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Introduction: Non-tuberculous mycobacteria (NTM) is a major category of 
environmental bacteria in nature that can be divided into rapidly growing 
mycobacteria (RGM) and slowly growing mycobacteria (SGM) based on their distinct 
growth rates. To explore differential molecular mechanisms between RGM and 
SGM is crucial to understand their survival state, environmental/host adaptation and 
pathogenicity. Comparative genomic analysis provides a powerful tool for deeply 
investigating differential molecular mechanisms between them. However, large-
scale comparative genomic analysis between RGM and SGM is still uncovered.

Methods: In this study, we screened 335 high-quality, non-redundant NTM 
genome sequences covering 187 species from 3,478 online NTM genomes, 
and then performed a comprehensive comparative genomic analysis to identify 
differential genomic characteristics and featured genes/protein domains between 
RGM and SGM.

Results: Our findings reveal that RGM has a larger genome size, more genes, 
lower GC content, and more featured genes/protein domains in metabolism of 
some main substances (e.g. carbohydrates, amino acids, nucleotides, ions, and 
coenzymes), energy metabolism, signal transduction, replication, transcription, 
and translation processes, which are essential for its rapid growth requirements. On 
the other hand, SGM has a smaller genome size, fewer genes, higher GC content, 
and more featured genes/protein domains in lipid and secondary metabolite 
metabolisms and cellular defense mechanisms, which help enhance its genome 
stability and environmental adaptability. Additionally, orthogroup analysis revealed 
the important roles of bacterial division and bacteriophage associated genes in 
RGM and secretion system related genes for better environmental adaptation 
in SGM. Notably, PCoA analysis of the top 20 genes/protein domains showed 
precision classification between RGM and SGM, indicating the credibility of our 
screening/classification strategies.

Discussion: Overall, our findings shed light on differential underlying molecular 
mechanisms in survival state, adaptation and pathogenicity between RGM and 
SGM, show the potential for our comparative genomic pipeline to investigate 
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differential genes/protein domains at whole genomic level across different 
bacterial species on a large scale, and provide an important reference and 
improved understanding of NTM.
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Introduction

Non-tuberculous mycobacteria (NTM) are a major category of 
environmental bacteria that can be  divided into rapidly growing 
mycobacteria (RGM) and slowly growing mycobacteria (SGM) based 
on their distinct growth rates (Kim et al., 2013). RGM reproduce more 
rapidly (3–7 days) than SGM (>7 days) in nutrient-rich environments, 
while SGM are better adapted to nutrient-poor and ecologically 
challenging environments (Pereira and Ramos, 2020). While RGM are 
mostly saprophytic and non-pathogenic, SGM are more pathogenic 
and can cause respiratory, skin and soft tissue infections, osteomyelitis 
and even death in severe cases (Johansen et al., 2020).

Comparative genomic analysis provides a powerful tool for deeply 
investigating differential molecular mechanisms between RGM and 
SGM (Jia et al., 2021). In recent years, there have been some studies 
concerning the genomic differences between RGM and SGM, with an 
increasing focus on exploring the mechanisms regulating the growth 
rates and associated pathogenic genes (Bachmann et al., 2019). For 
instance, several studies have shown that the RGM genomes contain 
more ribosomal operons and metabolic genes, aiding in faster gene 
expression and metabolic activities (Turenne, 2019). In contrast, the 
SGM genomes show the enrichment of DNA repair and oxidation–
reduction reaction related genes for survival under low-nutrient 
conditions (Pereira and Ramos, 2020). Another study covering 157 
species showed that RGM is more abundant in genes related to 
pathways such as Amino Acid Transport/Metabolism and 
Transcription, which may also be responsible for its faster growth rate 
(Bachmann et al., 2019). However, the study’s comprehensiveness and 
robustness require further enhancement, as the annotation methods 
were exclusively rely on the COG database.

To date, although current genomic research on limited NTM 
bacterial species and strains revealed some differential molecular 
mechanisms between RGM and SGM, large-scale comparative 
genomic analysis between them is still uncovered. Therefore, it is 
necessary to explore the genomic differences between RGM and SGM 
using more NTM strains and species for comprehensively analyzing 
the molecular mechanisms underlying the differential growth rates, 
environmental adaptation and pathogenicity between RGM and SGM.

In this study, we screened 335 high-quality, non-redundant NTM 
genome sequences covering 187 species from 3,478 online NTM 
genomes (as of January 2022), and then performed a comprehensive 
comparative genomic analysis using multiple bioinformatic tools 
(such as COG, Pfam, and OthoFinder). Our results comprehensively 
revealed differential genomic characteristics and featured genes/
protein domains between RGM and SGM. The findings of our 
systematical analysis shed light on differential molecular mechanisms 
in growth, adaptation and pathogenicity underlying RGM and SGM, 

and provide an important reference and improved 
understanding of NTM.

Materials and methods

Collecting NTM datasets for comparative 
genomic analysis

A total of 3,478 Mycobacterium sequences, excluding the 
Mycobacterium tuberculosis complex and Mycobacterium leprae 
complex, were downloaded from the NCBI-genebank database,1 
collected from January 2022. To ensure high quality and 
non-redundant genome datasets, strict quality control protocols were 
followed (Levy et al., 2018). Firstly, we calculated the N50 of genomic 
sequences using assemble-stats, and only those with an N50 of 
≥50,000 bp were selected. Next, CheckM was used to assess the 
completeness and contamination of genomic sequences. Only those 
with a completeness score of ≥95% and contamination score of ≤5% 
passed the screening. Thirdly, we used Mash to calculate genomic 
distances and applied Markov Clustering to cluster the data. Only 
sequences with genomic distances of >0.01 were selected, and the 
redundant sequences were filtered out. Fourthly, the phylogenetic tree 
was aligned to remove sequences with abnormal evolutionary 
branches. Finally, information such as the growth rate and species 
classification of the genomes was manually collected from public 
databases (such as NCBI) and publications (Gupta et  al., 2018; 
Matsumoto et  al., 2019), resulting in 335 genomic sequences 
containing 187 NTM species.

In particular, we reconstructed the phylogenetic tree by extracting 
amino acid sequences of 198 single-copy homologeous genes detected 
by OrthoFinder. Single-copy gene alignment was conducted using 
Muscle v5.1 (Edgar, 2021), while FastTree v2.1.11 was used to generate 
the maximum likelihood tree (Price et al., 2009), which was then 
visualized using iTOL. Additionally, pairwise ANI was calculated 
using pyani 0.2.12 with ANIm.

