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Reactive oxygen species (ROS) are highly reactive molecules that play important 
roles in microbial biological processes. However, excessive accumulation 
of ROS can lead to oxidative stress and cellular damage. Microorganism have 
evolved a diverse suite of enzymes to mitigate the harmful effects of ROS. 
Accurate prediction of ROS scavenging enzymes classes (ROSes) is crucial for 
understanding the mechanisms of oxidative stress and developing strategies to 
combat related diseases. Nevertheless, the existing approaches for categorizing 
ROS-related proteins exhibit certain drawbacks with regards to their precision 
and inclusiveness. To address this, we propose a new multi-task deep learning 
framework called ROSes-FINDER. This framework integrates three component 
methods using a voting-based approach to predict multiple ROSes properties 
simultaneously. It can identify whether a given protein sequence is a ROSes 
and determine its type. The three component methods used in the framework 
are ROSes-CNN, which extracts raw sequence encoding features, ROSes-NN, 
which predicts protein functions based on sequence information, and ROSes-
XGBoost, which performs functional classification using ensemble machine 
learning. Comprehensive experiments demonstrate the superior performance 
and robustness of our method. ROSes-FINDER is freely available at https://github.
com/alienn233/ROSes-Finder for predicting ROSes classes.
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Introduction

Living organisms are constantly exposed to environmental stressors that can cause oxidative 
damage to their cells and tissues. To alleviate the ROS and induced antagonist effects, microbes 
rely on the well-evolved ROS-scavenging systems, which is comprised of enzymatic to balance 
the ROS levels at a steady-state (Johnson and Hug, 2019). ROS molecules, including superoxide 
anion, hydrogen peroxide, hydroxyl radical, and singlet oxygen, are produced due to normal 
cellular metabolism or exposure to environmental stressors (Borisov et al., 2021). While these 
ROS molecules play crucial roles in a variety of cellular processes, their excessive accumulation 
can lead to oxidative stress and cellular damage. Therefore, microbes have developed diverse 
defense mechanisms to combat ROS-induced damage, with ROSes playing important roles in 
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scavenging ROS and protecting cells from oxidative damage 
(Salganik, 2001).

With the rapid advancement of high-throughput sequencing 
technologies, the volume of genomic and proteomic data generated 
has increased exponentially, leading to an explosion of sequencing 
data in recent years (Pai and Satpathy, 2021). While a multitude of 
bioinformatics tools and databases exist for protein annotation, such 
as DEEPARG and ARG_SHINE, these resources still have their own 
set of limitations (Bileschi et al., 2022), the identification of ROSes still 
poses a significant challenge (Ho Thanh Lam et al., 2020). This is due 
to the complex functional diversity of ROSes proteins and the lack of 
well-defined sequence motifs that are unique to these proteins. As a 
result, traditional protein annotation methods have become 
increasingly inefficient in keeping pace with the exponential growth 
of sequencing data (Chandra et al., 2023). This has created a pressing 
need for the development of fast and efficient computational methods 
for the accurate annotation of ROSes proteins, which can 
be  accomplished through machine learning and deep learning 
techniques (Ko et al., 2020).

As high-throughput sequencing technologies continue to advance, 
the amount of protein sequence data is growing exponentially. 
However, the functions of most proteins still remain unclear (Vasina 
et al., 2022). Experimental and computational methods are the two 
major approaches to determining protein functions. While 
experimental methods rely on biological experiments to verify protein 
function, they are much slower than the speed of generating protein 
sequence data. In contrast, computational methods predict protein 
functions from protein sequence structures and other information, 
which is a more efficient and economical approach to determining 
protein function.

Sequence alignment-based methods, such as BLAST (Ye et al., 
2006), are widely used for protein functional annotation. However, 
these methods have limitations in accurately predicting protein 
function based solely on sequence similarity. For instance, proteins 
with highly similar sequences may have different functions (Keskin 
and Nussinov, 2005), while proteins with low sequence similarity may 
perform similar functions (Bork and Koonin, 1998). Additionally, 
these methods may not be effective in identifying remote homologs 
or proteins with divergent sequences, leading to incorrect functional 
annotations. Moreover, sequence alignment-based methods do not 
consider other critical factors, such as protein structure (Kuhlman and 
Bradley, 2019), post-translational modifications, and protein–protein 
interactions (Ramazi and Zahiri, 2021), which can significantly 
influence protein function.

