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Tibetan sheep can utilize high fiber feeds well. However, the mechanisms 
of rumen microbiota and metabolites in response to different roughage in a 
housed environment are still unclear. We fed Tibetan sheep with three different 
roughage diets: 50% whole corn silage (TS), 50% wheatgrass group (TW), and 
25% each of whole corn silage and wheatgrass (TM). Subsequently, meat traits, 
rumen contents 16S rRNA and metabolomics were studied. The results showed 
that feeding wheat straw to Tibetan sheep significantly increased the abundance 
of bacteria such as Ruminococcus and Succiniclasticum in the rumen. These 
microorganisms significantly increased metabolites such as beta-alanyl-L-lysine, 
butanoic acid and prostaglandin E2. Eventually, production performance, such 
as carcass weight and intramuscular fat and meat quality characteristics, such 
as color and tenderness were improved by altering the rumen’s amino acid, 
lipid and carbohydrate metabolism. This study demonstrated that including 25% 
wheatgrass and 25% whole corn silage in the diet improved the performance of 
Tibetan sheep, revealing the effect of the diet on the performance of Tibetan 
sheep through rumen microorganisms and metabolites.
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Introduction

Tibetan sheep are the most dominant animal in the alpine meadows of the Qinghai-Tibetan 
Plateau (QTP), providing local herders with meat, milk, wool and other primary means of 
production and livelihood. However, the pattern, process and function of alpine grassland 
ecosystems and animal husbandry have changed in recent years due to the overgrazing of 
grasslands, resulting in ecological and environmental problems such as grassland degradation 
and desertification (Lu et al., 2017). The fundamental contradiction of the grassland ecosystem 
is that the supply of grasslands in the cold season cannot meet the nutritional needs of Tibetan 
sheep, and overgrazing is still insufficient to feed them (Qi et al., 2017).

Intensive housing or supplemental feeding of Tibetan sheep in the cold season is a feasible 
option to protect the grassland ecological environment and improve the productivity of Tibetan 
sheep in the cold season. Many studies have found that housing or supplementing Tibetan sheep 
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with different protein and energy levels in the cold season can 
effectively improve the performance of Tibetan sheep (da Silva et al., 
2020). In addition, with the improvement of people’s life and 
consumption level, people pay more attention to the quality of mutton, 
such as tenderness and color. Numerous studies have confirmed that 
different diets can regulate the rumen fermentation parameters and 
microflora composition and metabolite accumulation (Xue et  al., 
2017; Fernandez-Turren et  al., 2020), which directly or indirectly 
affects sheep growth performance, carcass characteristics and meat 
quality of sheep (Wang X. et al., 2020; Zhang et al., 2022a). Whole 
plant corn silage is widely used as a high quality roughage for 
ruminants, providing them with a large number of nutrients and 
digestible fiber (Guo et al., 2022); Wheat straw has the characteristics 
of high yield and roughage resistance, but due to the high fiber 
content, often can not be fed too much to cattle and sheep (Mahmoudi-
Abyane et al., 2020). A previous study found that corn silage was more 
valuable for beef cattle than added wheat straw (Zhang H. et al., 2022), 
and research showed that the sheep had lower digestibility of wheat 
straw, while camels had higher digestibility when fed wheat straw 
(Khattab et al., 2021). This may indicate that animals with vital rumen 
function have better digestion of high fiber roughage. Tibetan sheep 
have formed a rumen flora that is more likely to decompose crude 
fiber due to their long-term life in alpine grasslands (Liu et al., 2022). 
We speculate that the unique rumen microflora of Tibetan sheep can 
better decompose and utilize high fiber agricultural byproducts such 
as wheat straw. The rumen microbiota composition and metabolite 
changes affect animal growth and meat quality. Whereas untargeted 
metabolomics combined with microbiomics is often used to study the 
rumen microbiota of living organisms and the metabolism of the host, 
it can express more intuitively how rumen microorganisms and their 
metabolites affect the metabolic activities and production performance 
of the host (Zhang et  al., 2022b). As shown in previous studies, 
different feed compositions can alter the relative abundance of the 
rumen Bacteroidetes, Firmicutes and Proteobacteria as well as 
promote carbohydrate, amino acid and energy metabolism functions 
(Park et  al., 2020; Zhao et  al., 2021). High energy level feeds can 
provide substrates for fatty acid synthesis by increasing the relative 
abundance of rumen amylolytic bacteria, thus improving meat quality, 
such as fat content and shear force in the longissimus dorsi of yaks 
(Du et al., 2021). One study used the microbiome and metabolome to 
reveal the mechanisms by which triterpene saponins regulate rumen 
metabolism in Holstein cows and found that the saponins regulated 
rumen lipid metabolism by decreasing estradiol and isoflavones 
aglycone concentrations through lowering Lachnospiraceae_NK3A20_
group abundance in the rumen (Wang et al., 2019). Overall, feed is a 
key factor influencing the microbial composition and function of the 
rumen in ruminants, which alters rumen microbiology and 
metabolism (Olijhoek et al., 2022). This process subsequently alters 
metabolite deposition in muscle and affects meat quality. We therefore 
focused on exploring meat quality, rumen microbiota and metabolites 
and correlations in Tibetan sheep fed different roughages, which are 
lacking in current research.