Genome characterization and gene 
category enrichment analysis

To analyze the genome characterization and gene category, we first 
predicted the genome open reading frames with Prokka v1.14.6 

1 https://www.ncbi.nlm.nih.gov/
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(Seemann, 2014). Next, we separately counted the genome size, GC 
content, and the number of genes annotated by Prokka with a custom 
Python script. Independent t-tests and PhyloGLM tests were used to 
compare the genome size and gene number of RGM and SGM. On the 
other hand, Wilcox test and PhyloGLM test were used to compare the 
GC content of the genome (Ives and Garland, 2010). The comparative 
kernel density was then plotted using the geom_density function of 
the R ggplot2 package.

We mapped protein-coding genes into COG ids using RPS-BLAST 
with an e-value threshold of 0.01 and a coverage threshold of at least 
70%. For every genome, we computed the number of genes for each 
gene category and used t-tests and PhyloGLM to estimate the 
enrichment and depletion of 21 gene categories between RGM 
and SGM.

Identification of gene clusters and protein 
domains associated with RGM and SGM

To identify gene and protein domain clusters associated with 
RGM and SGM, we divided up the process into two primary steps. 
The first involved gene and protein domain clustering based on 
amino acid similarity. Secondly, we identified protein and protein 
domain clusters that were significantly enriched in RGM/SGM. The 
clustering of gene and protein domains utilized three independent 
methods, COG, Pfam, and OthoFinder. We  performed COG 
annotation as mentioned, with Pfam domains predicted by 
PfamScan v1.6 (Song et  al., 2018). OrthoFinder encompassed a 
wider range of proteins as a clustering method, including any 
proteins that lacked functional annotation (Emms and Kelly, 2015). 
The aforementioned process generated a list of gene/protein 
domains for each genomic sequence. Next, we identified the genes 
and protein domains that were significantly enriched in RGM/SGM 
using Scoary (Brynildsrud et al., 2016), which is a strictly accurate 
statistical method with the input dataset being the presence/absence 
dataset of genes. These gene clusters/protein domains were 
considered enriched only when Benjamini-Hochberg 
FDR-corrected p-values were less than 0.05, while empirical 
p-values were less than 0.05. Identified odds ratios >1 corresponded 
to RGM-associated gene cluster/protein domains. In contrast, odds 
ratios for SGM-associated gene cluster/protein domains were < 1. 
Each of the 335 assembled genomes were analyzed by PHASTER 
(https://phaster.ca/) to identify the presence of prophage.

Results

Phylogenetic analysis and taxonomy of 
NTM genomes

In this study, a total of 3,478 NTM genome sequences (3,176 
draft and 302 complete genomes) were obtained from the NCBI 
database (Figure  1A). After quality control and de-redundancy, 
we identified 335 high-quality non-redundant genomes covering 
187 NTM species, with an N50 value of at least 50,000 and 
completeness of at least 95% (Supplementary Table S1). Among 
them, 195 genomes belonged to RGM and 140 genomes 
belonged to SGM.

To investigate the phylogeny of NTM, we  identified 198 
single-copy orthologous genes from the 335 genomes using 
OrthoFinder, and reconstructed a phylogenetic tree based on 
these genes with Nocardia farcinica IFM 10152 
(GCA_000009805.1) as the outgroup (Figure  1B). The 
phylogenetic analysis revealed highly clonal distribution of rapid-
growing NTM (RGM) and slow-growing NTM (SGM). RGM 
mainly belonged to the Mycobacteroides and Mycolicibacterium 
genera, whereas SGM mainly belonged to the Mycobacterium, 
Mycolicibacter and Mycolicibacillus genera, which highlights a 
strong correlation between taxonomy/phylogeny and growth 
rate in NTM.

In addition, we detected some misnamed NTM strains based 
on phylogenetic analysis. For instance, Mycobacterium palauense 
CECT 8779 (GCA_002592005.1), Mycobacterium grossiae DSM 
104744 (GCA_008329645.1), Mycobacterium neglectus CECT 8778 
(GCA_002591975.1), Mycobacterium neumannii CECT 8766 
(GCA_002245615.1), Mycobacterium lehmannii CECT 8763 
(GCA_002245535.1), Mycobacterium lehmannii IS-1744 
(GCA_001499925.1), Mycobacterium kyogaense NCTC 11659 
(GCA_003254575.1), Mycobacterium aquaticum RW6 
(GCA_002086485.1), and Mycobacterium syngnathidarum 27,335 
(GCA_001942625.1) were classified as Mycobacterium, but their 
phylogenetic analysis indicated that they should belong to the 
Mycolicibacterium genus. Mycobacterium novum JCM 6391 
(GCA_010726505.1) was categorized as Mycobacterium, but its 
phylogenetic analysis indicated that it should belong to 
Mycolicibacter. Our findings were further validated by Average 
Nucleotide Identity (ANI) analysis, as the aforementioned 
genomes clustered consistently with the observed taxonomic 
groups (Supplementary Figure S2; Supplementary Table S8). 
Overall, the taxonomy of NTM species for these strains need to 
be re-evaluated.

We also observed that the growth rates of some strains were 
inconsistent with their phylogenetic positions. For example, 
Mycolicibacterium tusciae JS617 (GCA_000243415.3), 
Mycolicibacterium tusciae DSM 44338 (GCA_002086795.1), 
Mycobacterium doricum JCM 12405 (GCA_010728155.1), and 
Mycobacterium bourgelatii JCM 30725 (GCA_010723575.1) exhibited 
atypical growth phenotypes, which is consistent with previous findings 
confirming that these slow growing NTM species are located within 
the RGM lineage (Devulder et al., 2005; Mignard and Flandrois, 2008; 
Tortoli, 2012; Tortoli et al., 2017).