To overcome these limitations, alternative computational methods 
have been developed, such as machine learning-based approaches. 
These methods can integrate multiple sources of data, including 
sequence information, protein structure, and functional annotations 
from various databases, to improve the accuracy of protein function 
prediction. By leveraging these methods, we can accelerate the process 
of determining protein function and unlock the potential of the 
exponentially growing protein sequence data. This study proposes a 
new integrated approach called ROSes-FINDER for predicting anti-
oxidative protein classes, which overcomes the limitations of existing 
methods for classifying ROSes. ROSes-FINDER is a multi-task deep 
learning framework that predicts multiple ROS properties 
simultaneously, including whether the input protein sequence is 
ROSes and, if so, what type of ROSes protein it belongs to. To improve 

the accuracy and robustness of the integrated model, the framework 
integrates three component methods using a voting-based approach, 
namely ROSes-CNN, ROSes-NN, and ROSes-
XGBOOST. ROSes-CNN uses raw sequence encoding for feature 
extraction, while ROSes-NN is suitable for predicting protein 
functions based on sequence information by learning complex 
non-linear relationships. ROSes-XGBOOST is an ensemble machine 
learning algorithm that combines the outputs of many decision trees 
to make a final prediction, making it a useful tool for functional 
classification. The combination of these three methods can potentially 
provide more comprehensive and reliable functional predictions for 
proteins, and the voting-based approach reduces the impact of 
individual classifier errors, thereby reducing the risk of overfitting.

Materials and methods

In this section, we present (i) a description of the benchmark 
dataset, (ii) overview of ROS_Finder, (iii) the implementation of three 
proposed component methods used for integration and the ensemble 
model, and (iv) implementation details.

Database description

We have developed a multi-label ROS database called ROS-DB 
(Figure 1), based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Kanehisa et al., 2021a), which has been highly curated and 
confidently annotated. We  chose to use the KEGG database 
annotations, as they allow for more precise protein annotations and 
greater confidence in protein annotation than databases such as Pfam 
(Kanehisa et al., 2021b). The first branch serves a dual purpose: it 
identifies ROS-positive samples and gathers a substantial number of 
unfiltered ROS-negative samples. Following this, the subsequent 
second branch comes into play. In this step, the unfiltered 
ROS-negative samples are subjected to a blastp sequence comparison 
against the ROS-positive samples. This comparison yields a refined set 
of 59,893 non-ROSes sequences from databases. These sequences 
exhibit the highest BLAST similarity scores with the ARGs in the 
ROSes-DB. This refined set is then utilized as negative sets, deliberately 
designed to resemble the positive set as closely as possible. By 
employing this strategy, we compel ROS_FINDER to develop a more 
robust and potent model.

To construct the KEGG-ROS-99 dataset, we performed CD-HIT 
(Mistry et  al., 2021) clustering on the KEGG dataset with a 99% 
identity threshold, removing identical and redundant sequences to 
obtain sequences with higher identity scores. The representative 
sequences of the clusters generated by CD-HIT were then retained in 
the fasta file. Next, we labeled these sequences from three perspectives 
and manually checked them for (1) the category of ROS scavenging 
enzymes to which they belong and (2) the mechanism of ROS 
scavenging enzymes.

The resulting ROS-DB database consists of 33,748 high-quality 
sequences, each labeled with one of 26 ROS scavenging enzyme 
categories. This type of multi-class database ensures that the trained 
model can automatically capture the most relevant features associated 
with ROS scavenging enzymes. This type of multi-class database 
ensures that the trained model can automatically capture the most 
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relevant features associated with ROS scavenging enzymes. Over 9% 
of the genes belong to the thioredoxin reductase, and approximately 
24% of the genes were assigned to the cytochrome c peroxidase.

