoviridin A (3), were successfully 
obtained from Chaetomium globosum 2020HZ23, a marine algal-sourced 
endophytic fungus. The planar structures as well as the absolute configurations 
of these new metabolites were determined utilizing a synergistic approach that 
involved both spectroscopic techniques (1D/2D NMR and HRESIMS) and Density 
Functional Theory (DFT) calculations. Each compound was subject to in vitro 
cytotoxicity evaluation toward the A549 cancer cell line. Both compounds 1 and 2 
demonstrated significant cytotoxicity, as evidenced by their respective IC50 values 
of 13.6 and 17.5  μM. Furthermore, 1 and 2 demonstrated potent cell migration 
inhibition, which elevated with increasing dose concentration. In contrast, 
compound 3 exhibited less cytotoxic activity relative to 1 and 2, suggesting that 
the cytotoxic potency escalates with N-substitution at the C-2 position and the 
introduction of a side chain. This finding could offer implications for future studies 
aimed at designing and refining lead compounds within this class.
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1. Introduction

Azaphilones, predominantly originating from fungi, especially the Ascomycetes phylum, 
are an assembly of naturally occurring fungal polyketide metabolites (Zeng et al., 2023). With 
a highly oxygenated and bicyclic core structure, they are accented with various functional 
groups. Their core structure includes two features, a pyranoquinone bicyclic component 
known as isochrome and a quaternary chiral center of R or S stereochemistry (Gao et al., 
2013; Wang et  al., 2018; Chen et  al., 2020; Wang et  al., 2020). Exhibiting considerable 
structural diversity, azaphilones are characterized by modifications made to their core 
structures and variations in side-chain substitutions (Chen et  al., 2016). While some 
azaphilones possess elaborate side chains that diversify the core skeleton, others introduce 
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FIGURE 1

Morphology of Chaetomium globosum 2020HZ23 on PDA medium (A) and phylogenomic tree of C. globosum 2020HZ23 (B).

modified nuclei via alterations in the chromane-quinone methide 
structure (Li et  al., 2014). The structural versatility inherent to 
azaphilones equips them with a wide array of biological 
functionalities, encompassing antimicrobial, antifungal, cytotoxic, 
and anti-inflammatory activities among others. This wide-ranging 
biological activity profile accentuates their potential applicability 
within the realms of antiviral and anticancer therapeutics (Pavesi 
et al., 2021).

As belonging to the Chaetomiaceae family, the genus 
Chaetomium with over 400 species has emerged as an important 
reservoir for novel bioactive metabolites. Long-term chemistry 
studies on Chaetomium species have shed light on the extensive 
structural diversity and remarkable bioactivity potential of 
specialized metabolites. To date, this genus has reported to produce 
over 500 unique natural compounds, inclusive of azaphilones, 
cytochalasans, pyrones, alkaloids, diketopiperazines, 
anthraquinones, polyketides, and steroids (Rao et al., 2023). For 
example, a bioassay-guided isolation of the endophytic C. globosum 
yielded twelve specialized metabolites, including six azaphilones 
(Qi et al., 2020). Chaetomugilins D and J, azaphilone derivatives 
isolated from the same species, displayed suppression of lettuce 
seed germination and inhibited root and shoot growth, hinting at 
their herbicidal capabilities (Piyasena et  al., 2015). Nitrogenous 
azaphilones, sourced from indoor air-derived fungus C. globosum 
DAOM 240359, displayed antibacterial properties against 
Pseudomonas putida and Bacillus subtilis (McMullin et al., 2013). 
Chaetomugilides A − C, along with three known compounds 
isolated from C. globosum TY1, demonstrated cytotoxic behavior 
against the HepG2 cancer cell line (Li et al., 2013). Two previously 
unknown azaphilone alkaloid dimers, chaetofusins A and B, were 
isolated from the endophytic fungus C. fusiforme obtained from 
liverwort (Peng et al., 2012).

Among the reported azaphilones, chaetoviridins stand out as a 
distinct subclass, synthesized by the Chaetomium genus of fungi 
(Yang et al., 2021). In 1990, Takahashi et al. (1990) firsly elucidated 
the structure of chaetoviridin A featuring the (4’S, 5’R) syn aldol 
side chain, and then subsequently facilitated the structural 