Genome analysis revealed differential 
genomic features between RGM and SGM

Genome analysis revealed significant differences in genome 
size, gene number, and GC content between RGM and SGM 
(Figure 2A). RGM exhibited a larger genome size (6,015,739 bp for 
RGM: 5,635,503 bp for SGM, p < 0.001, t-test), a greater gene 
number (5,796 CDS for RGM: 5,241 CDS for SGM, p < 0.001, 
t-test), and a lower GC content (67.19% for SGM: 66.57% for 
RGM, p < 0.01, Wilcoxon test and PhyloGLM test) than SGM, 
which was in agreement with some previous research (Turenne, 
2019). Incidentally, as a main environmental microorganism, the 
genomes of NTMs displayed substantial variation within RGM/
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SGM genomes for adaptation to various environments 
(Turenne, 2019).

We then used 21 COG categories (excluding the “Function 
unknown” category) to investigate RGM and SGM genomes using 
both t-test (Figure 2B) and PhyloGLM (Supplementary Figure S1). 
We found that 12 COG categories were significantly enriched in RGM, 
seven of which were related to metabolism; while only one category 
was significantly enriched in SGM (lipid transport and metabolism). 
Among the 12 categories enriched in RGM, such as “Amino acid 
transport and metabolism (E)” and “Transcription (K),” which have 
been reported to be necessary for rapid growth of RGM (Bachmann 
et al., 2019). On the other hand, the lipid transport and metabolism 
(I) category was significantly enriched in SGM, which has been 
reported to improve the environmental adaptability of SGM (Tran 
et al., 2019; Pereira and Ramos, 2020).

Overall, these differences reflect genome adaptations in 
responsible for differential growth rates between RGM and 
SGM. RGM has a larger genome size, a greater gene number, and 
stronger metabolism for adaptation of their rapid growth 
requirements; SGM has a higher GC content and stronger lipid 
transport and metabolism in order to enhance their genome stability 
and environmental adaptability for slower growth.

Identification of rapid- and slow-growing 
featured genes In RGM and SGM

To identify featured genes enriched in the RGM and SGM 
genomes, we annotated all putative protein-coding sequences using 
COG and employed Scoary to determine whether the COG genes 
(genes mapped to the same COG ID) were significantly associated 
with RGM or SGM (Levy et al., 2018). The genes with significant 
enrichment in RGM and SGM were considered as RGM or SGM 
featured/associated genes.

Using the above-described methodology, 170 RGM-associated 
genes and 87 SGM-associated genes were predicted 
(Supplementary Table S3), most of which were associated with 
metabolism, followed by cellular processes, signaling, and information 
storage and processing (Figure 3A). Comparative analysis unveiled 
that RGM had more enriched genes in metabolism and transport of 
essential substances (such as carbohydrates, amino acids, nucleotides, 
ions, and coenzymes), and energy production and transport.

First, metabolism related genes rank first in both 
RGM-associated genes and SGM-associated genes. Among the eight 
metabolism-related categories, RGM had more significantly 
enriched genes in six ones, with five of the six categories displaying 
an increase of at least 50% compared to SGM (Carbohydrate 
transport and metabolism, Amino acid transport and metabolism, 
Energy production and conversion, Nucleotide transport and 
metabolism, Coenzyme transport and metabolism). Notably, RGM 
owned eight enriched genes in “nucleotide transport and 
metabolism” category (encoding PucL, AlC, SsnA, FuI1, PurU, 
GuaA1, UdK, and AllE) but no such gene was detected in SGM, as 
it is known that RGM needs a stronger nucleotide metabolism for 
facilitating its fast growth and reproduction (Peebo et al., 2015). 
Specically, PucL, AlC, SsnA, and FuI1 were involved in uric acid 
metabolism, PurU and GuaA1 were linked to purine synthesis, UdK 
was associated with pyrimidine synthesis, and AllE was related to 

urea metabolism. On the other hand, SGM had more enriched genes 
in “Secondary metabolites biosynthesis, transport and catabolism” 
and “Lipid transport and metabolism” categories, which have been 
reported in favor of slow-growth of bacteria (Shin et  al., 2015; 
Bouam et al., 2018).

As for cellular processes and signaling, RGM had more enriched 
genes related to synthesis of cell walls and membranes, post-
translational modification, signal transduction, and cell motility; 
SGM had more enriched genes related to “Defense mechanisms,” 
“Cell cycle control, cell division, chromosome partitioning” and 
“Intracellular trafficking, secretion, and vesicular transport” and 
“Extracellular structures.” Importantly, more defense mechanism 
associated genes (encoding PhD, StbD, and LprI) were detected in 
SGM such as toxin-antitoxin components, which have been reported 
to facilitate bacterial survival under harsh conditions (Eroshenko 
et al., 2020).

Concerning information storage and processing, RGM had more 
enriched genes related to “Replication, recombination and repair,” 
“Transcription,” and “Translation, ribosomal structure and 
biogenesis,” which were fit for their rapid growth as previously 
reported (Peebo et al., 2015; Bachmann et al., 2019). On the other 
hand, we noticed that SGM had three enriched genes (encoding UdG, 
PutA1, and ThpR), which had been reported to play roles in 
maintaining DNA stability for slow growth (Peebo et al., 2015; Lupoli 
et al., 2016).

Overall, due to their differential survival states, RGM had more 
featured genes associated with “Carbohydrate transport and 
metabolism,” “Amino acid transport and metabolism,” “Energy 
production and conversion,” “Nucleotide transport and metabolism,” 
“Replication, recombination and repair,” “Transcription,” and 
“Translation, ribosomal structure and biogenesis”(RGM/SGM > 2), 
whereas SGM had more featured genes contributing to “Defense 
mechanisms” (SGM/RGM > 2).

We then focused on the top 20 significantly enriched genes in 
RGM (Table 1) and SGM (Table 2), most of which were related to 
metabolism. Specifically, RGM and SGM had 13 and 12 distinct 
metabolism-related featured genes, respectively. The 13 RGM featured 
metabolism-related genes were classified into “Amino acid transport 
and metabolism” (4 genes), “Nucleotide transport and metabolism” (3 
genes), “Energy production and conversion” (2 genes), “Secondary 
metabolites biosynthesis, transport and catabolism” (2 genes), 
“Carbohydrate transport and metabolism” (1 gene), and “Inorganic 
ion transport and metabolism” (1 gene). Meanwhile, the 12 
metabolism-related genes in SGM were associated with “Amino acid 
transport and metabolism” (4 genes), “Carbohydrate transport and 
metabolism” (2 genes), “Secondary metabolites biosynthesis, transport 
and catabolism” (2 genes), “Inorganic ion transport and metabolism” 
(2 genes), “Lipid transport and metabolism” (1 gene), and “Energy 
production and conversion” (1 gene).

