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Microorganism-mediated biohydrometallurgy, a sustainable approach for

metal recovery from ores, relies on the metabolic activity of acidophilic

bacteria. Acidithiobacillia with sulfur/iron-oxidizing capacities are extensively

studied and applied in biohydrometallurgy-related processes. However, only

14 distinct proteins from Acidithiobacillia have experimentally determined

structures currently available. This significantly hampers in-depth investigations

of Acidithiobacillia’s structure-based biological mechanisms pertaining to its

relevant biohydrometallurgical processes. To address this issue, we employed a

state-of-the-art artificial intelligence (AI)-driven approach, with a median model

confidence of 0.80, to perform high-quality full-chain structure predictions

on the pan-proteome (10,458 proteins) of the type strain Acidithiobacillia.

Additionally, we conducted various case studies on de novo protein structural

prediction, including sulfate transporter and iron oxidase, to demonstrate how

accurate structure predictions and gene co-occurrence networks can contribute

to the development of mechanistic insights and hypotheses regarding sulfur

and iron utilization proteins. Furthermore, for the unannotated proteins that

constitute 35.8% of the Acidithiobacillia proteome, we employed the deep-

learning algorithm DeepFRI to make structure-based functional predictions. As

a result, we successfully obtained gene ontology (GO) terms for 93.6% of these

previously unknown proteins. This study has a significant impact on improving

protein structure and function predictions, as well as developing state-of-the-art

techniques for high-throughput analysis of large proteomic data.
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1. Introduction

Biohydrometallurgy, including bioleaching and biomining,
involves the accelerated dissolution of sulfidic minerals by
acidophilic chemolithotrophic microorganisms to recover metals.
In biohydrometallurgy operations, pulverized copper ores are piled
up, inoculated with solutions containing specific microbiota and
sulfuric acid, and aerated to facilitate the microbial oxidation of
iron and sulfur compounds (Valdés et al., 2008). Acidithiobacillia,
a member of the earliest and most extensively studied microbial
consortia, has been widely employed in various biohydrometallurgy
processes (Banderas and Guiliani, 2013; Campodonico et al., 2016;
Li et al., 2019; Inaba et al., 2020). Acidithiobacillus is the type
genus of the order Acidithiobacillales (type order of the class
Acidithiobacillia) (Parte, 2014). Acidithiobacillus displays the
central traits (e.g., sulfur/iron oxidation, CO2 fixation, heavy
metal resistance) of the deep-branching Proteobacteria class
Acidithiobacillia (Moya-Beltrán et al., 2021). The representative
species of Acidithiobacillus, Acidithiobacillus ferrooxidans, is
a Gram-negative, strictly acidophilic, chemolithoautotrophic
bacterium that thrives optimally at temperatures around 30◦C and
pH levels of 1.8–2.2. It is commonly found in acidic environments
such as acidified mineral drainages, coal deposits, and sulfuric
springs (Moya-Beltrán et al., 2021). In our previous studies, we
found that frequent horizontal gene transfer (HGT) of genes
vital for survival, such as heavy metal resistance, have driven
the adaptation of Acidithiobacillia to hostile biohydrometallurgy
environments (Li et al., 2019; Zhang et al., 2019). Acidithiobacillia
exhibit remarkable abilities in the efficient dissimilatory oxidation
of various reduced inorganic sulfur compounds (RISCs) (Wang
et al., 2019b) and are resistant to heavy metals (Li et al., 2019).
Additionally, Acidithiobacillia can grow by oxidizing ferrous iron
Fe(II) to ferric iron Fe(III) in acidic solutions, with oxygen serving
as the terminal electron acceptor (Liu et al., 2013). These combined
physiological traits (sulfur and iron oxidation, acid and metal
resistance) account for the widespread commercial application
of Acidithiobacillia in biotechnologies related to the dissolution
of sulfide and metallic minerals, as well as the extraction of
valuable metals (Zhang et al., 2018a). Furthermore, researchers
are interested in modifying Acidithiobacillus to become an
electrochemically active bacterium (EAB) for recycling electronic
waste (Wang et al., 2009) and for biofuel production from carbon
dioxide using reduced iron as the sole energy source (Guan et al.,
2017).

The various characteristic abilities and other life-sustaining
aspects of Acidithiobacillia are determined by the protein
machinery it encodes and expresses (Ramírez et al., 2004; Vera
et al., 2013). The sulfur oxidation pathway of Acidithiobacillia
typically involves several steps: sulfide species are oxidized to
elemental sulfur by sulfide:quinone oxidoreductase (SQR), sulfide
species can be converted to sulfite through sulfite reductase (Dsr),
tetrathionate is converted to sulfite via tetrathionate hydrolase (Ttr)
and sulfotransferase, sulfite is reversibly oxidized to sulfate through
adenylylsulfate reductase (AprA) and sulfate adenylate transferase
(SAT), and sulfate is transported using a sulfate transporter.
Additionally, Acidithiobacillia primarily relies on proteins encoded
by the rus gene operon (with rusticyanin as the core protein)
and a high potential iron-sulfur protein (HiPIP), encoded by
Iro, for iron oxidation. The HiPIP protein acts as the primary

electron acceptor from Fe(II) in an alternative electron transfer
pathway (Bruscella et al., 2005; Valdés et al., 2008; Quatrini et al.,
2009). Over the last few decades, researchers have resolved the
structure of 14 different proteins from Acidithiobacillia [search
of the Protein Data Bank (PDB) database (Goodsell et al., 2020)
with the query keyword “Acidithiobacillus/Acidithiobacillia”], the
majority of which are involved in metabolisms of energy substrates
(e.g., sulfur compounds and iron). For instance, Botuyan et al.
(1996) and Walter et al. (1996) characterized the structure of the
iron oxidation protein rusticyanin from A. ferrooxidans, which
provided insights into the mechanism of its enhanced acid stability
and redox potential. This was soon followed by the structure
of electron transfer protein C(4)-Cytochrome of A. ferrooxidans,
resolved by Abergel et al. (2003) and then, Cherney et al. (2010,
2012) determined the structure of sulfide:quinone oxidoreductase
and its variants from A. ferrooxidans, from which a novel reaction
mechanism utilizing the Cys-S-S as the nucleophile to attack the
cofactor was proposed. More recently, the crystal structure of
tetrathionate hydrolase from A. ferrooxidans was resolved, which
suggested a novel cysteine-independent tetrathionate hydrolysis
mechanism (Kanao et al., 2021). Despite these efforts, the majority
of other proteins from A. ferrooxidans still lack three-dimensional
(3D) structures. This includes proteins directly involved in
sulfur/iron utilization, such as the sulfate transporter and ferrous
iron transporter, which play a crucial role in its biohydrometallurgy
ability. This lack of protein structure data hinders further
investigations into the molecular mechanisms of these proteins.
One likely reason for this is that the experimental determination
of a protein’s structure remains a time-consuming and expensive
process (Bill et al., 2011; Lin, 2018).

