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Human monkeypox (mpox) has recently become a global public health

emergency; however, assays that detect mpox infection are not widely available,

largely due to cross-reactivity within the Orthopoxvirus genus. Immunoassay

development was largely confined to researchers who focus on biothreats and

endemic areas (Central and West Africa) until the 2022 outbreak. As was noted

in the COVID-19 pandemic, antigen detection assays, integrated with molecular

assays, are necessary to help curb the spread of disease. Antigen-detecting

immunoassays o�er the advantage of providing results ranging from within

min to h and in lateral flow formats; they can be deployed for point-of-care,

home, or field use. This study reports the development of an mpox-specific

antigen detection immunoassay developed on a multiplexed, magnetic-bead-

based platformutilizing reagents from all research sectors (commercial, academic,

and governmental). Two semi-quantitative assays were developed in parallel and

standardized with infectious mpox virus (MPXV) cell culture fluid and MPXV-

positive non-human primate (NHP) sera samples. These assays could detect viral

antigens in serum, were highly specific toward MPXV as compared to other

infectious orthopoxviruses (vaccinia virus, cowpox virus, and camelpox virus), and

exhibited a correlation with quantitative PCR results from an NHP study. Access

to a toolbox of assays for mpox detection will be key for identifying cases and

ensuring proper treatment, as MPXV is currently a global traveler.
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1. Introduction

Human monkeypox (mpox), caused by the mpox virus (MPXV), recently became a

global health emergency (Hirani et al., 2022). This emergency status was driven by mpox

outbreaks occurring in dozens of countries in 2022, including those in Europe and the

Americas, where mpox was not endemic. As a member of the Orthopoxvirus genus, mpox

phenotypically presents similarly to smallpox, which is caused by the variola major virus

(McCollum andDamon, 2014). The recent outbreak, combined with the similar presentation

to smallpox, necessitates the development of new mpox-specific diagnostic tools for both

public health andmilitary force health protection. Both endeavors would benefit from a rapid

diagnostic device that could be deployed far forward, either at the point-of-care or in the
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field. The key features of such a device would be its robustness,

ease of usage, and its ability to differentiate between MPXV,

vaccinia, cowpox, and variola major to rule out potential, incredibly

lethal smallpox infection or infection due to vaccinia virus

(Henderson and Arita, 2014). To work toward such a device, we

employed the assay development pipeline shown in Figure 1A.

This pipeline begins by down-selecting relevant antibodies using

recombinant antigens, screening against infectious viruses, and

verification through in vivo models, as compared with other

analytical techniques.

MPXV, shown in false color in Figure 1B, was discovered in

1958 inDenmark from an outbreak in laboratory primates (Magnus

et al., 1959). The first documented human cases were found in 1970

in the Democratic Republic of the Congo, Liberia, Sierra Leone,

and Nigeria during efforts to eradicate smallpox (Foster et al., 1972;

Ladnyj et al., 1972). The first outbreak outside of Africa occurred

in 2003 in the midwestern United States due to the importation

of infected rodents from Ghana (Ligon, 2004; Reed et al., 2004).

The recent global outbreak was unique in that high rates of human-

to-human transmission via intimate, sexual contact was common

(Heskin et al., 2022; Karagoz et al., 2023). The current gold standard

for diagnosing mpox is polymerase chain reaction (PCR) to detect

viral DNA (Li et al., 2006; Brown and Leggat, 2016; Maksyutov

et al., 2016; Davi et al., 2019; Altindis et al., 2022). However, PCR

requires careful sample handling and extraction; it also requires

sophisticated instrumentation that may only exist in centralized

labs and usually takes hours to days to produce a result. As such,

there is a need for an assay that can provide immediate results

to clinicians and commanders to inform their decision-making.

Lateral flow antigen detection assays, which were ubiquitous during

the COVID-19 pandemic, fit this requirement as they are accessible,

easy to use, require minimal sample preparation, and offer a rapid

response time (∼15–30min). Prior to manufacturing these lateral

flow devices, immunoassay development typically begins withmore

conventional, ELISA-style instrumentation.