assignment of other epimers. Makrerougras et al. (2017), however, 
subsequently modified the stereochemistry at the C-4′ and C-5′ 
positions of chaetoviridin A to (4’R, 5’R), achieved via the complete 
synthesis of (4’R, 5’R)-chaetoviridin A and its associated epimers. 
As a part of an ongoing pursuit for bioactive natural compounds 
from marine-derived fungi, Chaetomium globosum 2020HZ23 
(Figure 1) was unearthed as an endophyte of the marine brown 
algae, Sargassum thunbergii. Utilizing a combination of 
spectroscopic methods as well as DFT calculation, the 
characterization of three distinct secondary metabolites was carried 
out. As a result, two new azaphilones, namely N-butyl-2-aza-2-
deoxychaetoviridin A (1) and N-hexyl-2-aza-2-deoxychaetoviridin 
A (2), alongside the chaetoviridin A (3) with a biogenetic relation, 
were characterized (Figure  2). The new compounds were then 
subjected to cytotoxic activity testing toward the A549 cancer cell 
line to evaluate their potential use as anticancer agents. The results 
indicated that the new azaphilones 1 and 2 demonstrated significant 
cytotoxicity and inhibited cell migration. Herein we  report the 
isolation, structural elucidation, and cytotoxic assessment of the 
newly-discovered azaphilones.

2. Materials and methods

2.1. General experimental procedures

For open column chromatography applications, silica gel of 
mesh sizes 100–200 and 200–300 (Qingdao Marine Chemical Inc., 
Qingdao, China), Lobar LiChroprep RP-18 (40–60 μm, Merck, 
Darmstadt, Germany), and Sephadex LH-20 (Merck) were the 
materials of choice. High-Resolution Electrospray Ionization Mass 
Spectrometry (HRESIMS) experiments, conducted in positive ion 
mode, utilized a Waters Xevo G2-XS QTof mass spectrometer 
(Waters, Milford, MA, United States). Nuclear Magnetic Resonance 
(NMR) spectroscopic data were collected with a Bruker Avance 
600 MHz spectrometer, employing tetramethylsilane (TMS) as an 
internal standard for calibration. Optical rotations were ascertained 
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utilizing an MCP 500 polarimeter instrument manufactured by 
Anton Paar. Ultraviolet (UV) spectroscopic analyses were carried 
out on a Shimadzu UV-1800 spectrometer (Shimadzu Co., Ltd., 
Kyoto, Japan).

2.2. Fungal source

C. globosum 2020HZ23, the producing fungal strain, was 
originally separated from the inner tissues of the marine brown algae 
Sargassum thunbergii, harvested in September 2020 from Qingdao, 
China. Morphological attributes along with sequencing of the Internal 
Transcribed Spacer (ITS) region (GenBank accession no. OR195778) 
(Figure  1) facilitated the precise identification of this strain as 
C. globosum 2020HZ23. To clearly indicate the evolutionary position 
of this fungal strain C. globosum 2020HZ23, a phylogenetic analysis 
based on its ITS sequence as well as those from other Chaetomium 
species, was performed. As shown in Figure 1, the fungus C. globosum 
2020HZ23 was located at the head position of the entire phylogenomic 
tree with a high confidence of 99%. This fungus is currently deposited 
at the Qingdao Hiser Hospital Affiliated of Qingdao University.

2.3. Process of fermentation, extraction, 
and isolation

The fungal strain underwent fermentation in a static state on a 
solid rice medium. Each 1 L Erlenmeyer flask contained a concoction 
of 0.1 g sodium glutamate, 0.1 g corn flour, 0.3 g peptone, 1 g mannitol, 
1 g maltose, 2 g D-glucose, 70 g rice, and 100 mL seawater from 
Qingdao Beach. The pH value was regulated to 6.5 prior to the 
fermentation process, which lasted 25 days at ambient temperature. 
Post fermentation, methanol extraction of the liquid was executed, 
followed by a triple filtration with Whatman filter paper. The 
methanolic extract was then concentrated under reduced pressure and 
partitioned between water and ethyl acetate. Further vacuum 
concentration of the ethyl acetate fraction yielded a 150 g extract. The 
extract was subjected to silica gel column chromatography with a 
gradient of petroleum ether and ethyl acetate to yield five fractions 
(Frations 1–5), which were consolidated based on thin-layer 
chromatography (TLC) analyses. Fraction 1 was further purified with 
Sephadex LH-20, producing compound 2 (2.3 mg) and compound 1 

(1.8 mg). Fraction 2 was processed through Sephadex LH-20 and 
reversed-phase HPLC (20–50% MeCN/H2O, with the timespan of 
10.0 min and the flow rate of 10 mL/min), yielding compound 3 
(2.0 mg, tR = 6.413 min).