Two influential artificial intelligence (AI)-driven algorithms,
AlphaFold2 (Senior et al., 2020) and RoseTTAFold (Baek et al.,
2021), have demonstrated their abilities to crack the long-
lasting “protein-folding challenge.” Both show the strength
to predict a wide range of complicated protein structures
accurately and quickly using solely the amino acid sequences.
Homo sapiens was the first species whose proteome to be
extended to a structural coverage scale that encompasses its near
entirety (98.5%) by employing the above-mentioned AI-based
algorithm predictions (Tunyasuvunakool et al., 2021). However,
myriads of other organisms including industrially important
and biologically significant species like A. ferrooxidans are still
highly underrepresented in the PDB database. Researchers of
these organisms would be greatly benefited if the structures of
their proteome are made available. Against this background, we
choose the Acidithiobacillia pan-proteome (Parte, 2014) as our
research subject, and expanded the structural coverage of the
Acidithiobacillia to the entire pan-proteome (10,458 proteins) with
full-chain predictions through application of the advanced AI-
driven program AlphaFold2 (Senior et al., 2020) and RosettaFold
(Baek et al., 2021).

The objective of this study was to predict the structure of the
complete proteome (10,458 proteins) ofAcidithiobacillia. The study
also aimed to conduct case studies on the sulfur/iron utilizing
processes, which are currently not well understood, and to provide
raw structural data that can be further analyzed in detail. These
investigations have significant scientific implications for enhancing
predictions of protein structure and function, and for advancing
advanced techniques for analyzing large proteomic datasets.
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2. Results

2.1. Protein clustering and full-length
protein structure predictions

A total of 129 available genomes (isolate) of the class
Acidithiobacillia were obtained for protein clustering and
pangenome analysis. The pangenome of the 129 Acidithiobacillia
genomes consisted of 10,458 gene families, while the core genome
contained 29 gene families (Figure 1A). Analysis of the core and
pangenome revealed that the pangenome followed a power-law
regression function [Ps (n) = 4688.87 n0.36], indicating an “open”
pangenome. On the other hand, the core genome followed an
exponential regression [Fc (n) = 2724.57 e−0.22n] (Figure 1A).
The open pangenome suggests that Acidithiobacillia species may
undergo gene exchange in order to enhance their functional
profiles. The functional COG annotation (Figure 1B) reveals that
the core genome has a higher proportion of genes classified in COG
categories J (translation, ribosomal structure, and biogenesis), C
(energy production and conversion), O (posttranslational
modification, protein turnover, and chaperones), F (nucleotide
transport and metabolism), and H (coenzyme transport and
metabolism), which are associated with fundamental biological
functions. On the other hand, the accessory genome and strain-
specific genes are skewed toward COG categories G (carbohydrate
transport and metabolism), L (replication, recombination, and
repair), P (inorganic ion transport and metabolism), and N
(cell motility). It is likely that these categories are linked to the
adaptation of Acidithiobacillia to oligotrophic, metal-laden, and
acidic environments, which can cause DNA damage.

We predicted structures for the pan-proteome of
Acidithiobacillia. The resulting structural dataset covers the
whole pan-proteome (10,458 proteins) with full-chain predictions.
The predictions made by AlphaFold2 (Senior et al., 2020) agreed
well with those made by RoseTTAFold (Baek et al., 2021),
indicating reliable predictions. The comparison results show
that the predicted models from both methods agreed well with
each other, giving average pairwise TM-score of 0.93 and average
pairwise root mean square deviations (RMSD) of 1.58. The
average and median of model confidences are 0.77 and 0.80,
respectively, with 69.4% (2,183/3,147) of all predicted models
having a confidence over 0.75, and among these models, 44.4%
(969/2,183) have a confidence over 0.85 (Figure 1C). The predicted
model of ACK80295 (GNAT family acetyltransferase) had the
highest confidence 0.95 (Supplementary Figure 1). Regarding
COG categories, proteins assigned to COG F (nucleotide transport
and metabolism), COG H (coenzyme transport and metabolism),
and COG J (translation, ribosomal structure, and biogenesis) had
the highest average confidences (0.86, 0.85, and 0.84, respectively)
(Figure 1D). Additionally, we found that the prediction confidence
was not correlated with protein sequence length (data not shown).

2.2. Highlight of predicted structures

Next, we present and discuss several case-study predictions
that focus on unresolved sulfur and iron transport and utilization
proteins in Acidithiobacillia. These predictions may offer novel

FIGURE 1

The statistical analysis of protein traits and structure confidences of
the Acidithiobacillia proteome. (A) Mathematical modeling of the
pangenome and core genome of Acidithiobacillia. (B) Bar chart
showing functional proportions (based on COG categories) of
different parts of the Acidithiobacillia pangenome (i.e., core,
accessory, and unique). (C) Histogram showing the distribution of
structure confidences of Acidithiobacillia pan-proteome. (D) Box
plot showing the distribution of structure confidences of
Acidithiobacillia pan-proteome among different COG categories
with the average confidence values indicated.

insights into the molecular mechanisms of this organism related
to biohydrometallurgy. In the Methods section, we provide a
summary of the detailed methods employed for these analyses,
including substrate binding and molecular dynamics (MD)
simulations. It is important to note that the predictions presented
here are mainly de novo, meaning that no template with more
than 30% query identity or covering over 35% of the sequence
was available. These predictions can help bridge the knowledge
gaps in our understanding of the functional roles and molecular
details of these sulfur/iron utilization proteins within the broader
biometallurgy system (see Figure 2, with the case-study proteins
highlighted in orange rectangles). Although our results have a
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FIGURE 2

A metabolic model of sulfur/iron utilization/biometallurgy related proteins in Acidithiobacillia based on genomic inference. The 3D protein
structures illustrated in the figure were predicted by AlphaFold2. The case-study proteins discussed in this study are marked with orange rectangles.

significant impact on improving protein structure and function
predictions, as well as developing state-of-the-art techniques for
high-throughput analysis of large proteomic data, experimental
confirmation is ultimately necessary to determine the actual
functions of the structure models and the hypothetical key residues
within them.