We utilized a multiplexable, magnetic-bead-based Luminex

system, the Magpix R©, for our immunoassay development. This

is because assay development workflows require smaller amounts

of reagents and lower sample volumes, all while affording

increased signal-to-noise over traditional 96-well plate ELISAs;

they also offer multiplexing capability for more rapid down-

selection. Conserving time and resources is critical to rapid assay

development prior to transitioning to more point-of-care formats.

Typically, two antibodies are needed to design an antigen-detection

immunoassay. A primary antibody is attached to magnetic beads to

capture the antigen of interest, and a secondary antibody is used

for detection, as depicted in Supplementary Figure S1. A library

of monoclonal antibodies (MAbs) that react with antigens from

the vaccinia virus (VACV) and other orthopoxviruses antigens

have been developed at the United States Army Medical Research

Institute of Infectious Diseases (USAMRIID) over the years to

support orthopox vaccine development efforts. However, those

antibodies lacked specificity to a particular orthopoxvirus. AnMAb,

69-126-3-7, α-A29, was found to bind the MPXV protein, A29, but

not the homologous protein from other orthopoxviruses (Hughes

et al., 2014). This MAb was acquired and used as the primary

(1◦) MAb to develop a Magpix assay for specifically detecting

MPXV A29. Institutional and commercial MAbs were screened for

use as a secondary (2◦) MAb to complete the antibody sandwich.

Top-performing antibody pairs were verified using serum samples

of cynomolgus macaques positive for MPXV from a previous

study (unpublished).

Smallpox was one of the worst diseases in human history,

so much so that a multi-decade global effort was undertaken

to eradicate it. Routine vaccination against smallpox provided

protection against mpox; however, the practice ended in the 1980s.

Due to the lack of vaccination, the global population becomes more

susceptible to poxviruses every year. As such, the natural spread

of MPXV, or other similar poxviruses filling the ecological niche,

and the potential threat of bioterrorism with smallpox are growing

concerns. Therefore, there is a critical need to develop modern

diagnostics for poxviruses, both to support public health by limiting

the spread of mpox and to prevent the reemergence of smallpox.

2. Materials and methods

2.1. Reagents

Recombinantly expressed vaccinia virus (VACV) A27L was

purchased from AlphaVax Inc. (Research Triangle Park, NC,

USA), and Clade II MPXV A29L was purchased from Sino

Biological Inc. (Chesterbrook, PA, USA). Clade I MPXV A29L

was recombinantly expressed and purified in a previous study

(Heraud et al., 2006). Commercial α-A29 MAbs, namely, clone

IDs 31, 27, 32, 25, and 17, were purchased from Sino Biological

Inc. (Chesterbrook, PA, USA). The previously identified α-MPXV

A29 MAb (69-126-3-7) was acquired from the Center for Disease

Control (CDC) (Hughes et al., 2014), and the USAMRIID α-VACV

A27 MAb (4B4) was acquired from a previous study (Hooper

et al., 2009). Magnetic microspheres and an xMAP R© antibody

coupling kit were purchased from Luminex Inc. (Austin, TX, USA).

Streptavidin, R-phycoerythrin conjugate (SAPE) was purchased

from Life Technologies Corporation (Eugene, OR, USA), the PE/R-

Phycoerythrin conjugation kit—Lighting-Link R© was purchased

from Abcam (Cambridge, UK), and the EZ-linkTM Sulfo-NHS-

LC-Biotin, No-WeighTM Format kit was purchased from Thermo

Fisher Scientific (Waltham, MA, USA). Phosphate buffered saline,

Tween-20, and skim milk powder were purchased from Sigma-

Aldrich (St. Louis, MO, USA).

2.2. Microsphere preparation

Antibodies were covalently linked to microspheres following

the manufacturer’s instructions. For all steps that required

removing solutions, the microspheres were immobilized by placing

a rare-earth magnet adjacent to the reaction vessel, and the solution

was removed using a pipette. The microspheres were protected

from light during the incubation steps with aluminum foil. Briefly,

12.5 million microspheres were washed three times with 500 µL of

activation buffer and resuspended in 274.5 µL of activation buffer.