Among the top20 genes related to “Amino acid transport and 
metabolism,” RGM are closely associated with amino acid transport 
processes, while SGM owns more diverse amino acid metabolic 
pathways, with the involved proteins and their functions playing 
significant roles in environmental adaptation and oxidative stress 
response. Among the four amino acid metabolic pathways related 
to RGM, three gene encoded proteins closely associated with 
amino acid transport: PotA (COG3842, top-1), ArgO (COG1279, 
top-2), and AbcC (COG1135, top-17) are the members of the 
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FIGURE 1

Research design and NTM genome dataset used in the analysis. (A) Overview of the methods used for calling RGM- and SGM-associated genes (proteins) 
and protein domains. Initially, a dataset of NTM genomes was established for comparative analysis. A strict quality control process was applied to remove 
low-quality or redundant genomes. Different approaches based on existing functional annotation (COG, Pfam, and orthology) were employed for 
clustering of gene-coding sequences in the NTM genomes. RGM- and SGM-associate gene (protein) and protein domain clusters were called through the 
Scoary comparative analysis. (B) Maximum likelihood phylogenetic tree of 335 high-quality and non-redundant NTM genomes based on the concatenated 
alignment of single-copy homogenous genes. The outer ring represents the genus, while the inner ring represents the growth rate of NTM.
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FIGURE 2

Differences in genomic features and gene categories (COG) between RGM and SGM genomes. (A) Density plots of genome size, gene number, and genome 
GC content. The color of the kernels represents growth rate (red represents RGM, and blue represents SGM). Methods used for the comparison between RGM 
and SGM genomes and their results are listed blow the density plots. (B) Differences of gene numbers in COG categories between RGM and SGM genomes. 
The color of box plots represent the growth rate. P-values were calculated from t-tests (‘*’ indicates p  <  0.05, ‘**’ indicates p  <  0.01, ‘***’ indicates p  <  0.001, 
‘****’ indicates p  <  0.0001, and ‘ns’ idenoted as not significant). Please refer to Supplementary Table S2 for detailed meanings of COG category abbreviations.
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ABC-type transport systems, responsible for transporting 
polyamines, arginine, lysine, and ornithine. Additionally, Dcg1 
(COG4126, top-6) catalyzes the stereoisomerization of amino 
acids/compounds like Asp/Glu/hydantoin, however, the specific 
cellular function of Dcg1 still requires further exploration. On the 
other hand, SGM owns some proteins like MalY (COG1168, 
top-1), CysE (COG1045, top-2), and LdcC (COG1982, top-11) in 
amino acids metabolism pathways (such as serine, arginine/lysine/
ornithine, and beta-cysteine). Additionally, a selenium-metabolism 
related protein, SelD (COG0709, top-20), can enhance SGM’s 
oxidative stress response, aiding the bacteria in better adapting to 
their environment.

Furthermore, RGM and SGM exhibit notable differences in 
“Carbohydrate transport and metabolism” and “Energy production 
and conversion.” RGM demonstrates a more diverse substrate 
utilization capacity. The top-20 genes associated with RGM included 
two genes associated with L-lactate metabolism (COG1139 encoding 
LutB, top-15; COG1556 encoding LutC, top-19), and one gene involved 
in galactose and glucose metabolism (COG2723 encoding BglB, 
top-16). In SGM, two carbohydrate metabolism-related genes are 
enriched, such as COG1085 (encoding GalT, top-9) and COG2273 
(encoding BglS, top-14), which are associated with galactose and 
glucose metabolism, as well as one energy metabolism-related gene 
encoding IcD (COG0538, top-6), participating in the tricarboxylic acid 
(TCA) cycle. The differential expression of these genes reflects the 
distinct variations in energy utilization and environmental adaptation 
between RGM and SGM. Additionally, three genes related to nucleotide 
metabolism (COG3195 encoding PucL, top-3; COG1953 encoding 
FuI1, top-8; COG0518 encoding GuaA1, top-10) and one gene related 
to ribosome structure were found (COG1188, top-11). Within 
“Secondary metabolites biosynthesis, transport and catabolism,” 
RGM-associated TynA (COG3733, top-4) tends to utilize amines and 
SGM-associated YvaK (COG1647, top-18) tends to utilize esters.

Notably, five genes encoding transport proteins were found 
among the top  20 genes associated with RGM, facilitating the 
transport of nucleotides, ions, amino acids, and sugars, including 
COG3842 (top-1), COG1279 (top-2), COG4521 (top-5), COG1953 
(top-8), and COG1135 (top-17). On the orther hand, there are two 
genes (COG2815: top-3, COG0706: top-15) involved in Cell wall/
membrane/envelope biogenesis in SGM. Research has indicated that 
the synthesis of cell membrane consumes a significant amount of 
energy, which may asscioate to slow growth of SGM (Pereira and 
Ramos, 2020). These differential enrichment of metabolism-related 
featured genes indicated its important and even decisive role in 
distinct growth rates between RGM and SGM.

Based on the top 20 genes in RGM and SGM, a PCoA analysis was 
conducted using the 335 RGM and SGM genomes (Figure 3B). The 
analysis revealed that the 40 genes could significantly differentiate 
RGM from SGM, indicating the credibility of our featured gene 
screening/classification strategy.

Identification of rapid- and slow-growing 
associated/featured protein domains in 
RGM and SGM

Protein domains are typically highly conserved across different 
species, which play important roles in protein function/structure (Levy 

et al., 2018). Similar to the identification of RGM- and SGM-associated 
genes, the identification of RGM- and SGM-associated protein 
domains involves two steps: protein domain annotation using 
PfamScan, followed by the identification of RGM- and SGM-associated 
protein domains using Scoary (Supplementary Table S4). To further 
explore the function of identified RGM- and SGM-associated protein 
domains, we performed COG annotations corresponding to those 
protein domains (Supplementary Table S5).