This study aims to investigate the characteristics of rumen 
microbiota and metabolites in Tibetan sheep in response to different 
types of roughages and their impact on meat quality. We used 16S 
rRNA sequencing and gas chromatography–mass spectrometry (GC–
MS) techniques to analyze the effects of different roughage on the 
bacterial composition and fermentation parameters of the rumen of 

Tibetan sheep. We investigated rumen metabolites using ultrahigh 
performance liquid chromatography quadrupole time of flight mass 
spectrometry (UHPLC-QTOF-MS). The correlation between carcass 
and meat quality characteristics of the longissimus dorsi in Tibetan 
sheep and rumen bacteria, metabolites and rumen fermentation 
parameters was also analyzed. This study offers novel insights into the 
impact of various roughages on meat quality traits, rumen 
microorganisms, and metabolites in domesticated Tibetan sheep. The 
results will have some practical value for local herders.

Materials and methods

Animal management and sample collection

All animal studies were approved by the Animal Committee of 
Gansu Agricultural University (Approval No. GAU-LC-2020-27). Sixty 
3 month old Tibetan sheep (22.3 ± 3 Kg) of similar age and healthy body 
condition were selected and randomly divided into three groups with 20 
animals in each group, namely, the wheatgrass group (TW, Diet contains 
50% wheatgrass chopped at 15 cm), whole corn silage group (TS, diet 
containing 50% whole corn silage) and a mixed group (TM, diet 
containing 25% each of whole corn silage and wheatgrass), and the 
nutrient composition of each feed material is shown in 
Supplementary Table S1. The diet composition and nutrient composition 
of the diets used for the experimental sheep are shown in Table 1. The 
feeding trial was conducted for 143 days, with a 15-day pretest period 
and a 128-day formal trial period. At the end of the feeding experiment, 
six sheep in each group were randomly selected for slaughter, and 
samples of the longissimus dorsi between the 12th and 13th ribs of each 
sheep’s left half carcass were collected; the meat quality was determined 
immediately on site. After slaughter, the rumen fluid was immediately 
filtered through four layers of sterile gauze into sterile freezing tubes and 
then placed in a liquid nitrogen tank and brought back to the laboratory 
for storage at −80°C for ruminal fermentation parameters, 16S rRNA 
sequencing and metabolomics assays.

Carcass and meat quality determination

The longissimus dorsi was vertically printed on sulfuric acid paper 
and then the eye muscle area was calculated using square paper. Back 
fat thickness was measured with vernier calipers. Measurement of a* 
(redness), b* (yellowness) and L* (brightness) values of mutton using 
a colorimeter (CR-10 plus, Konica Minolta, Japan). Direct 
determination of the pH of meat using a pH meter (Testo 205, Testo, 
Germany). The mutton was sampled along the muscle fiber direction 
and weighed (W1), then hanging the meat strips in plastic bottles at 
4°C for 24 h. The weight of the meat strips was measured (W2) and 
the drip loss was calculated according to the following equation. 
Drip loss % /( ) = −( )  ×W W W1 2 1 100 . At 45 min after slaughter, the 
mutton samples were scored for marbling according to the agricultural 
industry standard of the People’s Republic of China (NY/T 630–2002 
“Evaluation and grading of lamb and mutton”). Mutton shear force 
with reference to Wang’s method (Wang et al., 2023). Simply put, a 
thermometer was inserted in the center of the mutton and then 
wrapped in a polyethylene bag for water bath heating; when the 
thermometer reached 70°C, the mutton was removed and cooled at 
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room temperature, and when the temperature dropped to 35°C, the 
tenderness of the mutton was determined using a shear force meter 
perpendicular to the direction of the muscle fibers. In addition, the 
mutton samples were steamed in a water bath at 85°C for 30 min to 
calculate the cooking loss and cooked meat percentage.

Rumen fermentation characteristics

Ruminal fluid pH was measured using a pH-3c acidity meter 
immediately after slaughter; The phenol sodium hypochlorite 
colorimetric method was used to determine the concentration of 
NH3-N (Wang et al., 2009); Volatile fatty acids (VFA) were determined 
using gas chromatography according to the previous procedure 
(GC-2010 Plus; Shimadzu, Kyoto, Japan) (Wang Z. et al., 2022).