Next, 144.0 µL of sulfo-N-hydroxysulfosuccinimide and 81.5 µL

of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
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FIGURE 1

Assay development (A), and false color transmission electron microscope (TEM) image of MPXV in a liver cell (B).

solutions were added, and the tubes were gently rotated for

20min. After activation, the microspheres were washed three times

with coupling buffer, and the antibody was added at 4 µg per

million microspheres. The reaction was allowed to incubate for 2 h,

after which the microspheres were washed three times with 500

µL of PBS-T (phosphate buffered saline with 0.05% Tween-20),
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resuspended at 12.5 million microspheres per mL in PBS-T, and

stored at 4◦C.

2.3. Antibody conjugation

Antibodies were covalently coupled with biotin and

phycoerythrin (PE) using commercial kits and following

the manufacturers’ instructions. Biotinylation of MAbs was

achieved using the EZ-linkTM Sulfo-NHS-LC-Biotin, No-WeighTM

Format kit. Briefly, 50–60 µg of MAbs were made to react

with a 20-fold molar excess of freshly prepared sulfo-NHS-LC-

biotin (sulfosuccinimidyl-6-[biotin-amido]hexanoate) at room

temperature for 30min. After the reaction, excess biotin was

removed by dialyzing against PBS-T. Antibody-PE conjugates

were generated with the PE/R-Phycoerythrin conjugation kit—

Lighting-Link R©. Briefly, 6 µL of a modifier reagent was added to

60 µg of MAb (1.0 mg/mL), before being added to lyophilized

R-phycoerythrin. The mixture was allowed to react in the dark

overnight. After the reaction, 6 µL of a quencher reagent was

added, and the conjugates were used without further purification.

2.4. General assay procedure

Assays were developed on the Magpix R© platform using white,

Costar, round-bottom 96-well plates. The plates were loaded with

2,500 microspheres per well, placed on a magnetic block for 1min,

and manually decanted. Samples were diluted in 5% skim milk

in PBS-T (SM), and 50 µL was applied to each well. The plates

were then covered and allowed to incubate with 450 rpm shaking

for 1 h. After incubation, the microspheres in each well were

washed three times with 100 µL of PBS-T. Secondary antibody

conjugates (PE or biotin-labeled) were diluted to 1µg/mL in SM,

and 50 µL was added to the appropriate wells. The plates were

then covered and allowed to incubate with 450 rpm shaking for

another hour. After incubation, the microspheres were washed

three times with PBS-T. For plates using 2◦-PE conjugates, the

microspheres were suspended in 100 µL of PBS-T and read using

the Magpix R© instrument. For plates using 2◦-biotin conjugates,

SAPEwas diluted to 10µg/mL in SM, and 50µL was added per well

before covering and incubating with shaking at 450 rpm for 30min.

After the final incubation, the microspheres were washed three

times with PBS-T, suspended in 100 µL of PBS-T, and read using

the Magpix R© instrument. A pictorial representation is provided in

Supplementary Figure S1.

2.5. Test samples

Whole blood samples were derived from a therapeutics study

performed in cynomolgus macaques under the Good Laboratory

Practices standard described by the Food andDrugAdministration.

Briefly, animals were intravenously infected with the Zaire strain of

MPXV (Clade I), as previously described (Mucker et al., 2022a,b).

To assess the efficacy of ST-246 at the time of lesion onset, animals

were orally treated with one of two concentrations (10 mg/kg or 20

mg/kg) of ST-246 or placebo, starting at 72 h or 96 h post-exposure.

At 72 h, 50% of the placebo and 7 of 12 ST-246 treated animals

had observable lesions, whereas 100% of all animals had observable

lesions at 96 h. Ethylenediaminetetraacetic acid (EDTA)-treated

whole blood samples were collected on the day before the challenge,

on the day of the challenge, every 3 days after the challenge, and

upon death. The samples were processed to sera for analysis. All

treated animals survived the exposure, whereas all placebo-treated

animals succumbed to infection.