Overview of ROS-Finder

ROS-Finder is a supervised machine learning framework 
specifically designed for identifying ROS scavenger enzymes through 
analyzing annotations in the ROS annotation space (Figure 2). The 
framework adopts a hierarchical prediction strategy that deploys a 
layered structure for ROS scavenger enzyme classification. Given a 
protein sequence, ROS_Finder first classifies it as a ROS scavenger 
enzyme or non-ROS scavenger enzyme. If the input sequence is a ROS 
scavenger enzyme, we predict which ROS scavenger enzyme category 
it belongs to. Therefore, for any sequence analyzed by the ROS_Finder 

framework, the first model (level 1) predicts whether it is a ROS 
scavenger enzyme or non-ROS scavenger enzyme. If it is a ROS 
scavenger enzyme, the second model (level 2) predicts its ROS 
scavenger enzyme category and molecular sub-class.

Component module: three different 
component methods using different 
features (ROSes-CNN, ROSes-NN, and 
ROSes-XGBoost)

ROSes-CNN
Convolutional neural networks (CNN) play a crucial role in 

protein function prediction by analyzing protein sequences and 
identifying patterns and features associated with their functions 
(Kattenborn et al., 2021).

FIGURE 1

ROSes database composition and the ROSes database construction pipeline. (A) The statistics of the ROSes database. The number of sequences 
belonging to each ROSes family is different. (B) To construct the database, we merged the sequences from KEGG databases, followed by a post-
processing step to remove duplicates. Then, we utilized scripts to automatically gather relevant information about ROSes proteins from the KEGG 
database and generate labels for sequences. Subsequently, we engaged in manual curation, classifying each sample into ROSes families and clearly 
delineating their functions. Aspects to each sequence in the database.

FIGURE 2

Illustrates the ROSes-Finder framework, which consists of two levels: (i) the “component module,” which obtains prediction results based on three 
different algorithms and different input information: ROSes-CNN (natural language learning), ROSes-ANN (protein sequence information), and ROSes-
XGBoost (The composition of k-spaced acid pairs, CKSAAP); and (ii) the “integration module,” which uses a voting algorithm to generate predictions 
from the “component module” and improve overall performance.
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For these models, the input is a protein sequence, which is a string 
of 23 characters representing different amino acids. To prepare the 
input for deep learning mathematical models, preprocessing is done 
first. The protein sequences are tokenized into numbers using the 
Tokenizer function from the Keras (Kathuria et  al., 2019). This 
function first calculates the frequency of each character across all 
sequences, and then maps the top N characters with the highest 
frequency to the numbers 1 to N, the next N characters with the next 
highest frequency to the numbers N + 1 to 2 N, and so on. The 
numerical sequences are then padded to a fixed length using the pad_
sequences function so that the neural network can process them (Jang 
et al., 2019). Through this preprocessing process, the protein sequence 
data and label data are converted into PyTorch tensors, so that they 
can be used as input for training the neural network model.

We used a convolutional neural network (CNN) with an attention 
mechanism for the text classification task. The model is implemented 
using PyTorch. We defined a CNN-based text classification model that 
includes an embedding layer, three convolutional layers, a linear layer, 
and a self-attention layer. The embedding layer embeds the input text 
sequence into a low-dimensional vector space, the convolutional 
layers and the linear layer are used for feature extraction and 
classification, and the self-attention layer is used for extracting 
important information from the text sequence. We then defined the 
hyperparameters and optimizer required for training. The optimizer 
uses the Adam optimization algorithm, and the cross-entropy loss 
function is used to calculate the difference between the model’s 
predicted results and the true labels. This loss function encourages the 
model to assign higher probabilities to the correct class while 
penalizing incorrect predictions. Finally, we loaded the training and 
testing datasets and started training the model.