Rumen microbial diversity analysis

Ruminal microbiome DNA was extracted from rumen fluid 
samples using a bacterial DNA extraction kit (Omega, Shanghai, China) 

and then tested for DNA purity and concentration using agarose gel 
electrophoresis and Thermo NanoDrop 2000 ultra-microscopic 
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), 
respectively. PCR amplification of the V3-V4 region of the 16S rRNA 
gene was performed using universal primers 338\F (5′-ACTCCTAC 
GGGAGGCAGCAG-3′) and 806 R (5′-GGACTACHVGGGTWTCT 
AAT-3′) after passing the quality control. The amplification procedure 
was: predenaturation at 95°C for 3 min, denaturation at 95°C for 30 s, 
annealing at 55°C for 30 s, extension at 72°C for 30 s, and 40 cycles. 
Finally, the amplification products were sequenced and analyzed on the 
Illumina MiSeq (Illumina, San Diego, CA, United States) platform. 
After sequencing, the raw data were first quality filtered using 
Trimmomatic (version 0.33). Primer sequence removal using Cutadapt 
(version 1.9.1), USEARCH (version 10) and UCHIME (version 8.1), 
double ended reads for the final high quality sequences were obtained 
for subsequent analysis by splicing and removing chimeras. Sequences 
were clustered at a 97% similarity level using USEARCH software, and 
species annotation was performed by comparison with Silva’s (Release 
138, http://www.arbsilva.de) database to analyze each sample’s microbial 
community structure and species clustering. The alpha diversity index 
was calculated and sample dilution and rank abundance curves were 
plotted using QIIME2 software. Beta diversity analysis was used to 
assess the variation in sample colony composition and structure, and 
sample heat map clustering and principal coordinate analysis (PCoA) 
were plotted based on the R language platform. Anosim and Adonis 
tested differences between groups to see if they were significantly greater 
than differences within groups. Line discriminant analysis (LDA) effect 
size (LefSe)1 was analyzed for between group differences biomarkers. 
Species abundance data were compared between groups using t-tests in 
Metastats2 software to screen for species that differed between the two 
sample groups.

Untargeted metabolomics analysis of 
rumen contents

Accurately extract 100 μL of rumen contents, add 500 μL of 
extraction solution containing internal standard (methanol: 
acetonitrile volume ratio = 1:1, the internal standard is 2-Chloro-L-
phenylalanine, concentration 20 mg/L), vortex and mix for 30 s, then 
sonicate for 10 min (ice water bath) and leave for 1 hour (−20°C); The 
samples were then centrifuged for 15 min (4°C, 12000 rpm); The 
extract was dried and concentrated by removing 500 μL of supernatant, 
followed by the addition of 160 μL of acetonitrile to water at a volume 
ratio of 1:1; Repeat the previous step of vortexing, sonication and 
centrifugation and then remove the supernatant. Determination by 
Waters Xevo Acquity I  Class PLUS ultra performance liquid 
chromatography tandem with a Waters Xevo Xevo G2-XS QTOF high 
resolution mass spectrometer. The chromatographic column was a 
Waters Xevo Acquity UPLC HSS T3 (1.8um 2.1*100 mm). The mobile 
phase A is 0.1% formic acid aqueous solution and mobile phase B is 
0.1% formic acid acetonitrile in positive ion mode (POS); The mobile 
phase A in negative ion mode (NEG) was 0.1% formic acid aqueous 
solution and mobile phase B: 0.1% formic acid acetonitrile. MassLynx 

1 http://huttenhower.sph.harvard.edu/lefse/

2 http://metastats.cbcb.umd.edu/

TABLE 1 Compositions and nutrient levels of diets (DM basis).

Items TW TM TS

Content (%)