2.2.1. Sulfate transporter
Sulfate (SO4

2−), generated by the microbial oxidation of sulfide
minerals, is the dominant aqueous sulfur species in the biomining
drainage system and it is vital for microbes to maintain cellular
sulfate homeostasis (Borilova et al., 2018). The sulfate transporter
is identified in 81.5% of tested Acidithiobacillia genomes and
has genomic location highly conserved among Acidithiobacillia
(Supplementary Figure 2). The representative protein of it under
Genbank (Benson et al., 2018) accession ACK80903 shows 25.32%
sequence identity (the best hit in PDB database, HHsearch p-value
1.90E−74) to the recently reported chloroplastic sulfate transporter
of Arabidopsis thaliana (AtSULTR, PDB: 7LHV) (Wang et al.,
2021). To our knowledge, no experimental prokaryotic sulfate
transporter analog structure currently exists. To alleviate this
situation, we obtained the high-confidence modeled structure of
ACK80903 (AfSULTR) for comparative structure analysis. The

AfSULTR structure exhibits a topology similar to AtSULTR: each
monomer is comprised of at least 10 transmembrane (TM) helices
followed by a C-terminal anti-Sigma factor antagonist (STAS)
domain (Figure 3A and Supplementary Figure 3). Structure
mapping shows that AfSULTR and the AtSULTR monomer
have average RMSD of 3.299 angstrom (Å) (Supplementary
Figure 4). Another important indication of the association between
ACK80903 and membrane-anchored transporter is provided
by the findings of gene co-occurrence. The analysis revealed
that ACK80903 consistently co-occurred with proteins such as
proteolipid membrane modulator Pmp3, Na+/H+ antiport NhaA,
cation transport ATPase (P-type), AI-2E family transporter and
FeoC like transcriptional regulator across the comprehensive set
of Acidithiobacillia genomes (Supplementary Figure 4). We built
the complete sulfate transporter dimer with two monomers linked
by the STAS domains (anchoring on the cytosolic side of the
membrane) that swap between the monomers using the dimer
structure of AtSULTR (PDB 7LHV) as the dimer template (Wang
et al., 2021; Figure 3B). A positively charged plane region is
visible on the bottom of the TM helices, which is suggested to
form electrostatic attachment to the negatively charged microbial
membrane (Zhang et al., 2018b; Figure 3B). Among the TM helices
of AfSULTR, the TM1–7 and TM8–14 (in reference to AtSULTR)
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FIGURE 3

The structures of Acidithiobacillia sulfate transporter (AfSULTR-ACK80903) and sulfide:quinone oxidoreductase (AfSQR-ACK80497). (A) The overall
structure of AfSULTR monomer is comprised of transmembrane (TM) helices and anti-Sigma factor antagonist (STAS) domain (shown with red and
purple colors, respectively). (B) Top panel: the AfSULTR dimer model formed by two identical monomers (shown with yellow and green colors,
respectively). Bottom panel: electrostatic potential surfaces of the overall AfSULTR dimer calculated with adaptive Poisson-Boltzmann solver (APBS).
(C) Superposition of AfSQR-ACK80497 onto human SQR (HmSQR, PDB: 6OIB).

are in a pseudo twofold symmetry, and the TM3 and TM10
arranged in a line are half helices. The crossover region between the
N-termini of TM3 and TM10 leaves a crevice (the substrate-binding
pocket) surrounded by residues of TM1, TM3, TM8, and TM10 at
roughly the center of the TM region (Supplementary Figure 5a).
These features are consistent with other secondary solute transport
proteins (Lu et al., 2011; Alguel et al., 2016; Wang et al., 2019a). The
STAS domain of our AfSULTR model is comprised of two α-helices
and four β-strands, while the reported AtSULTR counterpart
contains four α-helices and four β-strands (Wang et al., 2021). The
helix dipoles of TM3 and TM10 carrying the positive electrostatic
potential ends seen to orient and attract the negative electrostatic
potential of oxygen anions of bound SO4

2− (Supplementary
Figure 5b). Also, a conserved Arg324 (Arg393 of AtSULTR) from
TM10 with positive electrostatic potential was identified to form
a putative salt bridge with the bound SO4

2− (Supplementary
Figure 6a). However, other surrounding residues previously shown
to interact with the SO4

2− in the binding pocket in AtSULTR
(e.g., Ala153, Phe391, Ser392, Tyr116, and Ser392) (Wang et al.,
2021) are all missing in AfSULTR, probably due to protein family
diversification. In AfSULTR, the identified surrounding residues
(within 6 Å) include three leucine residues (Leu30, Leu369, and
Leu379), three valine residues (Val34, Val321, and Val323), two
proline residues (Pro69 and Pro71), the above-mentioned Arg324,
and Thr70 (Supplementary Figure 5a). Leucine and valine contain
hydrophobic side chains, which may facilitate the transport of the
hydrophilic SO4

2− anion (Abdelraheem et al., 2018). Additionally,
a Glu276 in AfSULTR has also been identified at approximately the
same position of AtSULTR Glu347 (Supplementary Figure 6b),

protonation and deprotonation of this residue is suggested to be
significant for anion transport and H+ gradient sensing (Wang
et al., 2021).

2.2.2. Sulfide:quinone oxidoreductase
Sulfide:quinone oxidoreductase is a peripheral membrane

protein that catalyzes the oxidation of sulfide species to elemental
sulfur, belonging to the flavin disulfide reductase (DSR) superfamily
(Argyrou and Blanchard, 2004). We find that the protein
ortholog of Acidithiobacillia under accession ACK80497 putatively
represents a novel unresolved SQR-like enzyme, which has a top
1 hit score to human SQR (PDB: 6OIB) (Landry et al., 2019)
with 22.51% identity (86% query coverage, E value 1e−23). In
comparison, ACK80497 shares only 47% query coverage (22.63%
identity, E value 0.002) with the structure-available SQR homolog
of A. ferrooxidans (PDB: 3T2Y). The prediction of ACK80497
shows the tandem Rossmann fold repeats commonly seen in the
DSR superfamily topology (Argyrou and Blanchard, 2004), with
RMSD of 1.992 and 2.207 Å to 6OIB and 3T2Y, respectively
(Figure 3C and Supplementary Figure 7). We compared and
identified the conserved triad of active residues in AfSQR-
ACK80497, Cys127, Cys158, and Cys331 (equivalent to Cys128,
Cys160, and Cys356 of AfSQR-3T2Y, and Cys201, Cys379 of
human SQR-6OIB) (Supplementary Figure 8). Mutation of these
residues was reported to lead to 70∼100% loss of activity
(Griesbeck et al., 2002; Cherney et al., 2012). The active site
of SQR includes a flavin adenine dinucleotide (FAD) cofactor
that accepts and transfers electrons from sulfide species to
ubiquinone. However, we failed to identify equivalent residues
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FIGURE 4