2.6. Extraction and qPCR

Nucleic acid was extracted from the samples using Qiagen’s

QIAamp DNA Mini Kit. A quantitative, pan-orthopox assay was

used to detect the poxvirus hemagglutinin (HA) gene. Assays were

performed and analyzed on a LightCycler 2.0 or similar. The

limit of quantitation was 50 copies per 5 µL reaction (10,000

genomes/mL). This procedure has been validated and described

elsewhere (Mucker et al., 2017).

3. Results

3.1. Screening antibody combinations for
VACV A27 and MPXV A29 detection

The USAMRIID has researched orthopoxviruses for many

decades and has a wide inventory of monoclonal antibodies

(MAb) against vaccinia virus (VACV), but the majority of these

antibodies are highly cross-reactive among the genus (Edghill-

Smith et al., 2005; Kitamoto et al., 2005; Heraud et al., 2006;

Hooper et al., 2007, 2009; Su et al., 2007; Golden and Hooper,

2008, 2010; Golden et al., 2011, 2012; Mucker et al., 2013,

2017, 2018, 2020, 2022a,b; Pittman et al., 2015; Kota et al.,

2023; Taha et al., 2023). A previous study by the Center for

Disease Control (CDC) discovered MAb 69-126-3-7 (α-A29) that

binds MPXV protein A29 (ortholog of VACV A27) with high

specificity (Hughes et al., 2014). The CDC and USAMRIID further

characterized this monoclonal antibody. At the beginning of assay

development, this was the only monoclonal in the peer-reviewed

literature that was shown to be specific to MPXV. As such, we

targeted MPXV A29 for MPXV-specific immunoassay detection.

We acquired MAb 69-126-3-7 from the CDC, five commercial A29

MAbs (S17, S25, S27, S31, and S32), and USAMRIID’s MAb 4B4,

which was previously used to detect VACV A27 (Hooper et al.,

2009). To screen for viable antibody pairs, each of the MPXV

A29 MAbs was covalently coupled to magnetic microspheres to

serve as capture MAbs (1◦) and covalently linked with biotin to

serve as detector MAbs (2◦). SAPE was used as a fluorescent

reporter. Antibody pairs were screened against recombinant Clade

I and II MPXV A29, as well as VACV A27, at 100 ng/mL in

a checkerboard fashion to determine the best antibody pairs

(Figures 2A, B, Supplementary Figure S2). All commercial MAbs

were cross-reactive with Clade I MPXV A29 and VACV A27

when used as a capture antibody. When α-A29 was used as

the capture antibody, there was notable one-way reactivity with

MPXV A29 with all commercial MAbs as detectors, except for

S31. For Clade II MPXV A29, one-way reactivity was found for

several pairs that utilized α-A29 or S31. The most promising
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FIGURE 2

Screening of MAbs and detection strategy with recombinant antigens. The 1◦ MAbs (vertical axis) are covalently linked to magnetic microspheres. 2◦

MAbs (horizontal axis) are biotinylated, and detection is achieved with SAPE. Clade I MPXV A29 is shown in (A), and Clade II MPXV A29 is shown in (B).

Clade selectivity of down-selected MAb pairs using 2◦-biotin conjugate, as shown in (C), and 2◦-PE conjugate, as shown in (D). Data are presented as

signals using MPXV A29 divided by signals using VACV A27.

pairs were α-A29/S27, S31/S27, and S27/S31. Based on these

results, the aforementioned pairs were down-selected for further

assay optimization.

3.2. Selection of a labeling strategy

Selected pairs from the initial screening, as well as MAb

4B4 from previous research (Hooper et al., 2009), were directly

labeled with phycoerythrin (PE). Direct PE conjugation of the

2◦ MAbs simplifies assays by eliminating the need for a third

assay incubation with SAPE, and it can improve the overall assay

performance. As stated above, MAb pairs were screened against

Clade I and II MPXV A29, as well as VACV A27 (100 ng/mL). The

signal was expressed as the MPXV A29 response divided by the

VACV A27 response to demonstrate specificity (Figures 2C, D) or

as median fluorescence intensity (MFI) (Supplementary Figure S3).