Whole corn silage 0.00 25.00 50.00

Wheat straw 50.00 25.00 0.00

Corn 22.50 20.40 17.30

Wheat bran 1.00 8.00 16.00

Bean pulp 9.00 10.00 8.20

Cottonseed meal 12.00 6.10 3.00

Calcium 

carbonate
0.50 0.50 0.50

Bicarb 0.50 0.50 0.50

Salt 0.50 0.50 0.50

4% Premixa 4.00 4.00 4.00

Nutrient

Dry matter, DM 

(%)
91.39 76.37 61.40

Digestible energy, 

DE (M J kg−1)
10.86 11.36 11.97

Crude Protein, CP 

(%)
13.27 13.23 13.22

Ether extract, EE 

(%)
2.33 2.66 3.19

Coarse ash, Ash 

(%)
7.22 7.56 7.96

Neutral detergent 

fiber, NDF (%)
41.46 34.06 27.19

Acid detergent 

fiber, ADF (%)
29.03 23.49 18.20

Calcium, Ca (%) 1.09 1.11 1.13

Phosphorus, P (%) 0.46 0.48 0.45

aOne kilogram of the premix contained the following: VA 450000 IU, VD2 100,000 IU, VE 
150000 IU, Fe 350 mg, Cu 3,500 mg, Mn 600 mg, Zn 350 mg, Co 10 mg, Se 20 mg. Digestible 
energy was calculated, and other values were measured. TW: wheatgrass group; TS: Whole 
corn silage group; TM: Mixed group. The same below.
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(V4.2) software was used for primary and secondary mass 
spectrometry data acquisition in MSe mode with a low collision 
energy of 2 V and a high collision energy interval of 10–40 V. The scan 
frequency was 0.2 s for one mass spectrometer. Data processing 
operations such as peak extraction and peak alignment were done 
using Progenesis QI software, and identification was carried out based 
on the METLIN database and public database. In contrast, theoretical 
fragmentation identification was carried out with the deviation of 
parent ion mass number within 100 ppm and fragmentation ion mass 
number within 50 ppm. Bioinformatics analysis of metabolites was 
performed using BMKCloud,3 and principal component analysis and 
Spearman correlation analysis was used to determine the 
reproducibility of samples within groups and quality control samples. 
The taxonomic and pathway information of the identified compounds 
was searched in the KEGG (Kyoto Encyclopedia of Genes and 
Genomes), HMDB (Human Metabolome Database) and lipidmap 
(Lipid Metabolites and Pathways Strategy) databases. According to the 
grouping information, the multiplicity of differences was calculated, 
and T-test calculated the p-value of the different significance of each 
compound. OPLS-DA modeling using the R language package ropls. 
Differential metabolites were screened using a combination of 
difference multiples, P and variables important in the projection (VIP) 
value of the OPLS-DA model. The screening criteria were p < 0.05 and 
VIP > 1. Calculate the KEGG pathway with significant enrichment of 
differential metabolites using a hypergeometric distribution test (Yu 
et al., 2012).

Data analysis

The Kolmogorov–Smirnov and Leven test procedures of SPSS 
(SPSS v 26.0, SPSS, Inc., Chicago, Illinois, United States) were used to 
check the data’s normality and homogeneity of variance before 
performing statistical analyses. One-way ANOVA was performed 
using SPSS software, and Duncan’s method was used for multiple 
comparisons when differences were significant, and p < 0.05 was 
considered significant. Spearman’s correlation coefficient was used to 
test the relationship between rumen bacterial composition, 
metabolites and carcass characteristics and meat quality characteristics 
in Tibetan sheep, with significant correlations of p < 0.05 and R > 0.60.

Results

Carcass and meat quality characteristics

As shown in Table 2, the average daily gain (ADG), body weight 
before slaughter, carcass weight, dressing percentage, area of 
longissimus dorsi, back fat thickness and intramuscular fat (IMF) 
content were significantly higher in the TM and TW groups than in 
the TS group (p < 0.05). The marble pattern was significantly higher in 
the TW group than in the TM and TS groups (p < 0.05). The L* values 
in the TW and TS groups were significantly higher than those in the 
TM group (p < 0.05). The TS group had significantly lower a* values 

3 www.biocloud.net

than the other two groups (p < 0.05). The TW group’s shear force and 
cooking loss were significantly lower than the other two groups 
(p < 0.05). The pH, fat color and drip loss were significantly higher in 
the TS group than in the TW and TM groups (p < 0.05).

Rumen fermentation characteristics

As shown in Table 3, the NH3-N content, TVFA, and propionate 
content of the TM and TW groups were significantly higher than 
those of the TS group (p < 0.05). The pH of the TW group was 
significantly higher than that of the TS group (p < 0.05). The butyrate 
content and A/P were significantly higher in the TS group than in the 
other two groups (p < 0.05). The butyrate, isovaleric acid content and 
A/p values were significantly higher in the TS group than in the other 
two groups (p < 0.05).