ROSes-NN
CKSAAGP is a feature descriptor used in bioinformatics to 

represent protein sequences (Manavalan and Patra, 2022). The acronym 
stands for “Composition of k-spaced Amino Acid Pairs with Gap 
Penalty.” The descriptor takes into account the amino acid composition 
and the k-spaced pairs of amino acids in a sequence, with a penalty for 
gaps between them. We calculated the CKSAAGP as a protein chemical 
feature for each sequence. This module is based on neural networks 
(NN) for classification (Li et al., 2022). NN contains four linear layers 
with input and output dimensions of 20, 16, 8, 4, and 2, respectively. 
The forward method defines the process of forward propagation and 
uses the ReLU activation function. ReLU has shown to be effective in 
handling the vanishing gradient problem and accelerating convergence 
during training. The introduction of this non-linear activation function 
can make the neural network have stronger expression ability, thereby 
improving its performance. In the training process, the SGD optimizer 
(Stochastic Gradient Descent) plays a crucial role in machine learning 
and deep learning. It operates by iteratively adjusting the model’s 
parameters to minimize the loss function. This is achieved by moving 
in the direction of the steepest decrease, utilizing a subset of training 
data in each step. The CrossEntropyLoss loss function is employed to 
quantify the dissimilarity between predicted class probabilities and the 
actual target labels. It’s particularly effective for multi-class classification 
tasks like protein categorization. By encouraging the model to assign 
high probabilities to the correct class while penalizing incorrect 
predictions, it aids in enhancing the accuracy of the network’s 
classifications. Within the mentioned training method, the combination 

of the SGD optimizer and the CrossEntropyLoss loss function works 
harmoniously to fine-tune the model’s parameters, leading to precise 
protein classification. The model’s efficacy is then assessed by evaluating 
its performance on a separate test dataset.

ROSes-XGBoost
XGBoost stands for “Extreme Gradient Boosting,” which is a 

powerful and efficient machine learning algorithm used for supervised 
learning tasks, especially in classification and regression problems (Sagi 
and Rokach, 2021). The core idea behind XGBoost is to combine the 
predictions of several weak models, called decision trees, into a single 
strong model. In each iteration, XGBoost trains a new decision tree to 
fit the residuals of the previous iteration (Ma et al., 2021). The prediction 
of each tree is added to the overall prediction, and the algorithm 
continues to iterate until the loss function reaches a minimum or a user-
specified stopping criteria is met. To improve the performance and 
prevent overfitting, XGBoost includes several regularization techniques, 
such as L1 and L2 regularization, tree pruning, and early stopping (Qiu 
et  al., 2022). To train the XGBoost model, we  calculated protein 
chemical features for each sequence and used them as inputs. We utilized 
specific parameter values in our XGBoost model as outlined: Learning 
Rate (0.1), max_depth (20), n_estimators (150), Gamma (0), Subsample 
(0.9). These choices were based on preliminary experimentation and 
were tailored to optimize the model’s performance on our dataset.

Ensemble model voting algorithm

The voting algorithm is a type of ensemble learning method that 
combines the predictions of multiple classifiers to produce more 
accurate predictions (Qiu et  al., 2022). In the ROSes-FINDER 
framework, we have incorporated a strategic implementation of three 
distinct algorithms. This deliberate inclusion of multiple algorithms 
holds the potential to enhance the overall robustness of the model. The 
rationale behind this lies in the prospect that variations in predictions 
stemming from different algorithms could serve to counterbalance 
potential errors. This, in turn, contributes to the reduction of the overall 
error rate, ultimately bolstering the model’s accuracy and reliability.

In more detail, the ensemble nature of our approach involves the 
deployment of these three algorithms. Initially, the first algorithm 
generates a preliminary prediction. This preliminary prediction forms 
a critical foundation, as it serves as a basis for further analysis. 
Subsequently, a collective decision is made through a hard voting 
mechanism, which takes into account the predictions of all three 
algorithms. This collective decision is pivotal in determining whether 
the given instance can be  classified as a ROSes or not. Once a 
consensus is reached that a given instance indeed belongs to the 
ROSes class, a more nuanced approach comes into play. This involves 
employing a soft voting strategy to discern the specific class within the 
ROSes category. This finer classification process leverages the 
combined strength of all three algorithms, culminating in a more 
refined and accurate classification outcome.

Implementation details

We collected 60 k non-ROSes from databases, which have the 
highest BLAST similarity scores to the ARGs in ROSes-DB, and used 
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them as negative sets so that they resemble the positive set as much as 
possible, forcing ROS_FINDER to learn a more powerful model. 
Subsequently, we trained the 0-level model using KEGG data. During 
model training, we first converted each protein into three feature 
matrices. A single feature may be affected by noise, missing data, and 
other factors, leading to a decrease in classifier performance. Using 
multiple features can make the model more robust because the 
interactions between different features can provide more information, 
reducing the impact of specific features on classification.