275 RGM-associated protein domains and 144 SGM-associated 
protein domains were predicted (Supplementary Table S4). 
Metabolism related protein domains rank first in both RGM- and 
SGM-associated protein do mains (Figure  4A). Among the eight 
metabolism-related categories, RGM owned much more significantly 
enriched protein domains in six of them, all of which displayed an 
increase of at least 50% compared to SGM (Carbohydrate transport 
and metabolism, Amino acid transport and metabolism, Energy 
production and conversion, Inorganic ion transport and metabolism, 
Nucleotide transport and metabolism, Coenzyme transport and 
metabolism). Importantly, COG annotation of these enriched protein 
domains in RGM and SGM (Figure 4A) showed similar results to that 
of the enriched proteins (Figure  3A), indicating more active 
metabolism of some main substances (carbohydrate, amino acid, 
inorganic ion, nucleotide, coenzyme) and energy (energy production 
and conversion) for adapt to rapid growth in RGM. On the other 
hand, SGM had much more enriched protein domains related to 
“Secondary metabolites biosynthesis, transport and catabolism” than 
RGM (12/6); SGM had identical enriched protein domains in “Lipid 
transport and metabolism” category to RGM. Secondary and lipid 
metabolisms have been reported to play important roles in slow 
growing bacteria (Peebo et al., 2015; Lupoli et al., 2016), which is also 
consistent with COG annotation of enriched proteins (Figure 3A).

As for cellular processes and signaling, RGM had more enriched 
protein domains in “Signal transduction mechanisms” (RGM/
SGM > 2: 28/13) categories, while SGM had much more enriched 
protein domains in “Defense mechanisms” category (SGM/RGM: 
21/13) for adapt to bacterial slow growth. The above findings are 
consistent with COG annotation of enriched proteins (Figure 3A). 
We  then focused on the 21 enriched defense-mechanism related 
protein domains in SGM. Most of them (12/21) belonged to toxin-
antitoxin systems, which was also in agreement with COG annotation 
of enriched proteins (Figure 3A). Interestingly, in the 21 defense-
mechanism related protein domains, we also observed four protein 
domains enriched in CRISPR-Cas system (PF09827: CRISPR 
associated protein Cas2; PF13518: Helix-turn-helix domain; PF13683: 
Integrase core domain; and PF13565: Homeodomain-like domain), 
which have been documented to avoid the invasion of foreign nucleic 
acids from virus/vector for adapting to hostile environments in SGM 
(Makarova et al., 2011).

Concerning information storage and processing, RGM had more 
protein domains in “Replication, recombination and repair,” 
“Transcription,” and “Translation, ribosomal structure and biogenesis” 
categories than SGM, again confirming the conclusions from the 
above protein COG annotations (Figure 3A).

We then analyzed the top  20 significantly enriched protein 
domains in RGM (Table 3), among which five corresponded to seven 
proteins from the top 20 RGM enriched proteins (Table 1). PF08402 
(TOBE domain, top-5) corresponds to MalK and PotA proteins, as 
ABC transporter proteins for transporting ions, amino acids, and 
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sugars into cell (Kashiwagi et al., 1993). PF02589 (LuD domain, top-9) 
is associated with the LutB and LutC proteins for lactate metabolism 
(Hwang et al., 2013). PF00232 (Glycosyl hydrolase family 1, top-10) is 
related to BglB protein for glucose and galactose metabolism (Wright 

et  al., 1992). In addition, we  also found that two branched-chain 
amino acid transport protein domains, PF05437 (top-16) and PF03591 
(top-17) corresponded to two enriched branched-chain amino acid 
transport protein AzlD and AzlC, respectively, which had been 

FIGURE 3

Identification of genes (proteins) associated with RGM and SGM based on the COG database. (A) Number of RGM- and SGM- associated genes 
(proteins) in COG categories. The color of the bar plot represents the growth rate. (B) PCoA of RGM and SGM genomes based on the top 20 most 
significant differential genes (proteins) associated with RGM and SGM. The color of the dots represents the growth rate.
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reported to play important roles in rapid growth of RGM (Bachmann 
et al., 2019).

On the other hand, among the 20 most significantly enriched 
protein domains in SGM (Table 4), we detected five protein domains 
related to defense mechanism for environmental adaptation of 
SGM. PF09957 (top-3) is associated with a bacterial antitoxin of type 
II TA system VapB6  in toxin-antitoxin system. PF12051 (top-5) 
corresponds to two ABC-2-transporter-like clan transporters YadH 
(ABC-type multidrug transport system, permease component) and 
NatB (ABC-type Na+ efflux pump, permease component NatB) in 
responsible for antibiotic and Na+ ion cellar exclusion. PF01436 (NHL 
repeat, top-8) corresponds to a defense mechanism related protein 

VgB (streptogramin lyase). PF07311 (Dodecin domain, top-16) is 
associated with the flavin-binding protein dodecin for storing 
riboflavin or resisting free radicals/oxygen stress (Bieger et al., 2003). 
It worth noting that PF01747 (ATP-sulfurylase domain, top-19) and 
PF14306 (PUA-like domain, top-20) belong to the ATP sulfurylase 
protein, which have been reported to participate in sulfate oxidative 
metabolism for bacterial survival in host and pathogenicity (Hudson 
and York, 2012).

Similarly, PCoA analysis of the abovementioned 40 protein 
domains showed that RGM and SGM strains could be significantly 
distinguished into two clusters, indicating high correlation between 
these protein domains and bacterial growth rates (Figure 4B).

TABLE 1 Function and categorization of top 20 feature genes in RGM.

COG 
accession

Odds ratio BH adjusted 
p

COG 
symbol

COG description COG 
class

COG class 
summary

COG3842 274.125 3.38E-66 PotA ABC-type Fe3+/spermidine/putrescine transport 

systems, ATPase component

E Metabolism

COG1279 184.594 1.16E-61 ArgO Arginine exporter protein ArgO E Metabolism

COG3195 143.130 1.28E-58 PucL 2-oxo-4-hydroxy-4-carboxy--5-ureidoimidazoline 

(OHCU) decarboxylase (uric acid degradation)

F Metabolism

COG3733 144.375 3.58E-58 TynA Cu2+-containing amine oxidase Q Metabolism

COG4521 inf 1.59E-53 TauA ABC-type taurine transport system, periplasmic 

component

P Metabolism

COG4126 63.8180 3.19E-46 DcG1 Asp/Glu/hydantoin racemase E Metabolism

COG4292 58.667 5.31E-46 LtrA Low temperature requirement protein LtrA (function 

unknown)

S Poorly characterized

COG1953 61.559 1.38E-45 FuI1 Cytosine/uracil/thiamine/allantoin permease FH Metabolism | 