Structure visualizations of Acidithiobacillia ferrous iron transporter (AfFeoB), iron oxidase and ferrochelatase. (A) The overall structure of AfFeoB
monomer that consists of G domain, GDI domain, and transmembrane domain. (B) Electrostatic potential surfaces of the overall AfFeoB monomer
calculated with adaptive Poisson-Boltzmann solver (APBS), which is rotated 90◦ rightward as indicated to reveal the negatively charged enriched
region of AfFeoB that putatively binds the ferric cation. (C) The archetypical GTPase motifs G1–G5 (shown with yellow color) in the GTPase domain
of AfFeoB that flank the nucleotide-binding pocket.

that were previously shown to bond with the cofactor FAD
[e.g., Thr11, Gly12, Ser34, Ala78, Ile302, Gly322, Phe357, and
Lys391 in AfSQR-3T2Y (Cherney et al., 2012)], suggesting the
existence of a novel ligand-protein interaction diagram in the
AfSQR-ACK80497 model. To analyze the putative ligand-protein
contact, a classical MD simulation for 15 ns of AfSQR-ACK80497
was performed (Supplementary Figure 9), which showed that
Met10, Ala39, His43, Gln46, Val81, Lys157, Gly298 of AfSQR-
ACK80497 form strong (>50.0% occurrence) direct hydrogen
bonds with atoms (e.g., O and N) of the cofactor FAD, while
Val44, Ser107, Glu164 of AfSQR-ACK80497 contacts with FAD
via water bridges (>50.0% occurrence) (Supplementary Figure 9).
However, the actual functions of these residues still require further
experimental confirmation. Another important indication of the
association between ACK80497 and sulfur metabolism is provided
by the findings of gene co-occurrence. The analysis revealed that
ACK80497 consistently co-occurred with two specific proteins,
namely the sulfur carrier protein TusA and the sulfur reduction
DsrE/DsrF/DsrH family protein, across the comprehensive set of
Acidithiobacillia genomes (Supplementary Figure 9).

2.2.3. Ferrous iron transporter (FeoB)
Although ferrous iron is one of the primary energy substrates

for Acidithiobacillia, we still have little knowledge about the
uptake process of this substrate. The protein represented by
ACK79582 (Genbank accession) encodes a membrane protein
FeoB responsible for ferrous iron transport in 94.6% of tested
Acidithiobacillia (AfFeoB) whose genomic location is highly
conserved among Acidithiobacillia (Supplementary Figure 10).
ACK79582 shows only 33% coverage and 35.61% identity
(HHsearch p-value 3.1E−30) to the PDB hit with top 1 score
(PDB 3LX5, NFeoB from Streptococcus thermophilus). ACK79582
was then used for structure modeling. The predicted structure
of Acidithiobacillia (AfFeoB, represented by ACK79582) contains
a N-terminal GTP-binding/GTPase domain (G domain, residues
1–169) that shows the canonical G protein fold (a six-stranded
β-sheet surrounded by six α-helices), followed by the guanine-
nucleotide dissociation inhibitor (GDI) domain (residues 170–257)

that consists of a four-helix bundle, which links the GTPase domain
and the transmembrane domain (residues 258–766) (Figure 4A).
A negatively charged enriched region was identified on the surface
of AfFeoB (Figure 4B), which is suggested to bind the ferric cation.
We identified in the GTPase domain of AfFeoB the archetypical
GTPase motifs G1–G5 that flank the nucleotide-binding pocket
(Figure 4C and Supplementary Figure 11). These motifs are
significant for nucleotide (GTP/GDP) recognition, orientation and
reaction catalysis (Scheerer et al., 2008; Guilfoyle et al., 2009).
We next compared the residues surrounding the nucleotide-
binding site of AfFeoB and other reported FeoB structures
(Supplementary Figure 12, key conserved residues highlighted
with blue rectangles), which identified in AfFeoB the conserved
residues Pro10 and Pro56 as essential for maintaining main-
chain conformation and affinity for GTP and GDP (Eng et al.,
2008), Asp54 and Gly57 that hydrogen-bond with the oxygen of
the nucleotide γ-phosphate, Asn11 and Asn115 that contact with
the GDP molecule, Asp118 associated with specificity toward the
guanine base (Eng et al., 2008), as well as Ala145 and Ser150 in the
G5 motif that modulate affinity and release rate of GDP (Guilfoyle
et al., 2014a,b). Consistently, the structure of the transmembrane
domain of AfFeoB was identified as an analog of the reported
concentrative nucleoside transporter vcCNT (PDB 3TIJ) with
TM-score 0.59 and RMSD 4.215 Å (Supplementary Figure 13;
Johnson et al., 2012). Like vcCNT, the transmembrane domain of
AfFeoB displayed an overall twofold pseudo-symmetry topology
and contained two conserved nucleotide-binding residues, Glu580
and Ser682 (refer to Glu332 and Ser371 at positions similar to that
of vcCNT) (Johnson et al., 2012).

2.2.4. Iron oxidase
Iron oxidase (Iro, represented by Genbank ACK79288) in

Acidithiobacillia is a key protein of the iron respiratory chain
that oxidizes ferrous iron, and is closely linked with the
biohydrometallurgy efficiency (Zeng et al., 2008). However, the
experimental crystal structure of the Iro protein is still lacking.
Residues 1–48 of ACK79288 were predicted by SignalP (Almagro
Armenteros et al., 2019) to be a TAT(Tat/SPI) type signal
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FIGURE 5

(A) The overall structure of Acidithiobacillia iron oxidase (Iro) with key conserved cysteine residues and aromatic residues that ligate/stabilize the
[Fe(4)S(4)] cluster are shown in ball and stick format, and the free ferrous iron ion is represented by a red sphere. (B) Putative electron transfer
pathway(s) in Iro identified by Emap using the structure from the last frame of MD simulation. (C) The overall topology of Acidithiobacillia
ferrochelatase (ACK80603) monomer that is comprised of two similar domains (shown with yellow and green colors, respectively). The substrate
protoporphyrin molecule is shown in ball and stick format. A free ferrous iron ion and a free magnesium ion are represented by red and pink
spheres, respectively.