Compound 1: A red amorphous powder; [α]25
D + 1,270 (c 0.005, 

MeOH); UV (MeOH) λmax (log ε): 225 (4.15), 295 (4.12) nm; ECD (c 
1.0 mg/mL, MeOH) λmax (∆ε): 230 (−22.6), 310 (+28.2), 380 (−22.1); 
1H and 13C NMR data, shown in Table 1; HRESIMS m/z 510.2022 
[M + Na]+ (calcd for C27H34ClNO5Na, 510.2022).

Compound 2: A red amorphous powder; [α]25
D + 1,360 (c 0.005, 

MeOH); UV (MeOH) λmax (log ε): 220 (4.24), 295 (4.18) nm; ECD (c 
1.0 mg/mL, MeOH) λmax (∆ε): 230 (−30.2), 310 (+25.2), 375 (−24.2); 
1H and 13C NMR data, shown in Table 1; HRESIMS m/z 538.2333 
[M + Na]+ (calcd for C29H38ClNO5Na, 538.2336).

2.4. Computational details

Candidate conformers were generated utilizing the Conformer 
Rotamer Ensemble Sampling Tool (CREST) (Grimme, 2019; Pracht 
et  al., 2020) and subject to Density Functional Theory (DFT) 
calculations via the Gaussian 16 program (Frisch et  al., 2016). 
Conformers that fell within a 10 kcal/mol energy window were 
optimized at the B3LYP/6-31G(d) level of theory, implementing 
Grimme’s D3 dispersion correction. All optimized conformations 
underwent frequency analysis at the identical theoretical level to 
ascertain their local minima status on the potential energy surface. 
The energy values of all optimized conformations were then 
determined using the M062X/6–311 + G(2d,p) level with D3 
dispersion correction. By combining the “Thermal correction to Gibbs 
Free Energy” from frequency analysis with electronic energies from 
M062X/6–311 + G(2d,p), Gibbs free energies were calculated for each 
conformer. Utilizing the Boltzmann distribution law, equilibrium 
populations at room temperature (298.15 K) were determined. 
Conformers with population values above 2% underwent additional 
computations. Electronic Circular Dichroism (ECD) Time-dependent 
Density Functional Theory (TDDFT) calculations were executed at 
the CAM-B3LYP/6-311G(d) level of theory, in methanol (MeOH) and 
with the application of the IEFPCM solvent model. 36 excited states 
were computed for each conformer (Pescitelli and Bruhn, 2016). The 
resultant ECD curves were developed using the Multiwfn 3.6 software 
(Lu and Chen, 2012).

FIGURE 2

Structures of compounds 1–3.
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2.5. Cell lines and reagents

A549 cells were purchased from National Collection of 
Authenticated Cell Cultures (China) and incubated with RPMI 1640 
(Gibco, Beijing, China) with 10% fetal bovine serum (FBS; Gibco). 
Cells were grown at 37°C in a 5% CO2 humidified atmosphere.

2.6. Cell viability assays

Cell viability was assessed using the Cell Counting Kit-8 
(CCK-8, MCE, United  States) according to the guidance of the 
manufacturer. Cells were seeded into 96-well plates and collected 
after treatment for 48 h. 10 μL of CCK-8 solution was added into the 
cultures at 37°C for 1 h. The absorbance at 450 nm was measured 
with a microplate reader (Spark multimode microplate reader, 
Tecan, Austria).

2.7. Wound healing assay

A549 cells were seeded in six-well plates until cell confluence 
reached approximately 100%. The wounds were scratched with 10 μL 
pipette tips, and cells were washed with PBS. The cells were cultured 
with 1% FBS medium. The scratch recovery was observed at 0 and 
48 h, and the healing rates were estimated with ImageJ software.

3. Results and discussion

3.1. Structural elucidation

The molecular formula of Compound 1, a dark red solid, is 
confirmed as C27H34ClNO5 through High-Resolution Electrospray 
Ionization Mass Spectrometry (HRESIMS), suggesting 11 degrees of 
unsaturation. The chlorine atom was authenticated through the 

TABLE 1 NMR Data for Compounds 1 and 2 in Chloroform-d.