α-A29 was screened as 1◦ with either 4B4 or S27 as 2◦, S31 was

screened as 1◦ with S27 as 2◦, and S27 was screened as 1◦ with S31

as 2◦. In addition to showing one-way reactivity toward MPXV,

α-A29/4B4 was also specific to Clade I MPXV A29 with biotin

(4B4-B) or PE (4B4-PE) conjugation. The α-A29/S27 pair reacted

to both MPXV A29 clades, whether biotinylated (S27-B) or as a

PE conjugate (S27-PE), with S27-PE generating more signal for

Clade I MPXV A29. S27/S31 and S31/S27 were both selective for

Clade IIMPXVA29, with S27/S31-PE generating the highest signal.

The MAb pairs were further characterized using infectious viruses,

vide infra.
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TABLE 1 Antigen detection with infectious virus.

α-A29a S31a S27a

4B4b S27b S27b S31b

2◦-biotin 2◦-PE 2◦-biotin 2◦-PE 2◦-biotin 2◦-PE 2◦-biotin 2◦-PE

MPVX

Zaire ′79

1706.6 405.4 701.5 845.4 1.1 0.9 1.0 0.0

MPXV

Katakombe

1916.7 436.2 792.8 920.0 1.2 0.9 1.0 0.0

MPXV US

2003

1.1 219.3 829.5 807.0 2.7 1.5 1.0 0.0

MPXV current 1.1 458.0 904.1 774.6 6.2 1.1 1.0 0.0

VACV lister 39.1 33.7 38.3 23.6 1.3 0.4 1.0 0.0

VACV IHDJ 17.5 14.2 14.9 10.6 1.2 0.9 1.0 0.0

VACVWR 32.9 27.1 49.9 26.7 1.5 0.6 1.0 0.0

Cowpox BR 46.8 37.1 53.4 34.6 1.5 0.6 1.0 0.0

Cowpox wt 11.4 11.7 13.2 10.4 1.1 0.9 1.0 0.0

Camelpox

Somalia

1.0 0.8 1.2 1.1 1.0 0.9 1.0 0.1

aThe 1◦ MAb is covalently linked to magnetic microspheres.
bThe 2◦ MAb is biotinylated (detection with SAPE) or directly PE-labeled.

3.3. Down-selection using infectious
viruses

After screening numerous MAb pairs and reporter-labeling

strategies against recombinant antigens, we proceeded to test

the assays against infectious viruses. Various orthopoxviruses

(MPXV Zaire ’79, MPXV Katakombe, MPXV US 2003, MPXV

current, VACV Lister, VACV IHDJ, VACV Western Reserve,

cowpox Brighton, cowpox wild-type, and camelpox Somalia)

were previously cultured in Vero cells, and cell slurries were

harvested for antigen detection. Relative virus concentrations were

determined through plaque assay to be 106-108 plaque-forming

units per milliliter (pfu/mL). Two-fold dilutions of the cell slurries

were screened with the selected MAb pairs, and the results are

shown as signal divided by negative slurry (Table 1). Among the

MAb pairs screened, only pairs that used α-A29 as 1◦ MAb, yielded

an appreciable signal over the uninfected cell slurry. As a 2◦ MAb,

S27 performed similarly for both clades and with either label

(biotin or PE), whereas 4B4 maintained Clade I selectivity when

biotinylated but lost selectivity and response when PE-conjugated.

Based on the reactivity and signal-to-noise ratio, three MAb pairs

were selected for further development: α-A29/4B4-B, α-A29/S27-B,

and α-A29/S27-PE.