peptide (Supplementary Figure 14) and, therefore, were removed
before structure modeling. After modeling, we obtained a high-
confidence overall structure of the Iro protein, a side of which
was found to be mainly positively charged, forming a putative
microbial membrane-bound region (Supplementary Figure 15).
The [Fe(4)S(4)] cluster is in ligation with four cysteine residues
(Cys24, Cys27, Cys36, and Cys49), located in the center of the
protein (Figure 5A), similar to other HiPIP family proteins (Nogi
et al., 2000; Ohno et al., 2017; Kawakami et al., 2021). The
[Fe(4)S(4)] cluster is surrounded by the aromatic residues Tyr14,
Phe30, and Phe52 (Figure 5A), which have been experimentally
proven to stabilize the [Fe(4)S(4)] cluster in acid environments
(Agarwal et al., 1995; Zeng et al., 2010). Tyr14 especially forms a
hydrophobic barrier against solvent attack and mediates electron
transfer, substitutions of which may result in protein malfunction
(Iwagami et al., 1995). Classical MD simulation (15 ns) reveals
that the free ferrous iron to be oxidized is captured and stabilized
by Iro mainly through metal coordination effect of atoms from
the [Fe(4)S(4)] cluster and ionic interactions from residues Cys24,
Val43, and Ala44 (Supplementary Figure 16). We further applied
Emap (Tazhigulov et al., 2019) to identify putative electron transfer
pathway(s) in Iro (Figure 5B), which indicated probable electron
hopping pathways from ferrous iron to phenylalanine (Phe30 and
Phe52), tyrosine (Tyr14 and Tyr48) and histidine (His17) residues.

2.2.5. Ferrochelatase
Ferrochelatase of Acidithiobacillia (presented in 98.4% of

tested genomes, represented by Genbank ACK80603), involved in
cofactor heme biosynthesis, is a membrane-bound protein that
catalyzes the insertion of ferrous iron into protoporphyrin IX
to form protoheme IX (heme). Its eukaryotic analog is encoded
by the nuclear DNA and expressed in the cytoplasm, followed
by translocation to the inner mitochondrial membrane, with the
active site turned to the mitochondrial matrix (Sellers et al., 2001).
In our study, we found that ACK80603 has top 1 hit score to
human mitochondrial ferrochelatase (PDB: 2PO7, identity 27.19%,

HHsearch p-value 1E−62). After modeling, we obtained a high-
confidence structure of ACK80603 with an RMSD of 2.182 Å to
human mitochondrial ferrochelatase (PDB: 2PO7), which exhibits
typical ferrochelatase topology (Sellers et al., 2001), namely a
monomer with two similar domains (Figure 5C, shown in green
and yellow colors, respectively), each containing a Rossmann fold
with a four-stranded parallel β-sheet surrounded by α-helices.
The two domains are connected by a loop from residues 218–
227. We predict a positively charged region in the protein surface
that putatively interacts with lipid membranes (Supplementary
Figure 17a), while negatively charged residues are enriched in the
protoporphyrin binding pocket face (Supplementary Figure 17b).
A previous study generated a reaction model for ferrochelatases
based on the data of human ferrochelatase (Sellers et al., 2001),
and we attempted to match the critical residues in our structure
(Supplementary Figure 18):

(1) The conserved carboxylate residues Asp273, Glu276, and
Glu280 corresponding to Asp340, Glu343, and Glu347
of human mitochondrial ferrochelatase (PDB 2PO7)
putatively form a conduit connecting the active site
pocket to the enzyme exterior and participate in proton
abstraction from porphyrin (Supplementary Figure 18).
Replacements of these residues are experimentally proven
to hinder the proton abstraction, resulting in no product
(heme) formation though the enzyme still binds with
protoporphyrin (Sellers et al., 2001);

(2) Ferrous iron is transported from the exterior of the protein
via residues Trp163 and Tyr129 (equivalent to Trp227 and
Tyr191 of PDB 2PO7) to the site of metalation at residues
Arg102 and Tyr103 (equivalent to Arg164 and Tyr165
of PDB 2PO7) centrally located in the active site pocket
(Supplementary Figure 18), whose role for metalation
have been confirmed by mutant tests (Sellers et al., 2001);

(3) The central catalysis residue His195 (refers to His263 of
PDB 2PO7) on the opposite side of Arg102 and Tyr103
acts as the proton-acceptor of porphyrin that initializes
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metalation in conjunction with proton abstraction. All
mutants at His263 (PDB 2PO7) have no measurable
enzyme activity (Sellers et al., 2001). Additionally, Trp243
(Trp310 in PDB 2PO7) is involved in saddling of the
porphyrin during catalysis (Shi et al., 2006).

Regarding comparisons with microbial ferrochelatase, we
also found equivalent residues to Arg115, Tyr123, and Ser130
of Saccharomyces cerevisiae ferrochelatase (PDB 2HRE), namely
Arg53, Tyr61, and Ser70 in our structure, which putatively form an
interaction network with the protoporphyrin substrate as observed
previously (Stroupe et al., 2003). Finally, His195 and Glu276 in our
structure are located at a position similar to the highly conserved
residues His183 and Glu264 in Bacillus subtilis ferrochelatase
(PDB 2Q2N) that putatively facilitate the insertion reaction of the
metal ion into protoporphyrin IX (Hansson et al., 2007). While
the conserved active site residues Pro268 and Trp243 (refer to
Pro255 and Trp230 of PDB 2Q2N), located in a loop, putatively
modulate the regio-specificity of porphyrin binding (Karlberg
et al., 2008). MD-based protein-ligand interaction analysis further
illustrates that hydrogen-bonding from Arg53, Ser57, Tyr61,
Trp65, Ser70, Val275, Glu276, and hydrophobic contact/Pi-Pi
stacking from Phe27 take part in stabilization of porphyrin
molecule (Supplementary Figure 19). Besides, metadynamics
analysis shows that ferrous iron stays at the protein conduit
without leaving the protein throughout the simulation (20 ns, with
ferrous iron firstly placed at the protein entrance position). Free-
energy profile of the two collective variables (CVs) depicted in
Supplementary Figure 20 that measure the distances of ferrous
iron to metalation residue Tyr103 (C1) and protoporphyrin (N1)
throughout simulation (20 ns) displays a wide and deep basin,
which indicates that the ferrous iron can be stably captured by
the protein (Supplementary Figure 21). However, the actual roles
of the above-mentioned residues require confirmation by further
experimental studies.