No 1 No 2

δC, type δH (J in Hz) δC, type δH (J in Hz)

1 141.5, CH 8.72, s 1 141.6, CH 8.72 (s, 1H)

3 147.2, C – 3 147.3, C –

4 111.2, CH 6.88, s 4 111.3, CH 6.90 (s, 1H)

4a 144.9, C – 4a 145.0, C –

5 99.9, C – 5 99.9, C –

6 181.5, C – 6 181.1, C –

7 88.9, C – 7 88.8, C –

8 168.8, C – 8 168.8, C –

8a 111.4, C – 8a 111.5, C –

9 119.1, CH 6.22, d (15.4) 9 119.1, CH 6.24, d (15.4)

10 149.3, CH 6.42, dd (15.4,7.9) 10 149.4, CH 6.43, dd (15.4, 7.9)

11 39.4, CH 2.32, m 11 39.4, CH 2.32, m

12 29.1, CH2 1.48, m 12 29.1, CH2 1.49, m

13 11.8, CH3 0.94, t (7.4) 13 11.8, CH3 0.95, t (7.4)

14 19.4, CH3 1.12, d (6.7) 14 19.4, CH3 1.13, d (6.7)

15 27.4, CH3 1.71, s 15 27.4, CH3 1.70, s

1’ 168.8, C – 1’ 168.6, C –

2’ 123.0, C – 2’ 123.1, C –

3’ 201.8, C – 3’ 201.8, C –

4’ 50.8, CH 3.70, qd (6.8, 6.6) 4’ 50.8, CH 3.71, qd (6.8, 6.6)

5’ 70.8, CH 3.86, qd (6.5, 6.6) 5’ 70.8, CH 3.87, qd (6.5, 6.6)

6’ 21.3, CH3 1.14, d (6.5) 6’ 21.3, CH3 1.14, d (6.5)

7’ 13.7, CH3 1.18, d (6.8) 7’ 13.6, CH3 1.18, d (6.8)

1” 54.4, CH2 3.93, t (7.5) 1” 54.8, CH2 3.95, t (7.5)

2” 32.1, CH2 1.80, m 2” 30.1, CH2 1.82, m

3” 19.6, CH2 1.44, m 3” 26.0, CH2 1.41, m

4” 13.6, CH3 1.02, t (7.4) 4” 31.2, CH2 1.35, m

5” 22.4, CH2 1.35, m

6” 13.9, CH3 0.92, t (7.4)
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isotopic peak observation of [M + H]+: [M + H + 2]+ at a 3:1 ratio. 13C, 
DEPT, and HSQC spectra revealed one disubstituted double bond 
(δC 119.1 and 149.3), two trisubstituted double bonds (δC 147.2 and 
111.2; δC 141.5 and 111.4), two tetrasubstituted double bonds (δC 
144.9 and 99.9; δC 123.0 and 168.8), one ester carbonyl carbon (δC 
168.8), and two keto carbons (δC 181.5 and 201.8) (Table  1). 
Structural similarities between 1 and the co-isolated chaetoviridin 
A (3) were noted from the spectral data, with both compounds 
possessing a tricyclic core with two side chains, an aldol group and 
a methyl-branched pentenyl. The most noticeable differences were 
observed in the chemical shifts of C-1 (from δC 151.6  in 3 to δC 
141.5 in 1) and C-3 (from δC 157.0 in 3 to δC 147.2 in 1). Moreover, 
four extra resonances in compound 1, indicative of a butyl unit, were 
observed. Given the chemical shifts for C-1 and C-3 and the overall 
molecular weight, a nitrogen atom was postulated at the 2 position, 
bearing a butyl group. This inference was supported by COSY 
correlations of H2-1”/H2-2”/H2-3”/H3-4″ and HMBC correlations of 
H2-1″ with C-1 and C-3 (Figure  3). The E configuration of the 
C-9-C-10 double bond was determined via 3JH9-H10 (15.4) (Table 1). 
The absolute configurations at C-4′, C-5′, and C-11 were established 
as 4’R, 5’R, 11S, based on NMR data comparison with the co-isolated 
3, as well as the four previously synthesized chaetoviridin A epimers 
(Makrerougras et  al., 2017), considering the same biosynthetic 
pathway. To determine the stereochemistry of C-7, we conducted 
ECD calculations on the simplified structures of (7S)-1 (1a) and 
(7R)-1 (1b), which resulted in the assignment of the C-7 position as 
S (Figure 4). Additionally, the negative CE at approximately 380 nm 
was attributed to the electron transition from MO83 (HOMO) to 
MO84 (LUMO) (Figure 5), in alignment with the ECD spectrum of 
chaetoviridin A reported by Steyn and Vleggaar (1976), as well as 
the nitrogenated azaphilones reported by Wang et  al. (2020). 
Consequently, we identified the compound 1 as N-butyl-2-aza-2-
deoxychaetoviridin A.