Metabolism

COG2350 42.618 1.68E-41 YciI YciI superfamily enzyme, includes 5-CHQ 

dehydrochlorinase, contains active-site pHis

QR Metabolism | Poorly 

characterized

COG0518 66.5448 2.46E-41 GuaA1 GMP synthase, glutamine amidotransferase domain F Metabolism

COG1188 37.9838 8.80E-41 HslR Ribosomal 50S subunit-recycling heat shock protein, 

contains S4 domain

J Information storage 

and processing

COG2954 inf 1.06E-34 CytH CYTH domain, found in class IV adenylate cyclase 

and various triphosphatases

R Poorly characterized

COG4913 26.25 5.70E-34 Uncharacterized conserved protein, contains a 

C-terminal ATPase domain

S Poorly characterized

COG4681 32.268 2.55E-33 YaeQ Uncharacterized conserved protein YaeQ, suppresses 

RfaH defect

S Poorly characterized

COG1139 inf 4.48E-32 LutB L-lactate utilization protein LutB, contains a 

ferredoxin-type domain

C Metabolism

COG2723 inf 1.14E-31 BglB Beta-glucosidase/6-phospho-beta-glucosidase/

beta-galactosidase

G Metabolism

COG1135 inf 7.63E-31 AbcC ABC-type methionine transport system, ATPase 

component

E Metabolism

COG0830 43.246 2.33E-30 UreF Urease accessory protein UreF O Cellular processes and 

signaling

COG1556 inf 5.86E-30 LutC L-lactate utilization protein LutC, contains LUD 

domain

C Metabolism

COG1742 26.613 8.68E-30 YnfA Uncharacterized inner membrane protein YnfA, 

drug/metabolite transporter superfamily

R Poorly characterized

Odds ratios and p-values were calculated using Scaory.
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Identification of co-occured orthogroups 
associated with RGM and SGM

We only annotated ~10% of genes/protein domains using COG 
and Pfam, since most NTM’s genome were poorly characterized in 
COG. To explore the gene functions without accurate annotations, 
OrthoFinder was utilized to cluster all putative protein-coding 
sequences of the entire genome into orthogroups based on homology 
(Emms and Kelly, 2015), followed by Scoary for identify the 
orthogroups with rapid and slow growth rates 
(Supplementary Table S6). The spearman correlation analysis of 
classified orthogroups revealed co-occured ortholog gene clusters. As 
a result, the co-occurion of these gene clusters suggests their similar 
roles in function, providing valuable insights into the NTM’s genome.

As for RGM related co-occured orthogroups, we mainly focused 
on two co-occured gene clusters with bacterial division and 
bacteriophage functions (Figure 5A), indicating the important roles 
of these two functions in bacterial rapid growth. In the first cluster, 

five orthogroups are associated with bacterial division, suggesting that 
the other 17 poorly characterized genes in the cluster have similar 
function. Specifically, OG0007945 (PF00004, PF01580, PF17866), 
OG0009308 (PF00004, PF01580, PF17866), and OG0009980 encode 
a DNA segregation ATPase FtsK, and OG0009980 encodes a integrase/
recombinase XerD, all of which have been reported to facilitate cell 
division (Iyer et al., 2004). OG0009140 encodes the DnaJ protein that 
is responsible for the activation of DnaK, which play important roles 
in degrade and fold defective proteins in cell division (Lupoli et al., 
2016). In the second cluster of co-occured genes, a significant 
proportion of proteins (22/27) encode for the tail protein of 
bacteriophages, indicating more horizontal gene transfer events in 
RGM (Rathnapala et  al., 2023). Following PHASTER annotation 
(Supplementary Table S9), the annotation results of these single-copy 
homologous genes indicate their predominant affiliation with 
prophage genes. These prophages have been identified in the genus 
Mycobacterium, aligning coherently with the COG annotations. For 
example, when considering the gene most prominently present in the 

TABLE 2 Function and categorization of top 20 feature genes in SGM.

COG 
accession

Odds 
ratio

BH adjusted 
p

COG 
symbol

COG description COG 
class

COG class 
summary

COG1168 0.0027 2.90E-69 MalY Bifunctional PLP-dependent enzyme with beta-

cystathionase and maltose regulon repressor activities

ER Metabolism | Poorly 

characterized

COG1045 0.018 4.15E-46 CysE Serine acetyltransferase E Metabolism

COG2815 0 3.61E-40 PASTA PASTA domain, binds beta-lactams M Cellular processes and 

signaling

COG4101 0.035 2.09E-32 RmlC Uncharacterized conserved protein, RmlC-like cupin 

domain

R Poorly characterized

COG2919 0.0497 6.57E-31 FtsB Cell division protein FtsB D Cellular processes and 

signaling

COG0538 0.041 2.56E-30 IcD Isocitrate dehydrogenase C Metabolism

COG3848 0.057 1.86E-25 PykA2 Phosphohistidine swiveling domain of PEP-utilizing 

enzymes

T Cellular processes and 

signaling

COG2899 0.051 6.62E-25 TerC2 Uncharacterized TerC-related membrane protein, 

DUF475 domain

P Metabolism

COG1085 0.082 2.21E-21 GalT Galactose-1-phosphate uridylyltransferase G Metabolism

COG3360 0.056 2.66E-21 Flavin-binding protein dodecin R Poorly characterized

COG1982 0.010 1.68E-20 LdcC Arginine/lysine/ornithine decarboxylase E Metabolism

COG2046 0 9.30E-20 MeT3 ATP sulfurylase (sulfate adenylyltransferase) P Metabolism

COG0439 0.109 4.88E-19 AccC Biotin carboxylase I Metabolism

COG2273 0.114 1.42E-18 BglS Beta-glucanase, GH16 family G Metabolism

COG0706 0.089 1.96E-18 YidC Membrane protein insertase Oxa1/YidC/SpoIIIJ M Cellular processes and 

signaling

COG3485 0.102 3.44E-18 PcaH Protocatechuate 3,4-dioxygenase beta subunit Q Metabolism