3.4. Determination of the limits of detection

Three antibody pairs were tested against infectious MPXV

strains to determine their limits of detection (LoD). α-A29 was used

as the 1◦ MAb, with 4B4-B, S27-B, or S27-PE as 2◦ MAb. Slurries of

infectious virus were initially diluted at a 1:2 ratio in the assay buffer

prior to 10-fold serial dilutions (Figure 3). The data were fit with

a four-parameter sigmoidal function, and LoDs were interpolated

from the fitted function using three standard deviations greater

than the average of a blank titration as a cutoff value (Figure 3E,

Supplementary Table S1). For Clade I strains, the LoD for S27-PE

and 4B4-B were both in the low thousands of pfu/mL, while S27-B

was ten-fold less sensitive. For all strains, S27-PE had a much lower

LoD than S27-B.

3.5. MPXV assay verification with
longitudinal animal model samples

Two assays, α-A29/S27-PE and α-A29/4B4-B as 1◦/2◦, were

carried forward to test for antigenic reactivity with serum samples

from an institutional, legacy MPXV animal study. Non-human

primates (NHPs and cynomolgus macaques) were given an

intravenous challenge of MPXV Zaire ’79 (day 0) and treated with

tecovirimat (ST-246) (3 NHPs, 20 mg/kg) or placebo (4 NHPs)

72 h later. Placebo NHPs experienced severe illness and succumbed

between days 13 and 15, while all treated NHPs survived. Serum

was collected on the day before the challenge, on the day of the

challenge, every 3 days after the challenge, and during terminal

bleeds for NHPs that succumbed on day 14. Serum samples were

diluted 1:20 and tested for MPXVA29 (Figure 4). Legions appeared

for all NHPs on days 3 and 4, and the placebo NHPs showed

detectableMPXVA29 in the serum beginning on day 6 and peaking

on day 12. Both assays detected MPXV A29 in the serum from

challenged, but not treated, NHPs, even though the treated NHPs

developed lesions. There was no statistical difference between the

signal from the S27-PE assay and that from the 4B4-B assay in

terms of both total signal and S/N. Samples were also screened

for the presence of MPXV DNA using qPCR, the current “gold-

standard” for detection in this model (Mucker et al., 2017). The

antigen detection assays were highly correlated with the qPCR

results (Pearson r > 0.98, Supplementary Figure S3).
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FIGURE 3

Limits of detection with infectious virus. α-A29 is used as the capture MAb, with S27 or 4B4 as the 2◦ MAb. S27-PE, S27-B, and 4B4-B are depicted as

black circles, blue squares, and red triangles, respectively. Median fluorescence intensity (MFI) is shown as a function of virus titer in pfu/mL for MPXV

strains Zaire ’79 (A), Katakombe (B), US 2003 (C), and the currently circulating strain (D). Data were fit with a 4-parameter sigmoidal function.

Interpolated limits of detection of the antigen assays are shown with 90% confidence intervals in (E). The 4B4 assay does not detect Clade II MPXV

and is excluded from (C, D).

4. Discussion

Diagnostic tools that are sensitive, specific, accurate, and

accessible are invaluable to correctly identifying the etiology and

ultimately stopping widespread disease, in the public health sector

and for military force health protection. PCR became a household

term during the COVID-19 pandemic, as this nucleic acid-based

test was the only FDA-cleared method for determining SARS-

CoV-2 positivity during the first year of the pandemic. Once

rapid antigen tests became widely available, infected individuals

were better able to self-diagnose and isolate without having to

wait 24–48 h for test results (Gronvall, 2021). Molecular diagnostic

assays, such as PCR, are much more sensitive and specific than

immunodiagnostic assays. Primer and probe design for specific

nucleic acid targets coupled with signal amplification contributes to

the exquisite sensitivity of these assays. Immunodiagnostic assays,

such as ELISA and lateral flow assays, are not as sensitive as

molecular diagnostic assays, such as PCR, but they are often much

faster and require far fewer sample processing steps (e.g., nucleic

acid extraction) and consumables.