Rumen microbiota composition

A total of 1,439,771 Reads were obtained for the three groups of 
18 samples, and 1,436,937 Clean Reads were obtained after quality 
control and splicing, yielding an average of 79,830 Clean Reads per 
sample. There were 2,206, 2,585 and 2,794 OUTs unique to the TW, 
TM and TS groups, respectively, and 706 OUTs common to all three 
groups (Figure  1A). The α-diversity of the three groups was not 
significantly different (Supplementary Table S2). Dilution curves show 
a plateau at 20,000 reads, indicating saturation of sequencing coverage; 
Species accumulation plots show that the number of species and 
shared species in the environment saturates with increasing sample 
size (Supplementary Figure S1). PCoA shows a good separation of 
samples in each group (Figure  1B); Anosim analysis further 
demonstrated significant differences between groups (Figure  1C). 
We further identified 18 phyla, 25 classes, 32 orders, 62 familys, 164 
genus and 194 species of microorganisms taxonomically. At the 
phylum level, the relative abundance of Bacteroidota was higher and 
that of Firmicutes was lower in the TM group compared to the TW 
group (p < 0.01) (Figure 1D; Supplementary Table S3). At the genus 
level (Figure  1E; Supplementary Table S3), the Prevotella, 
Ruminococcus and Uncultured_rumen_Bacterium were the dominant 
genus in the three groups. Among the top  10 genus in terms of 
abundance, the relative abundance of Rikenellaceae_RC9_gut_group 
was significantly higher in the TS group than in the TW group 
(p < 0.01). While the relative abundance of Succiniclasticum, 
Ruminococcus and Candidatus_Saccharimonas in the TW group was 
significantly higher than that in the TS group (p < 0.01). The relative 
abundance of Prevotella_7 was higher in the TM group compared to 
the other two groups (p < 0.01). We also found that Alloprevotella and 
Lachnospiraceae_NK3A20 were significantly higher in the TM group 
than in the TS group (p < 0.01). LEfSe of samples between groups 
showed 7 and 4 significantly different biomarkers in the TW and TS 
groups, respectively (LDA score > 4) (Figure 1F).

Rumen metabolomic profiles

It can be seen from the OPLS-DA model that R2Y is close to 1 
for all comparisons between groups (Figure 2B), and the slope of 

https://doi.org/10.3389/fmicb.2023.1247609
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.biocloud.net


Ren et al. 10.3389/fmicb.2023.1247609

Frontiers in Microbiology 05 frontiersin.org

the fitted regression line for Q2Y is positive 
(Supplementary Figure S2), indicating that the established model is 
stable and reliable and can be  used to compare the differences 
between the two groups. Analysis with p < 0.05 and VIP > 1 as 
screening criteria revealed that 487, 223 and 436 differential 
metabolites were identified between the TW vs. TS, TW vs. TM and 
TM vs. TS groups, respectively (Figure 2A). The PCA clustering plot 
showed that the metabolic profiles of the TS group were more 
different from those of the TW and TM groups, respectively, while 
the metabolic profiles of the TM and TW groups were less different 
(Supplementary Figure S3). The TW group had significantly higher 
contents of beta-alanyl-L-lysine, prostaglandin E2, stearidonic acid, 

N-acetyl-L-glutamate 5-phosphate, glutaric acid, 9R,10S-epome, 
dihomo-gamma-linolenate, and D-ribose were significantly higher 
than those in the TS group. At the same time, 6-hydroxymelatonin, 
indoxyl, 5-phosphonooxy-L-lysine, and 5,6-DHET were 
significantly lower than those in the TS group. The contents of 
CDP-ethanolamine, dCDP, 5-methylcytosine, docetaxel, 
prostaglandin E2, beta-alanyl-L-lysine, prostaglandin E2, and 
pyridoxine phosphate in the TM group were significantly higher 
than the TS group (Supplementary Table S4). These critical 
differential metabolisms mainly participated in amino acid 
metabolism (76), digestive system (34) and lipid metabolism (60) 
pathways (Figure 3D; Supplementary Table S5).

TABLE 2 Analysis of carcass and meat quality characteristics.

Item TW TS TM p-value

Carcass characteristics

ADG(g) 279.33 ± 9.62b 267.83 ± 4.21c 310.33 ± 11.30a <0.001

Body weight before slaughter(kg) 64.60 ± 1.54b 59.33 ± 1.03c 67.60 ± 0.66a <0.001

Carcass weight (kg) 30.37 ± 0.58b 24.50 ± 3.87c 33.80 ± 1.03a <0.001

Dressing percentage(%) 47.44 ± 1.75a 41.22 ± 5.85b 49.77 ± 1.47a 0.003

Area of longissimus dorsi(cm2) 25.11 ± 1.27a 19.45 ± 1.21c 22.67 ± 2.18b <0.001

Back fat thickness(mm) 11.67 ± 1.51a 8.45 ± 0.69b 13.22 ± 1.86a <0.001

Meat quality 

characteristics

PH45min 6.47 ± 0.08ab 6.50 ± 0.07a 6.36 ± 0.14b 0.091

PH24h 5.93 ± 0.04b 6.09 ± 0.07a 6.06 ± 0.04a <0.001

Marble pattern 3.50 ± 0.32a 2.75 ± 0.27c 3.12 ± 0.40b 0.001

Meat color

L 25.89 ± 0.85a 27.00 ± 0.92a 24.13 ± 1.23b 0.001

a 18.13 ± 0.93a 15.43 ± 0.55b 17.63 ± 1.31a 0.001

b 4.92 ± 0.94 5.22 ± 0.61 4.65 ± 0.62 0.434

Intramuscular fat (%) 3.40 + 0.21a 1.94 + 0.08c 2.48 + 0.18b <0.001

Shear force (N) 83.05 ± 3.22c 90.10 ± 4.62b 97.27 ± 6.56a 0.001

Drip loss (%) 4.42 ± 0.33b 5.46 ± 0.24a 4.22 ± 0.42b <0.001

Cooking loss (%) 12.03 ± 1.09b 14.69 ± 2.29a 14.25 ± 2.53a 0.049

Cooking percentage (%) 66.45 ± 2.74 61.94 ± 6.03 65.11 ± 1.74 0.163

Fat color 2.33 ± 0.52b 3.33 ± 0.52a 2.66 ± 0.52b 0.013

TW: wheatgrass group; TS: Whole corn silage group; TM: Mixed group. a, b, c Values with different superscripts in the same row are significantly different (P < 0.05), The same below.