Within the ROSes-FINDER framework, we  set three different 
algorithms. The differences between different algorithms can help 
improve the robustness of the model because errors from different 
algorithms may cancel each other out, reducing the overall error rate. 
The first model first predicts based on the three algorithms, and then 
determines whether it is a ROSes through hard voting. If it is determined 
to be a ROSes, then soft voting is used to determine its class.

Results

Overall performance of ROSes-FINDER

Based on our experimental results, we  compared three 
classification algorithms (Figure  3A), namely ROSes-NN, 
ROSes-CNN, and ROSes-XGBoost, and obtained the results using a 
hard voting algorithm. We measured the accuracy, recall, precision, 
sensitivity, and F1 score of each algorithm on the test set for the 
classification task. Among the independent methods, ROSes-NN 
performed the best in terms of accuracy, recall, specificity and F1 

score, but its precision was lower than that of ROSes-XGBoost. 
ROSes-XGBoost had relatively higher recall, but lower accuracy and 
F1 score. ROS-CNN had the highest precision, but its performance in 
other metrics was relatively poor. The results obtained by the hard 
voting algorithm (hard) were better than those of CNN in terms of 
accuracy, recall, sensitivity, and F1 score, but slightly lower than the 
best-performing algorithm ROSes-NN, with the highest precision. As 
for the ensemble model voting algorithm, the hard voting algorithm 
had better results in terms of accuracy, recall, sensitivity, and F1 score 
than the single algorithm ROSes-CNN, but slightly lower than the 
best-performing algorithm ROSes-NN. This indicates that integrating 
the prediction results of multiple algorithms through the hard voting 
algorithm can improve the performance of the model, especially when 
some algorithms perform poorly. The hard voting algorithm can 
reduce misclassification rate and overfitting risk by synthesizing the 
prediction results of multiple algorithms, thereby improving the 
robustness and generalization ability of the model.

Effective expansion of protein discovery 
scope through integrative analysis using 
three methods

Next, we investigated the contribution of each component method 
to the overall performance of ROS_Finder. Among all 1,703 test 
sequences, 15 and 12 sequences were uniquely correctly classified by 
ROS-NN and ROS-CNN, respectively, indicating their outstanding 
performance in identifying these particular sequences (Figure 3B). A 
total of 87.6% of the sequences were correctly classified by all three 

FIGURE 3

Overall performance of ROSes-Finder. (A) Shows the accuracy, recall, sensitivity, and F1 score of various methods on the test data. (B) Displays the 
Venn diagram of sequences correctly classified by the three-component method in the test data.
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component methods, reflecting the complementarity and superior 
integrative effect of ROSes-NN, ROSes-CNN, and ROSes-XGBoost. 
Specifically, we  noted that ROSes-NN had the most outstanding 
performance in providing uniquely correct classification sequences. 
Among all test sequences, ROSes-NN provided 498 uniquely correct 
classification sequences for ROSes-Finder.

The predictive performance for each 
ROSes class

We next present three algorithms, ROSes-NN, ROSes-CNN, and 
ROSes-XGBoost, and their accuracy and recall in classifying 
different categories. All three algorithms demonstrate high accuracy 
(Figure  4A) in classifying different categories. In particular, the 
ROS-CNN algorithm performs better than the other two algorithms 
in most categories. To further evaluate the performance of these 
algorithms, we  calculated their recall (Figure  4B). Recall is an 
indicator of the classification model’s performance, which represents 
the proportion of samples that belong to a certain category that the 
model correctly predicts. It can be observed that there is a significant 
difference in performance for different categories under different 
algorithms. For example, Category 4 performs well under the 
XGBoost algorithm but poorly under the NN algorithm, while 
Category 22 performs well under both the XGBoost and NN 
algorithms but poorly under the NN algorithm. Some categories 
have relatively low recall rates for at least one algorithm, suggesting 
that combining different algorithms may result in better overall 
results for different categories.