Compound 2, procured as a dark red solid, was assigned a 
molecular formula of C29H38ClNO5 through HRESIMS analysis. The 
chlorine atom was also authenticated through the isotopic peak 
observation of [M + H]+:[M + H + 2]+ at a 3:1 ratio. Additionally, 13C, 
DEPT, and HSQC spectra were utilized, which revealed the 
presence of one disubstituted double bond (δC 119.1 and 149.4), two 
trisubstituted double bonds (δC 147.3 and 111.3; δC 141.6 and 
111.5), two tetrasubstituted double bonds (δC 145.0 and 99.9; δC 
123.1 and 168.6), one ester carbonyl carbon (δC 168.6), and two keto 
carbons (δC 181.1 and 201.8) (Table  1). Structural similarities 
between 2 and the co-isolated 3 were observed in the spectral data. 
Both compounds possess a tricyclic core with two side chains, an 
aldol group, and a methyl-branched pentenyl. Upon comparing the 
NMR data of 2 to that of 1, it was noted that they share the same 
stereogenic centers, while differences manifest in the side chain 
attached to N-2. The presence of two additional carbon resonances 
compared to 1, along with COSY correlations of H2-1”/H2-2’/H2-3”/
H2-4”/H2-5”/H3-6″ and HMBC correlations of H2-1”/C-1 and H2-
1”/C-3, confirmed the attachment of a hexyl group to N-2 
(Figure 3). Consequently, following further 2D NMR analysis, the 
structure of 2 was ascertained to be  N-hexyl-2-aza-2-
deoxychaetoviridin A.

Compound 3 was ascertained as chaetoviridin A through the 
comparison of NMR data with those documented in existing 
literature (Park et al., 2005).

3.2. Cytotoxic activity

We utilized a CCK8 assay to examine the impact of compounds 
1–3 on the viability of the A549 cancer cell line. Both compounds 1 
and 2 demonstrated dose-dependent cytotoxicity, with IC50 values of 
13.6 and 17.5 μM (Figure 6B), respectively, while compound 3 showed 
a low degree of cytotoxicity (IC50 > 50 μM, data were not shown). The 
cytotoxic results suggested that the cytotoxic potency escalates with 

FIGURE 3

Selected COSY and HMBC correlations of compounds 1 and 2.

FIGURE 4

Experimental and calculated ECD spectra of compound 1.

FIGURE 5

Key molecular orbitals (MOs) involved in the important transitions of 
1 and 2 regarding ECD spectra of conformer 1a in the gas phase at 
the B3LYP/6-31G(d) level.
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N-substitution at the C-2 position and the introduction of a side 
chain. A wound-healing assay was conducted to assess the impact of 
compounds 1 and 2 on the migration and invasion capabilities of 
A549 cells. Figures 6A,C illustrate that A549 cells in the control group 
were able to migrate across the complete wound area within a 48-h 
period. However, cell migration was significantly curtailed in a dose-
dependent manner when treated with specific concentrations (1, 2 and 
4 μM) of compounds 1 and 2.

4. Conclusion

Marine-derived fungal secondary metabolites are garnering 
increased attention owing to their distinctive structural properties 

and potent pharmacological possibilities. Within this field of study, 
the current investigation has yielded two novel nitrogenated 
azaphilones, N-butyl-2-aza-2-deoxychaetoviridin A (1) and 
N-hexyl-2-aza-2-deoxychaetoviridin A (2), along with the 
previously identified azaphilone chaetoviridin A (3). These 
compounds were derived from the solid culture of the marine 
fungus Chaetomium globosum 2020HZ23. By employing a 
combination of spectroscopic techniques and DFT calculations, the 
absolute configurations of compounds 1 and 2 were determined. 
Additionally, the isolated compounds underwent cytotoxicity 
evaluations, uncovering their cytotoxic effects on the A549 cell line. 
Compound 1 displayed an IC50 value of 13.6 μM, whereas compound 
2 exhibited an IC50 value of 17.5 μM. Furthermore, both compounds 
demonstrated a dose-dependent inhibition of cell migration. In 

FIGURE 6

Compounds 1 and 2 exhibited inhibitory effects on both proliferation and migration in the A549 cell line. (A,C) The wound healing assay, used to assess 
cell migration, was executed on the A549 cell line following treatment with compounds 1 and 2 at the specified concentrations for 48  h. Statistical 
significance was indicated by * p  < 0.05; **p  < 0.01. (B) A549 cell line was treated with defined concentrations of compounds 1 and 2 for specific time 
durations. The viability of cells was quantified using a CCK8 assay.
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contrast, compound 3 presented lower cytotoxic activity compared 
to compounds 1 and 2, indicating that cytotoxicity intensifies with 
the incorporation of N-substitution at the 2 position and the 
addition of a side chain. This observation could prove instrumental 
for future research focused on the design and optimization of lead 
compounds within this category.
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