COG1514 0.095 3.19E-16 ThpR RNA 2′,3′-cyclic phosphodiesterase (2′-5’ RNA ligase) J Information storage 

and processing

COG1647 0.105 7.28E-16 YvaK Esterase/lipase Q Metabolism

COG4129 0.0665 1.68E-15 YgaE Uncharacterized membrane protein YgaE, UPF0421/

DUF939 family

S Poorly characterized

COG0709 0.1295 3.39E-15 SelD Selenophosphate synthase E Metabolism

Odds ratios and p-values were calculated using Scaory.
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Orthogroup within the second cluster, encoded by the 
GCA_017189435.1 genome, a parallel linkage becomes evident 
between the bacteriophage genes annotated by COG and those 

identified through PHASTER (Supplementary Figure S3). This 
observation proves the consistency between COG and PHASTER 
annotations in identifying bacteriophage genes. As a result, horizontal 

FIGURE 4

Identification of protein domains associated with RGM and SGM based on the PFam database. (A) Number of RGM- and SGM- associated protein 
domains in COG categories. The color of the bar plot represents the growth rate. (B) PCoA of RGM and SGM genomes based on the top 20 most 
significant differential protein domains associated with RGM and SGM. The color of the dots represents the growth rate.
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TABLE 3 Top 20 Feature protein domains in RGM.

Pfam 
accession

Odds ratio BH adjusted p Domain symbol Domain description

PF02698 269.278 3.37E-66 DUF218 DUF218 domain

PF02557 132.458 1.61E-55 VanY D-alanyl-D-alanine carboxypeptidase

PF04328 69.048 2.42E-49 Sel_put Selenoprotein, putative

PF19460 42.1498 4.08E-42 DUF5997 Family of unknown function (DUF5997)

PF08402 36.816 7.04E-39 TOBE_2 TOBE domain

PF03334. inf 8.41E-37 PhaG_MnhG_YufB Na+/H+ antiporter subunit

PF09972 32.667 2.26E-35 DUF2207 Predicted membrane protein (DUF2207)

PF07152 34.8307 7.50E-35 YaeQ YaeQ protein

PF02589 inf 3.82E-32 LUD_dom LUD domain

PF00232 inf 1.51E-31 Glyco_hydro_1 Glycosyl hydrolase family 1

PF13727 20.640 2.46E-31 CoA_binding_3 CoA-binding domain

PF13835 21.614 8.43E-30 DUF4194 Domain of unknown function (DUF4194)

PF02733 inf 2.40E-29 Dak1 Dak1 domain

PF13796 162.167 2.60E-29 Sensor Putative sensor

PF11855 20.896 2.90E-29 DUF3375 Protein of unknown function (DUF3375)

PF05437 inf 3.08E-29 AzlD Branched-chain amino acid transport protein (AzlD)

PF03591 inf 3.08E-29 AzlC AzlC protein

PF09278 40.795 4.22E-29 MerR-DNA-bind MerR, DNA binding

PF13555 19.333 1.19E-28 AAA_29 P-loop containing region of AAA domain

PF17885 inf 1.88E-28 Smoa_sbd Styrene monooxygenase A putative substrate binding domain

Odds ratios and p-values were calculated using Scaory.

gene transfer could facilitate new gene acquisition for metabolism and 
rapid growth (Rathnapala et al., 2023).

As for SGM related co-occured orthogroups, we mainly focused 
on two co-occured gene clusters with bacterial secretion and 
environmental adaptation functions (Figure 5B). The first cluster is 
predicted to be  associated with bacterial secretion system and 
virulence/pathogenicity. Specifically, OG0008539 encodes an ESX-3 
secretion system protein EccE3, and OG0010180 (PF11203) encodes 
a putative type VII ESX secretion system protein translocon, all of 
which have been reported to be  related to bacterial virulence/
pathogenicity (Thakur et al., 2019). The second cluster is predicted to 
be associated with environmental adaptation. Specifically, OG0009821 
(COG0515, PF00069) encodes a serine/threonine protein kinase that 
plays roles in bacterial signal transduction in response to various 
environments (Prisic and Husson, 2014). OG0010112 (COG1146, 
PF13187, PF14697) encodes H+-Na+-translocating ferredoxin for 
adjusting to specific environments by producing transmembrane 
electrochemical potentials (Vitt et al., 2022). OG0011183 (COG0318, 
PF00501, PF13193) encodes a fatty-acyl-CoA synthase in responsible 
for lipid metabolism and energy supply in SGM (Hisanaga et al., 2004).

Discussion

In this study, we  screened 335 high-quality, non-redundant 
NTM genome sequences covering 187 species from 3,478 online 
NTM genomes (as of January 2022), and then performed a 
comprehensive comparative genomic analysis to identify differential 

genomic characteristics and featured genes/protein domains in 
RGM and SGM. Our findings reveal that RGM has a larger genome 
size, more genes, lower GC content, and more featured genes/
protein domains in metabolism of some main substances (e.g., 
carbohydrates, amino acids, nucleotides, ions, and coenzymes), 
energy metabolism, signal transduction, replication, transcription, 
and translation processes, which are essential for its rapid growth 
requirements. On the other hand, SGM has a smaller genome size, 
fewer genes, higher GC content, and more featured genes/protein 
domains in lipid metabolism and cellular defense mechanisms, 
which help enhance its genome stability and environmental 
adaptability for slower growth.

The rapid growth of RGM is primarily attributed to their more 
efficient and faster metabolism. Compared to SGM, RGM has more 
featured genes/protein domains associated with the metabolism of 
most main nutrient substances, such as carbohydrates, amino acids, 
nucleotides, ions, and coenzymes (Figure 3A; Figure 4A). For genomic 
characteristics, the higher AT content in RGM’s genome (Figure 2A) 
is positively associated with its efficiency in generating ATP for energy 
supply, which has been reported to be beneficial to the faster growth 
of RGM (Wu et  al., 2012). In addition, our orthogroup analysis 
showed the enrichment of co-occured phage genes in RGM 
(Figure 5A). Phage genes are widely present in bacterial genomes and 
indicative of horizontal gene transfer (Rathnapala et  al., 2023). 
Therefore, this enrichment can facilitate the acquisition of additional 
genes for accelerating metabolism and growth rates via horizontal 
gene transfer in RGM, which is also reflected in their larger genomes 
(Figure 2A). Incidentally, the comparatively weak defense mechanisms 
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in RGM (Figure 3A; Figure 4A) makes them more prone to horizontal 
gene transfer and enlarge their genomic size.