TABLE 3 Analysis of rumen fermentation parameters.

Items TW TS TM p-value

Acetate (%) 61.42 ± 2.36 59.80 ± 3.52 58.54 ± 1.71 0.199

Propionate (%) 25.12 ± 4.89a 20.41 ± 4.18b 26.71 ± 3.80a 0.048

Isobutyric acid (%) 0.52 ± 0.04b 0.81 ± 0.11b 2.13 ± 1.48a 0.012

Butyrate (%) 11.10 ± 1.50b 15.76 ± 1.03a 12.44 ± 1.21b 0.042

Isovaleric acid (%) 1.19 ± 0.30b 2.25 ± 0.55a 0.98 ± 0.28b <0.001

Valerianic acid (%) 0.65 ± 0.04 0.71 ± 0.05 0.77 ± 0.06 0.008

TVFA (mmol l−1) 97.54 ± 1.89a 84.57 ± 4.65b 99.42 ± 3.84a 0.018

A/P 2.66 ± 0.51b 3.20 ± 0.79a 2.29 ± 0.32b 0.045

pH 6.04 ± 0.08a 5.91 ± 0.12b 5.98 ± 0.15ab 0.040

NH3-N (mg dL−1) 4.86 ± 0.15a 3.93 ± 0.17b 5.10 ± 0.28a 0.003

TVFA: Total volatile fatty acids. A/P: the ratio of acetic acid to propionic acid. The unit % represents the proportion of a single VFA in the TVFA.
a, b, cValues with different superscripts in the same row are significantly different (p < 0.05).
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FIGURE 1

(A) OTU-Venn analysis; (B) PCoA plot; (C) Anosim analysis; (D,E) Relative abundance of phylum and genus horizontal species; (F) Significantly different 
bacterial taxa identified by the linear discriminant analysis effect size (LEfSe).

FIGURE 2

(A) Volcanic maps of differential metabolites in the three groups; (B) The OPLS-DA model score plots in the three groups.
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Metabolic pathways of differential 
metabolites

Differential metabolite KEEG enrichment analysis is illustrated in  
Figures 3A–C. The critical differential metabolic pathways between 
the TW group and the TS group were alpha-linolenic acid metabolism, 
tryptophan metabolism, arachidonic acid metabolism, linoleic acid 
metabolism, cAMP signaling pathway, tyrosine metabolism and 
biosynthesis of unsaturated fatty acids. The critical differential 
metabolic pathways between the TM and TS groups were arachidonic 
acid metabolism, bile secretion, beta-alanine metabolism and cAMP 
signaling pathway (Supplementary Table S6).

Microbiome-metabolome-phenotypic 
index joint analysis

Spearman’s correlation coefficient model analyzed the 
correlation between genuslevel differential microorganisms and 
differential metabolites (p < 0.05 and R > 0.60) and revealed that 
Ruminococcus, Succiniclasticum, Rikenellaceae_RC9_gut_group, 
Succinivibrionaceae_UCG_001 and metabolites such as beta-alanyl-
L-lysine, prostaglandin E2, and N-acetyl-L-glutamate-5-phosphate 

were significantly correlated (p < 0.05) (Figure 4A). The association 
between differential microorganisms and meat quality was also 
found (Figure 4B), such as Ruminococcus and Succiniclasticum were 
significantly positively correlated with IMF, eye muscle area and L* 
value (p < 0.05), while the Rikenellaceae_RC9_gut_group and 
NK4A214_group were significantly and positively correlated with 
drip loss(p < 0.05). Further analysis of rumen differential 
metabolites with meat quality and rumen fermentation parameters 
revealed that metabolites such as stearidonic acid, 
6-hydroxypseudooxynicotine, icosanoic acid, beta-alanyl-L-lysine, 
prostaglandin E2 and indoxyl were significantly and positively 
correlated with TVFA and propionic acid as well as with meat traits 
such as ADG, IMF and shear force (p < 0.05) (Figure 4C).