2.2.6. Functional predictions of unannotated
proteins

A full 35.8% of proteins in the proteome of Acidithiobacillia
are still labeled as “hypothetical protein” or “domain of unknown
function.” This microbial “dark matter” awaits exploration,
and may also be of significant relevance, especially to the
biohydrometallurgy capability of Acidithiobacillia. Yet, it is still
difficult to crack the mysteries of their functional identity by
traditional methods (e.g., genetic manipulation) due to the
slow growth rate of this autotrophic organism (Marchand and
Silverstein, 2002). Considering that the function of a protein is
ultimately defined by its structure, fortunately, many available
state-of-the-art deep-learning algorithms can be utilized, such
as DeepFRI, who’s ability for reliable structure-based function
classification and prediction of unknown proteins have been
validated (Gligorijević et al., 2021). Thus, we first used the
predicted 3D structures of unannotated proteins in the proteome
of Acidithiobacillia as inputs for DeepFRI (Gligorijević et al.,
2021) to perform function prediction. Results show that 93.6%
(1,055/1,127) of the unannotated proteins in Acidithiobacillia
could be assigned structure-based gene ontology (GO) term
predictions of cellular components (Supplementary Table 2), in

which the GO terms cytoplasm (GO:0005737, 29.0%, 306/1,055)
and membrane (GO:0016020, 25.8%, 272/1,055) accounted for the
largest proportions. A total of 91.3% (1,029/1,127) of unannotated
proteins in Acidithiobacillia could be assigned structure-based
GO term predictions of molecular function (Supplementary
Table 2), in which the GO terms cellular metabolic process
(GO:0044237, 20.0%, 206/1,029) and heterocyclic compound
binding (GO:1901363, 10.3%, 106/1,029) accounted for the largest
proportions. About 91.8% of these hypothetical proteins have
confident scores above the DeepFRI significance cut-off score of 0.5
(Supplementary Table 2; Gligorijević et al., 2021), indicating that
the predictions are reliable.

Obtaining the general GO-term prediction is only the initial
step toward the final characterization of targeted unknown
proteins. Other recently published advanced algorithms, such as
CHARMM-GUI LBS Finder and Refiner (Guterres et al., 2021) that
performs local structure alignment and virtual screening, provide
additional tools to identify the putative substrate(s) for an unknown
protein using its structural information. For instance, ACK77828
(conserved hypothetical protein) was predicted to be involved
in cellular nitrogen compound metabolic process (GO:0034641,
score 0.99) by DeepFRI (Gligorijević et al., 2021; Supplementary
Table 2). Consistent with this, LBS Finder and Refiner (Guterres
et al., 2021) predicted the most probable substrate of ACK77828
is a nitrogen-containing compound, namely (2R)-2-amino-3-
hydroxysulfanyl-propanoic acid (C3H7NO3S, CSO), and CSO was
predicted by LBS Finder and Refiner (Guterres et al., 2021) to be
bound by ACK77828 in a similar pattern with the transcriptional
regulator SarZ (PDB: 3HRM) (Supplementary Figure 22).

Robust structure comparison, fold recognition, catalytic site
configuration and evolutionary analysis of residues can also be
useful during such functional inference. In another case, ACK80741
(conserved hypothetical protein) was given the GO function
prediction, disulfide oxidoreductase activity (GO:0015036, score
0.70) by DeepFRI (Gligorijević et al., 2021). Consistent with
this, structure comparisons of ACK80741 model (confidence 0.92)
with crystalized disulfide oxidoreductase (DSR) family proteins
including glutaredoxin (Grx), thioredoxin (Trx), and NrdH show
that ACK80741 possesses the combined features of reported
DSR proteins (Figure 6). ACK80741 exhibits the typical Grx/Trx
fold, consisting of a core of four (anti)parallel β-strands flanked
by α-helices. In ACK80741, we observed that Lys19 (α-helix-1)
forms a hydrogen bond and salt bridge with Thr8 (β-strand-1)
and Glu31 (β-strand-2), respectively, and Tyr21 (α-helix-1) and
Phe66 (α-helix-3) are involved in an aromatic-aromatic interaction.
These cross-helix/strand interactions may be significant for overall
structure stability (Lanzarotti et al., 2011) and some of them
seem to be unique to ACK80741. Another important indication
of the association between ACK80741 and redox hemostasis is
provided by the findings of gene co-occurrence. The analysis
revealed that ACK80741 consistently co-occurred with respiratory
proteins (i.e., respiratory chain assembly protein Aim24 and
cytochrome B561), sulfur oxidation sox operon protein DUF302
and the stress response protein, Copper binding periplasmic
protein CusF, across the comprehensive set of Acidithiobacillia
genomes (Supplementary Figure 23). ACK80741 seems to be
closer to the NrdH clade in the phylogenetic tree (Supplementary
Figure 23). Like NrdH, ACK80741 does not possess the additional
N-terminal β-strand/α-helix present in Grx and Trx structures,
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FIGURE 6

Cartoon representations and suggested key residues of (A) ACK80741, (B) Mycobacterium tuberculosis NrdH (PDB 4F2I), (C) thioredoxin from
Escherichia coli TrxA (PDB 2TRX), (D) glutaredoxin 1 of Plasmodium falciparum (PDB 4HJM), (E) poxviral glutaredoxin (PDB 2HZF), and (F) human
glutaredoxin (PDB 2FLS). The coloring is based on secondary structure (helix, red; sheet, blue; and loop, gray).

while ACK80741 also lack the long C-terminal strand present
in NrdH, and the loop regions of ACK80741 are generally
shorter than those of Trx. Furthermore, the short α-helices 4
and 5 in Grx structures seem to have merged into a relatively
long α-helix in ACK80741 (α-helix-3) (Figure 6). We recognize
the active site cysteine pair motif (C12-P-D-C15) located in
the loop connecting the first β-strand to the second α-helix
in ACK80741, which is different from NrdH (CVQC), TrxA
(CGPC), and Grx (CPY(F)C) in the residues between the two
cysteines (Supplementary Figure 23). These residues may affect
the redox potential and pKa value of protein (Chivers et al.,
1997). In addition to the common turn-inducing Pro53 at the
start of β-strand 3, ACK80741 possesses another cis-proline, Pro37
(corresponding to Pro53 of poxviral glutaredoxin, PDB 2HZF)
at the start of the third α-helix, which has been shown to be
uniquely conserved in orthopoxvirus Grx orthologs (Bacik and
Hazes, 2007). ACK80741 also possesses conserved Arg72 and
Tyr63, counterparts of MtNrdH Arg68, Trp61 (PDB 4F2I), which
are suggested to form a cation-Pi interaction. Lys70, referring to
the kink-causing Lys70 of MtNrdH, and Tyr7 that corresponds
to Tyr6 of MtNrdH (Figure 6; Phulera and Mande, 2013).
Further, classical MD simulation (15 ns) reveals that Arg50,

Ala52, Thr65, Asp14, Ser9, and Glu68 are important residues
involved in substrate (glutathione, GSH) binding and interaction
(Supplementary Figure 24). Still, the actual functions of the
proteins mentioned above require experimental confirmation.