Validation on novel ROSes

To validate the performance of our model in predicting ROSes, 
we selected four sequences from bacteria (Wang et al., 2020), which 
have been experimentally verified. Among them, one sequences had 
lower identity scores (<50%, BLAST) compared to our ROSes database 
training set. ROSes-Finder successfully predicted all sequences as 
ROSes and classified them correctly. This indicates that the ROSes-
Finder model can accurately predict ROSes sequences from different 
types of organisms, even when these sequences have lower similarity 
to the ones in the training set. This also suggests that the ROSes-
Finder model remains effective in handling sequences with certain 
degrees of variability, which is essential in practical applications. These 
results demonstrate the reliable performance of the ROSes-Finder 
model in predicting ROSes.

Discussion

ROSes-FINDER is a hierarchical multi-task deep learning 
algorithm designed to predict microorganisms ROSes protein classes. 
Protein function annotation is a crucial process in bioinformatics, 
which helps in understanding the functions of proteins and their roles 
in biological processes (Chen et al., 2020). With the increase in the 
number of available protein sequences, it has become challenging to 
annotate protein functions manually. Hence, computational methods 
have been developed to automate the annotation ROSes process. This 
methods utilize machine learning algorithms and deep learning 
frameworks to predict and classify ROSes properties based on protein 

FIGURE 4

Detailed comparison of prediction performance. Each row represents a category. Each point represents a class for a particular algorithm. (Red points 
for ROS-CNN, green points for ROS-NN, blue points for ROS-XGBoost). Each column represents a category.
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sequence information. Such automated annotation tools have the 
potential to accelerate the pace of research in this field.

The use of deep learning techniques, including convolutional 
neural networks (CNN), artificial neural networks (NN), and 
XGBoost algorithms, has been gaining traction in recent years for 
protein function prediction (Ejigu and Jung, 2020). These methods are 
particularly well-suited for protein function annotation because they 
can capture complex patterns and relationships between protein 
sequences and their functions. ROSes classification is a multi-class 
prediction problem, and ROSes-FINDER uses a multi-task learning 
approach to simultaneously predict multiple ROS properties. The use 
of a hierarchical model in ROSes-FINDER allows the model to learn 
high-level representations of the input data, which enables it to make 
accurate predictions even on proteins with limited sequence similarity. 
The hierarchical model used in ROSes-FINDER allows the model to 
learn representations of the input data at different levels of abstraction, 
resulting in a more comprehensive understanding of protein function.

The integration of multiple component methods is a key aspect of 
the ROSes-FINDER framework. This includes the use of convolutional 
neural networks (CNN), artificial neural networks (NN), and XGBoost 
algorithms, which each have unique strengths in analyzing protein 
sequence data. By combining these methods, ROSes-FINDER is able to 
achieve a higher level of accuracy and robustness in predicting multiple 
ROS properties simultaneously. The CNN component of ROSes-
FINDER is used for raw sequence encoding feature extraction, which is 
particularly effective in capturing spatial information and patterns within 
the protein sequence. The NN component utilizes sequence information 
to predict protein function, while the XGBoost component is used for 
functional classification using ensemble machine learning. Through the 
integration of these methods, ROSes-FINDER is able to provide a more 
comprehensive analysis of protein function than any single method alone.

ROSes-FINDER has some limitations that need to be considered. 
Firstly, it has limitations in handling raw reads, which may affect its 
prediction accuracy in certain cases. Secondly, it requires a significant 
amount of computational resources, which can be a challenge for 
researchers with limited access to high-performance computing. 
Lastly, its prediction results are affected by the length of input 
sequences, and it also has limited utilization of non-sequence 
information. Despite these limitations, ROSes-FINDER remains an 
effective deep learning algorithm for ROSes classification. However, 
careful evaluation of these limitations is necessary when applying the 
method and appropriate measures may need to be taken to enhance 
its prediction accuracy and expand its scope of application.

Overall, we believe that ROSes-Finder has the potential to 
become a valuable tool for mining ROSes. We will continue to 
improve and develop our framework to better serve the needs of 
the scientific communities.
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