Discussion

This study investigated Tibetan sheep’s growth performance and 
meat quality indexes fed different roughage diets and further 
analyzed rumen fermentation parameters, rumen microbiome and 
metabolomics to extend the rumen microbial perspective of Tibetan 
sheep on different roughage utilization. Previous studies have found 
that adding wheat straw to sheep and cow diets reduces feed intake 

FIGURE 3

(A–C) KEGG map of rich spots; (D) Classification diagram of differential metabolites.
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and performance (Wang et  al., 2014; Mahmoudi-Abyane et  al., 
2020). We came to a different conclusion and found that feeding 
wheat straw to Tibetan sheep increased growth performance (body 
weight before slaughter, carcass weight), Carcass characteristics 
(dressing percentage, area of longissimus dorsi and back fat 
thickness) and modified meat quality (marble pattern, L*, IMF, 
shear force and cooking loss). We found that rumen fluid pH was 
significantly higher in the added wheat straw than in the whole corn 
silage group, and some studies have shown that wheat straw 
increases rumen pH affecting rumen fibrolytic bacteria to increase 
fiber digestibility (Kahyani et al., 2019). In contrast, whole corn 
silage resulted in lower rumen pH (Sulzberger et al., 2016), which 
may explain the lower production performance of Tibetan sheep in 
the TS group. The better growth performance and carcass 
characteristics of wheat straw fed Tibetan sheep in this study were 
attributed to the higher total VFA, acetate and propionic acid 
content in the rumen, as the high propionic acid content and the 

ratio of acetate to propionic acid (A:P) implied higher energy 
utilization (Poudel et al., 2019). Meat color is an essential indicator 
of meat characteristics. The Tibetan sheep feeding wheat straw had 
higher a* and lower L* and b*, suggesting that feeding wheat straw 
improves meat color (Hughes et al., 2020). A study has shown that 
lower muscle drip loss leads to lower L* due to a lower refractive 
index of the muscle surface; lower drip loss and cooking loss in the 
wheat straw group in the present study were positively correlated 
with low L* suggesting that feeding wheat straw improves the water 
holding capacity of the mutton (Kim et al., 2011). The water holding 
capacity of the muscle improves as the muscle pH decreases and the 
intramuscular fat content increases (Moreno et al., 2020). Thus, 
feeding wheat straw may improve muscle water holding capacity by 
slowing the rate of muscle pH decline and increasing fat deposition, 
thereby reducing L* values.

It has been found that changes in rumen microbiota significantly 
impact the formation of meat quality traits in ruminants (Zhang et al., 

FIGURE 4

(A) Microbiome-Metabolome network heat map; (B) Microbiome-Phenotypic index correlation heat map; (C) Metabolome-Phenotypic correlation 
heat map.
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2022b). Therefore, we  performed 16S rRNA sequencing, and the 
PCoA and Anosim analyses revealed that different roughage altered 
the rumen microbial community in Tibetan sheep. The bacteria at the 
genus level in the three groups of rumen contents samples in this 
study were mainly Prevotella and Ruminococcus, which is consistent 
with previous studies (Xue et al., 2017). The Prevotella abundance was 
highest in the TM group, and Prevotella effectively degraded 
hemicellulose and starch. In addition, Prevotella is thought to 
be  associated with propionic acid production (Lv et  al., 2019). 
Alloprevotella was found to be closely related to VFA production and 
may play an important role in the fermentation of structural 
carbohydrates in the rumen of Tibetan sheep, thus promoting energy 
absorption (Fan et al., 2020). Succiniclasticum has also been reported 
to convert succinic acid into propionic acid (van Gylswyk, 1995). High 
dietary fiber content steadily increases Ruminococcus abundance and 
promotes fiber fermentation into short-chain fatty acids (Tomova 
et  al., 2019). Feeding Tibetan sheep with high-fiber wheat straw 
promotes the relative abundance of Succiniclasticum and Ruminococcus 
(Zhang et al., 2018), increasing VFA and propionic acid content within 
the TM group. The elevated VFA and propionic acid levels provide 
ample energy for Tibetan sheep (Nathani et  al., 2015), ultimately 
enhancing their production performance in the TW group.