3. Discussion

In this study, we conducted protein structure predictions using
AI for Acidithiobacillia bacteria, which is commonly employed
in biohydrometallurgy. The predictions covered the entire pan-
proteome of Acidithiobacillia. These structural insights are highly
valuable for future research focused on understanding mechanisms
and designing proteins. This study builds upon our laboratory’s
prior investigations into the unique characteristics and applications
of Acidithiobacillia bacteria (Li et al., 2019; Yang et al., 2020; Tao
et al., 2021).

Although continuous efforts have been made to upgrade
experimental approaches for protein structure determination, the
speed of discovering known structures still lags behind that of
sequencing data (Goodsell et al., 2020). Structures of membrane
proteins (accounting for only ∼1% PDB entries) are particularly
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difficult to resolve since they tend to denature and aggregate
during purification once removed from their native membrane
environment (Bill et al., 2011). In our study, we found that
23.9% of hypothetical proteins in the proteome of Acidithiobacillia,
as predicted by DeepFRI (Gligorijević et al., 2021), were to
be located in the cellular membrane component (highlighted
with blue color in Supplementary Table 2). The membrane-
related proteins play a significant role in various transportation
processes and the electron transfer chain, closely associated
with iron/sulfur utilization (Yarzábal et al., 2002; Castelle et al.,
2008). The elucidation of their structures may shed light on the
molecular mechanisms underlying biohydrometallurgy processes
in the extreme acidophileAcidithiobacillia. Our results demonstrate
that the overall prediction reached an average confidence of 0.76
regarding structure prediction of the membrane proteins from
Acidithiobacillia. This indicates that even for protein classes with
limited examples for training datasets, we are able to confidently
predict their structures. Additionally, we have highlighted the
molecular details of certain membrane proteins (e.g., sulfate
transporter) in our case studies. These achievements contribute
to why AI-driven accurate protein prediction was selected by the
journal Science as the top breakthrough of the year 2021 (Thorp,
2021). In our study, more than half of these predictions were of high
quality, which is a significant improvement compared to previous
studies with less than 40% accuracy (Zhang and Skolnick, 2004).

Additionally, we found that the prediction confidence was
independent of the protein sequence length (data not shown),
suggesting the capacity of AlphaFold2 (Senior et al., 2020) and
RoseTTAFold (Baek et al., 2021) to maintain prediction accuracy,
even during the structural prediction of large proteins. This was
likely due to the innovation in combining predictions from multiple
discontinuous regions to produce an overall structure (Baek et al.,
2021), which has outperformed many other modeling programs
like Swiss-Model (Waterhouse et al., 2018). These predicted protein
structures, when combined with other structure-based analyses,
can provide valuable insights into the molecular mechanisms of
target proteins and generate scientific hypotheses, including the
identification of uncharacterized reaction sites or novel substrate
interaction diagrams, as demonstrated in previous studies (Baek
et al., 2021; Humphreys et al., 2021; Tunyasuvunakool et al., 2021)
and this study (see section “2.2. Highlight of predicted structures”).

Although acquiring protein sequence and structural data has
become relatively easy, accurately predicting the function of
unannotated proteins remains a challenge. In fact, less than 0.8%
of the sequences in the UniProt Consortium (2015) have been
experimentally characterized and manually annotated in SwissProt
(Boutet et al., 2007). Additionally, about 80% of poorly annotated
sequences in current databases do not have analogs with similar
functions, and 25% of them have no identifiable analogs with a
query identity greater than 30% (Zhang et al., 2017). This makes
it difficult to perform annotations using traditional homologous
transfer approaches. In our study, 35.8% of the proteome from
Acidithiobacillia consisted of proteins with unknown functions.
We propose that the 3D structure of proteins may offer a
possible solution to this problem, as the majority of protein
domains tend to adopt unique, ordered, and recognizable 3D
fold conformations (Das et al., 2015). We were pleased to find
that several advanced structure-based high-throughput annotation
algorithms are emerging to tackle this challenge, including

DeepFRI (Gligorijević et al., 2021), LBS Finder and Refiner
(Guterres et al., 2021), CATH (Das et al., 2015), and COFACTOR
(Zhang et al., 2017). These algorithms provide valuable information
for detailed structure comparison, fold recognition, catalytic site
identification, in silico reaction simulation, and experimental
verification. Some of these algorithms were highlighted in our
results (see section “2.2.6. Functional predictions of unannotated
proteins”). They leverage structural information, such as the
spatial position of amino acids, dihedral angles, the contact
matrix representing spatial distances between amino acids, and
sub-structure frequency, which have been shown to outperform
previous sequence-based prediction methods (Gligorijević et al.,
2021). Additionally, gene correlation networks can predict the
functions of previously unknown genes based on the functions of
adjacent genes (Ma et al., 2018). Other structure-based strategies for
enzyme functional characterization have also been demonstrated
in previous studies. For example, Zhao et al. (2013) applied
large-scale metabolite docking of available 3D protein structures
against the KEGG metabolite library and successfully characterized
a series of enzymes of unknown functions. Likewise, Hitchcock
et al. (2013) proposed the substrate profiles of uncharacterized
enzymes by docking metabolites to modeled structures. Finally,
Mokrushina et al. (2020) combined structural information with the
quantum mechanics/molecular mechanics (QM/MM) method to
uncover the catalytic mechanism of an immunoglobulin with novel
functionality, which can guide the artificial evolution of valuable
enzymes. These strategies significantly expand the possibilities for
characterizing and applying unknown proteins.

4. Materials and methods

We have combined protein structural and phylogenetic
analyses in this study (Figure 7).

4.1. Obtaining sequence of
Acidithiobacillia

Protein sequences and protein-encoding gene sequences for
the proteome of all available Acidithiobacillia isolates (n = 129)
were downloaded from Genbank (Benson et al., 2018). All protein
sequences within the proteome were first manually checked for
the presence of ambiguous residue codes (B, J, O, U, Z, or
X). Sequence(s) containing these ambiguous residue codes was
discarded. Orthofinder v.1.0 with default parameters was used
for protein sequence clustering (Emms and Kelly, 2019). The
protein sequences were reannotated with eggnog mapper v.2.0
(Cantalapiedra et al., 2021). The size of the Acidithiobacillia
pangenome was extrapolated by implementing an power law
regression function, Ps = κnγ, using a built-in program of the
BPGA v.1.0 (Chaudhari et al., 2016),1 in which Ps represents
the total number of non-orthologous gene families within its
pangenome, n represents the number of tested strains, and both
κ and γ are free parameters. An exponent γ of <0 suggests

1 https://sourceforge.net/projects/bpgatool/
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FIGURE 7