Overall, the genomic characteristics and featured genes/
protein domains in RGM (higher AT content, larger genome 

size, and more efficient metabolisms of main nutrient substances 
and phage related genes) reflect adaptive evolution and growth-
rate selective advantages of RGM on a larger scale (Wang 
et al., 2010).

TABLE 4 Top 20 Feature protein domains in SGM.

Pfam 
accession

Odds ratio BH adjusted p Domain symbol Domain description

PF10921 0.008 1.96E-56 DUF2710 Protein of unknown function (DUF2710)

PF10904 0.010 3.44E-48 DUF2694 Protein of unknown function (DUF2694)

PF09957 0.026 1.61E-40 VapB_antitoxin Bacterial antitoxin of type II TA system, VapB

PF10817 0.028 1.09E-38 DUF2563 Protein of unknown function (DUF2563)

PF12051 0.032 2.10E-37 DUF3533 Protein of unknown function (DUF3533)

PF07098 0.028 5.85E-37 DUF1360 Protein of unknown function (DUF1360)

PF04185 0.038 7.49E-34 Phosphoesterase Phosphoesterase family

PF01436 0.0338 5.99E-32 NHL NHL repeat

PF14114 0.0628 9.87E-27 DUF4286 Domain of unknown function (DUF4286)

PF04332 0.0458 3.24E-26 DUF475 Protein of unknown function (DUF475)

PF13618 0.0748 2.03E-23 Gluconate_2-dh3 Gluconate 2-dehydrogenase subunit 3

PF14362 0.090 5.99E-22 DUF4407 Domain of unknown function (DUF4407)

PF01087 0.082 2.65E-21 GalP_UDP_transf Galactose-1-phosphate uridyl transferase, N-terminal domain

PF02744 0.082 2.65E-21 GalP_UDP_tr_C Galactose-1-phosphate uridyl transferase, C-terminal domain

PF07311 0.056 3.18E-21 Dodecin Dodecin

PF13529 0.090 2.92E-20 Peptidase_C39_2 Peptidase_C39 like family

PF19812 0.057 5.52E-20 DUF6295 Family of unknown function (DUF6295)

PF12391 0.102 6.21E-20 PCDO_beta_N Protocatechuate 3,4-dioxygenase beta subunit N terminal

PF01747 0 1.07E-19 ATP-sulfurylase ATP-sulfurylase

PF14306 0 1.07E-19 PUA_2 PUA-like domain

Odds ratios and p-values were calculated using Scaory.

FIGURE 5

Identification of orthogroups associated with RGM and SGM using OrthoFinder. (A) Correlation heatmap with hierarchical clustering of 1,316 
significantly enriched RGM-associated orthogroups predicted by Scoary. (B) Correlation heatmap with hierarchical clustering of 891 significantly 
enriched SGM-associated orthogroups predicted by Scoary. The dashed boxes highlight orthogroups with the most significant correlations.
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Currently, it is widely believed in the academic community that 
SGM have undergone a large-scale gene loss during their long 
evolutionary journey to adapt to harsher environments (Stinear 
et al., 2007; Wee et al., 2017; Tan et al., 2020). However, what genes 
they lost is not fully understood by current research. RGM, as the 
closest ancestor of SGM (differentiated earlier and with a larger 
genome) (Turenne, 2019), can more comprehensively reflect the 
genetic characteristics of their common ancestor and undoubtedly 
provide a good comparison object for detecting these genes lost at 
ancient evolutionary nodes. This study comprehensively revealed 
the genes lost in SGM during its long evolutionary journey to adapt 
to harsher environments through large-scale comparative genomics 
studies of RGM and SGM (including some metabolism related 
genes for most main nutrient substances), which might limit the 
utilization of these nutrient substances and further lowered the 
growth rate and smaller genome size in SGM.

On the other hand, although the growth rate of SGM is slower 
compared to RGM, they exhibit higher environmental adaptability 
and pathogenicity. They can survive in oligotrophic and hypoxic 
environments, some of which are parasitic/ symbiotic and can infect 
people, mostly human lung tissue, and further lead to various 
respiratory diseases and even death in severe cases (Pereira and 
Ramos, 2020). First, as for genomic characteristics, the high GC 
content in SGM has been reported to be usually positively correlated 
with environmental adaptability (Bentley and Parkhill, 2004; Mann 
and Chen, 2010; Šmarda et  al., 2014). When exposed to harsh 
environments, genomic stability is usually improved by increasing 
genomic GC content (Šmarda and others 2014). In addition, our 
results indicated more genes involved in lipid and secondary 
metabolite metabolisms in SGM, which have been reported to 
be associated with energy storage and environmental adaptation (Tran 
et al., 2019; Pereira and Ramos, 2020).

Our research has also shown more genes related to cellular defense 
mechanisms in SGM, including toxin-antitoxin and ESX systems 
(Figure 3A; Figure 4A), which have been reported to enable bacteria 
to survive better in challenging environments within host organisms 
(Eroshenko et al., 2020). Specifically, the toxin-antitoxin system has 
been reported to be a significant contributor to bacterial dormancy 
and persistence (Eroshenko et al., 2020). The ESX secretion system, as 
one of the significant virulence factors in NTM, has been reported to 
play important roles in persistent infection and host immune evasion 
for adapting harsh environments (Fedrizzi et  al., 2017; Thakur 
et al., 2019).

In conclusion, we investigated genomic differences in NTMs 
with different growth rates to explore the relationship between 
growth rate and underlying genetic mechanisms. Our results 
suggest that RGM utilize multiple sources of nutrition such as 
carbohydrates, amino acids and nucleotides, achieving rapid 
proliferation by increasing the type and number of these genes 
related to metabolism and signal transduction, replication, 
transcription, and translation processes. In contrast, SGM show 
the potential to adapt to harsh environments by utilizing/storing 
energy through lipid and secondary metabolites metabolisms. 
They have more cellular defense-related genes (toxin-antitoxin 
and ESX systemin) that facilitate their defense against external 
threats and enhance their pathogenicity in the host. The study has 
revealed featured genes and proteins of RGM and SGM. These 

findings could potentially offer new avenues for rapid 
identification of pathogens in clinical settings, thus providing 
strong support for diagnostic and therapeutic strategies. Our 
study highlights the role of identifying featured gene lost or 
acquisition during evolution in driving the growth rate differences 
between SGM and RGM, whose impact on growth rate warrants 
further confirmation with more studies.
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