Ruminal microorganisms are known as the “second genome,” 
The microbiota affects a wide range of host physiological functions 
and meat quality through metabolites (Ren et al., 2018; Wang et al., 
2021). We further analyzed the metabolic functions of the rumen 
microbiota under different roughage feeds using UHPLC-
QTOF-MS. Previous studies have reported that some rumen bacteria 
are associated with the deposition of AA and lipid metabolites in 
muscle (Wang et al., 2021). Similar results were observed in our 
study, which identified many differential metabolites mainly 
involved in amino acid metabolism, digestive system and lipid 
metabolism. The differential metabolites in the TW and TM groups 
compared to the TS group were significantly enriched in alpha-
linolenic acid metabolism, arachidonic acid metabolism, tryptophan 
metabolism, linoleic acid metabolism and cAMP signaling pathways. 
These metabolic pathways are closely related to energy utilization 
and meat quality traits. Arachidonic acid is an abundant unsaturated 
fatty acid that can be used as a specific plasma marker for daily 
weight gain in bulls (Artegoitia et al., 2017). In addition, high levels 
of arachidonic acid were better to activate PPAR-α to increase IMF 
(Feng et  al., 2018). alpha-linolenic acid is an Omega-3 
polyunsaturated fatty acid (Shahidi and Ambigaipalan, 2018), and 
alpha-linolenic acid and linoleic acid have been associated with 
amino acid and fatty acid deposition in muscle (Wang B. et  al., 
2020). In this study, some metabolites enriched in arachidonic acid, 
alpha-linolenic acid and linoleic acid signaling pathways were found 
to be significantly elevated in Tibetan sheep after feeding on wheat 
straw, which suggests that Tibetan sheep can utilize essential fatty 
acids, such as arachidonic acid, linoleic acid and α-linolenic acid, to 
improve energy utilization and enhance production performance 
(Liu et al., 2022). As an essential aromatic amino acid, tryptophan is 
a biosynthetic precursor for many microbial and host metabolites 
(Agus et al., 2018). It has been found that high dietary protein can 
regulate nutrient absorption and growth performance of Tibetan 
sheep through the tryptophan metabolic pathway (Wang X. et al., 
2022). This shows that different diets affect the growth and 

performance of Tibetan sheep by promoting the amino acids and 
lipids metabolism in the rumen. Further analysis of the critical 
metabolites enriched by these pathways revealed that metabolites 
such as beta-alanyl-L-lysine, prostaglandin E2, kynurenic acid, 
N-acetyl-L-glutamate 5-phosphate and D-ribose were found to 
be higher in the TW and TM groups. This study showed a significant 
positive correlation between Ruminococcus and N-acetyl-L-
glutamate-5-phosphate and acetic acid. The N-acetyl-L-glutamate-
5-phosphate is a precursor of arginine synthesis. Rumen 
microorganisms can use VFA or NH3-N as a nitrogen source for de 
novo amino acid synthesis (Kajikawa et al., 2002). This suggests that 
higher concentrations of acetic acid and NH3-N provide more 
substrates for amino acid synthesis in the rumen. The high 
concentration of organic acids, particularly kynurenic acid, in the 
TM group facilitates nutritional absorption and enhances growth 
performance in Tibetan sheep (Wang X. et al., 2022). Prostaglandin 
E2 plays an important role in fatty acid composition and metabolism 
in the liver (Stawarska et al., 2020). Previous studies reported that 
D-ribose induced hepatocyte lipid droplet production (Chen et al., 
2019). These results may indicate that feeding wheat straw promotes 
fatty acid and amino acid metabolism in Tibetan sheep through 
rumen microbes and metabolites. This study also observed an 
increase in PGE1, 6-hydroxymelatonin and indoxyl levels under 
whole corn silage feeding. It was previously reported that 
degradation of carbohydrates by starch degrading bacteria such as 
NK4A214_group caused changes in 6-hydroxymelatonin and indoxyl 
content in the rumen (Yi et al., 2022); this also suggests that the 
higher abundance of NK4A214_group in the TS group was to adapt 
to high carbohydrate rations. PGE1 accumulation is associated with 
rumen acidosis (Mu et al., 2022), and the tryptophan metabolite 
(6-hydroxymelatonin, indoxyl) may maintain normal rumen pH 
under a high protein diet by modulating the mucosal immune 
system and specific receptors (Wang X. et al., 2022). This shows that 
the pH decrease caused by corn silage is closely related to changes in 
rumen microbial activity and metabolites. Besides, we also identified 
many differential metabolites, such as D-xylono-L,5-lactone, 
threonate, butanoic acid, icosanoic acid, eicosadienoic acid, 
(9Z)-hexadecenoic acid and CDP-ethanolamine, which are all 
involved in meat quality regulation. In conclusion, the significant 
differences in rumen microbes and metabolites among the three 
groups reflect the characteristics of rumen microbiota and 
metabolites in Tibetan sheep in response to different types of 
roughage and their effects on meat quality. However more in-depth 
mechanisms need to be studied further.

Conclusion

This study demonstrated that the inclusion of wheatgrass in the 
diet of Tibetan sheep increased the abundance of bacteria such as 
Ruminococcus and Succiniclasticum, as well as amino acid and lipid 
metabolites including N-acetyl-L-glutamate-5-phosphate, D-ribose, 
and prostaglandin E2. These changes ultimately led to improved 
production performance, such as ADG and IMF, enhancing meat 
quality like shear force and meat color. Specifically, The diet containing 
25% each of whole corn silage and wheatgrass was optimal for 
promoting superior performance outcomes among Tibetan sheep.
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