The world was still in slow recovery from the COVID-19

pandemic when mpox cases began to rise at an alarming rate in

non-endemic areas in early 2022. Due to the ongoing development

of orthopoxvirus countermeasures, potential vaccines, as well

as PCR assays, were already available for diagnosing patients

among naïve populations (Li et al., 2006; Maksyutov et al.,

2016; Mucker et al., 2017; Papadakis et al., 2023). There were

no commercially available antigen assays for MPXV or any

orthopoxvirus outside of lab-derived tests at research institutions.

Prior to the 2022 outbreak, the commercial market for antibodies
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FIGURE 4

Detection of MPXV with specific assays. NHPs were challenged on day 0 and treated with ST-246 (hollow) or placebo (filled) at 72h. Serum was

assayed using α-A29 as the 1◦ MAb, with S27-PE (black circles) or 4B4-B (red triangles) as the 2◦ MAb. qPCR data are shown as blue diamonds. Error

bars are SEM for 3 treated or 4 placebo NHPs.

or recombinant proteins for MPXV or other orthopoxviruses was

limited. Orthopoxviruses are large DNA viruses with genomes that

encode approximately 200 proteins. The large number of proteins

complicates the development of antigen-detection immunoassays

because biologically relevant targets must be carefully selected

(Shchelkunov et al., 2002). The Diagnostic Systems Division at

USAMRIID has developed several research-grade assays using

monoclonal antibodies developed by the Virology Division,

but these reagents lack antigenic specificity, leading to “pan-

orthopoxvirus” immunoassays. Research on orthopoxviruses over

the years from the USAMRIID, the CDC, and other academic

and governmental institutions have highlighted protein targets of

interest for MPXV-specific detection, including the α-A29 MAb

discovered in 2014. The recent outbreak invigorated interest from

commercial sources to develop MPXV-specific MAbs against A29

as well. Upon testing these MAb sources with our USAMRIID

orthopox MAb collection, we successfully designed and verified

an MPXV-specific MPXV A29 detection assay. The assay was

verified against well-characterized, longitudinal NHP samples from

an MPXV therapeutics study. We could detect MPXV A29 in the

untreated animals but observed no signal from the treated animals,

and the results showed an excellent correlation with qPCR data.

The signal became detectable on day 6 in the untreated cohort and

persisted until the end of the study. While this assay cannot be

considered an indication of a correlate of protection, it was certainly

interesting to observe the absence of a signal in the treated cohort.

Our aim at the beginning of this study was to create an

MPXV-specific immunoassay. We did not expect to find clade-

specific reactivity. MPXV A29 from the two clades differ by only

two amino acids, the substitutions are relatively conservative,

histidine to arginine and arginine to histidine, and they are not

located on the heparin-binding domain that confers specificity to

α-A29 (Hughes et al., 2014). Further modeling is necessary to

assess the binding sites, antibody kinetics, and epitope binning

to understand this phenomenon and determine whether it is

due to the antibody itself or the labeling chemistry. The most

plausible explanation is that the relatively small size of biotin,

as compared to PE, allows it to access an attachment site that

competes for a binding epitope necessary for identifying Clade II

A29 but not Clade I A29. This development effort also highlights

the risks associated with relying on recombinant antigens for assay

development. Several commercial MAb pairs produced promising

results during the initial screening, but none of them were effective

when assayed against infectious viruses. MAbs developed using

recombinant antigensmay not translate to clinically relevant assays,

demonstrating the need to use infectious viruses in antibody

discovery pipelines.

5. Conclusion

Two antibody pairs that detected MPXV with high sensitivity

and selectivity were identified. The LoDs for the assays were in

the low thousands of pfu/mL. The developed assays were verified

with serum samples from an animal model of mpox. Future

research will focus on testing the assay on known MPXV-infected

human samples, as well as other matrices of clinical relevance to

orthopoxviruses (pustules, scabs, and swabs). Additionally, we plan

to transition these assays to a lateral-flow format so that they can

be deployed far forward for point-of-care or field use. Accurate,

specific, and timely diagnostics are key to mission readiness. As

such, our diagnostic toolbox needs to be well-stocked to prepare

for the next outbreak or pandemic.
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