A graphical workflow of the computational processes.

the pangenome is “closed,” where the size of the pangenome
reaches a constant value as extra genomes are added. Conversely,
the species is predicted to harbor an “open” pangenome for γ

values between 0 and 1. In addition, the size of the core genome
was extrapolated by fitting into an exponential decay function,
Fc = κcexp(−n / τc), with a built-in program of the BPGA pipeline
(Chaudhari et al., 2016), where Fc is the number of core gene
families, and κc, τc are free parameters. To construct the gene
ortholog association network, correlations between pairwise gene
orthologs that were present in more than half of the genome were
calculated using the CoNet methods in Cytoscape v.3.9.1.2 Only
edges with a significant correlation higher than 0.7 (p < 0.05)
were retained for network construction. The COG functional
categories were assigned by eggNOG-mapper v2 (–evalue 0.001 –
score 60 –pident 40 –query_cover 20) after annotation of the query
sequences against the COG database (Galperin et al., 2021). We
applied Clustal Omega (Sievers and Higgins, 2018) for multiple
sequence alignments (MSAs). Enzyme Function Initiative-Genome
Neighborhood Tool (EFI-GNT) (Gerlt, 2017) was used to analyze
the gene context in genomes. We used SignalP v.5.0 (Almagro

2 https://cytoscape.org

Armenteros et al., 2019)3 for signal peptide prediction and SOSUI
(Hirokawa et al., 1998)4 for transmembrane region predictions.

4.2. Proteome-scale structure prediction
and analysis

We configured the local version of AlphaFold2 (Senior et al.,
2020) and RoseTTAFold (Baek et al., 2021) on our laboratory’s
computation resource, a Dell PowerEdge R940xa server with
four Intel Xeon Platinum 8260 processors (total of 148 cores),
1 TB of RAM, installed with Ubuntu 18.04.6 distribution, python
3. Prediction of protein 3D structure was conducted for all
checked sequences within the pan-proteome of Acidithiobacillia
through the local installation. The modeling analysis is generally
comprised of six steps: (1) Generate MSAs. (2) Predict secondary
structure for HHsearch run. (3) Search for templates. (4) Predict
distances and orientations. (5) Perform modeling. (6) Pick final
models. The prediction confidences were estimated by multiplying
residue-wise accuracy using DeepAccNet (Hiranuma et al., 2021).
We applied Visual Molecular Dynamics (VMD) software v.1.9.4

3 http://www.cbs.dtu.dk/services/SignalP/

4 http://harrier.nagahama-i-bio.ac.jp/sosui/
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(Humphrey et al., 1996) for structural analysis, visualization, and
graphics production. Electrostatic potential was calculated with an
adaptive Poisson-Boltzmann solver (APBS) (VMD APBS Plugin,
version 1.3.1). TM-align program (Zhang and Skolnick, 2005) was
used for structure comparisons. For substrate catalyzing proteins,
we applied AutoDock Vina v1.2.1 (Trott and Olson, 2010) to dock
the ligand into the predicted structure in reference to its PDB
template. All structural predictions generated in this study are
available to the community via https://doi.org/10.6084/m9.figshare.
19093109.v3.

4.3. Molecular dynamics and
metadynamics simulations

Molecular dynamics simulations for the protein-ligand
complex were performed using the Desmond Molecular Dynamics
System, version 3.6 (D. E. Shaw Research, New York, NY, 2008),
with OPLS_2005 force field. We built the simulation system with
periodic boundary conditions (PBC), which placed all molecules of
the protein-ligand complex in an orthorhombic periodic boundary
box with water solvent molecules, together with sodium or chloride
ions to balance the systems. Before the production phase, we
performed equilibration and energy minimization with the default
workflow of Desmond. We conducted MD simulations in an NPT
ensemble at a temperature of 300 K and an atmospheric pressure
of 1.01325 bar. We integrated the equations of motion with the
RESPA integrator, which applied an inner time step of 2.0 fs
for bonded and non-bonded interactions within the short-range
cut-off and an outer time step of 6.0 fs was used for non-
bonded interactions beyond the cut-off. We calculated long-range
electrostatic interactions with the Particle-mesh Ewald (PME)
method applying a grid spacing of 0.8 A. Additionally, bonds to
hydrogen atoms were constrained with the M-SHAKE method.
After energy minimization, all molecules were subjected to the final
production run for 15–20 ns. The last frame of MD simulation was
used as input model for the following metadynamics simulation
process using the Desmond Molecular Dynamics System, version
3.6 (D. E. Shaw Research, New York, NY, 2008), for a total of
20 ns. For the metadynamics distance CVs, the Gaussian width
was set to 0.05 Å. The starting height of the Gaussian potential
was set to 0.03 kcal/mol, and the Gaussians were deposited every
0.09 ps. The simulation was conducted at 300 K and 1.01325 bar
pressure. RESPA integrator was applied with a time step of 2.0 fs,
and short-range cut-off radius was defined at 9 Å. Electron transfer
across the targeted protein was calculated using the structure from
the last frame of MD simulation with eMap (Tazhigulov et al., 2019)
(default parameters), which applied the graph theory to predict
electron tunneling through electron transfer active moieties.

4.4. Phylogenetic tree construction

Phylogenetic tree based on protein sequences was built using
PhyML (Guindon et al., 2010) with the Maximum Likelihood (ML)
method and 1,000 bootstrap replicates, followed by visualization
with iTOL (Letunic and Bork, 2021). Sequences were aligned with
MUSCLE (Edgar, 2004) and trimmed with Gblocks (Talavera and
Castresana, 2007) prior to tree construction.

5. Conclusion

In this study, by utilizing the advanced AI-driven method,
we generated for the first time reliable full-chain structure
predictions for the pan-proteome of Acidithiobacillia, the model
strain for biohydrometallurgy. The median of model confidences
was 0.80, and proteins assigned to COG F (nucleotide transport
and metabolism), COG H (coenzyme transport and metabolism),
and COG J (translation, ribosomal structure and biogenesis) had
the highest average confidences. For the convenience of further
analyses, the predictions are freely available to the community.
In addition, several case studies on structures of conserved sulfur
and iron utilization proteins (e.g., sulfate transporter and iron
oxidase) that illustrate the effect of high-accuracy predictions are
also supplemented. Finally, for the 35.8% unannotated proteins in
the proteome, we resorted to the deep-learning algorithm DeepFRI
for structure-based functional predictions and successfully obtain
GO terms for 93.6% of these unknown proteins. These results
pave the way for a better understanding of the biological role of
Acidithiobacillia in biohydrometallurgy applications.
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