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Vibrio vulnificus is an opportunistic, global pathogen that naturally inhabits

sea water and is responsible for most vibriosis-related deaths. We investigated

the genetic characteristics of V. vulnificus isolated from the clinical blood

culture specimen of a patient with hepatitis B virus cirrhosis in 2018 (named

as V. vulnificus VV2018) by whole genome sequencing (WGS). VV2018

belonged to a novel sequencing type 620 (ST620) and comprised two circular

chromosomes, containing 4,389 potential coding sequences (CDSs) and 152

RNA genes. The phylogenetic tree of single nucleotide polymorphisms (SNPs)

using 26 representative genomes revealed that VV2108 grouped with two other

V. vulnificus strains isolated from humans. The pan-genome of V. vulnificus was

constructed using 26 representative genomes to elucidate their genetic diversity,

evolutionary characteristics, and virulence and antibiotic resistance profiles. The

pan-genome analysis revealed that VV2018 shared a total of 3,016 core genes

(≥99% presence), including 115 core virulence factors (VFs) and 5 core antibiotic

resistance-related genes, and 309 soft core genes (≥95 and <99% presence)

with 25 other V. vulnificus strains. The varG gene might account for the cefazolin

resistance, and comparative analysis of the genetic context of varG revealed that

two genes upstream and downstream of varG were conserved. The glycosylation

(pgl) like genes were found in VV2018 compared with Pgl-related proteins in

Neisseria that might affect the adherence of the strain in hosts. The comparative

analysis of VV2018 would contribute to a better understanding of the virulence

and antibiotic resistance profiles of V. vulnificus. Meanwhile much work remains

to be done to better understand the function of pgl-like genes in V. vulnificus.

KEYWORDS
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Introduction

Vibrio vulnificus is a gram-negative, rod-shaped bacterium that is widely distributed
throughout marine and brackish environments (Gulig et al., 2005). V. vulnificus is found
in association with zooplankton, crabs, and various filter feeders such as oysters (Jones
et al., 2014). V. vulnificus is also known as an opportunistic pathogen transmitted through
the consumption of raw/undercooked seafood or by direct contact causing serious wound
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infections and sepsis (Baker-Austin and Oliver, 2020). Several
underlying medical conditions have been identified as risk factors
for V. vulnificus infection, including chronic liver disease, diabetes
mellitus, kidney disease, autoimmune disease, hematological
disorders and malignancy (Menon et al., 2014). V. vulnificus is
responsible for more than 95% of seafood-related deaths in the
United States (Haftel and Sharman, 2023). Several other risk factors
contribute to the high pathogenicity of V. vulnificus in humans,
such as the presence of a capsule, the availability of iron and
possession of the vcg gene (Jones and Oliver, 2009). Recent studies
indicate that global climate change, resulting in increased surface
water temperatures, enables the global distribution and spread of
V. vulnificus (Paz et al., 2007; Heng et al., 2017).

The pan-genome refers to the pool of genetic material that is
present in a group of bacteria (Tettelin et al., 2005). It is made up
of the core genome (genes shared by all strains) and the accessory
genome (genes shared by some strains and not all) (Iranzadeh
and Mulder, 2019), including soft core genes (≥95 and <99%
presence), shell genes (≥15 and <95% presence) and cloud genes
(≥0 and <15% presence). The boundaries of the core genome can
be extrapolated from highly-conserved genes. Pan-genome analysis
has provided new insights into interspecies differentiation and
whole sets of genes shared among a group of bacteria (Medini
et al., 2005; Lapierre and Gogarten, 2009). Meanwhile, a large
range of genomic diversity is observed for pathogenic V. vulnificus
strains (López-Pérez et al., 2019). Although multiple virulence
factors (VFs) and antibiotic resistance profiles have been identified
independently (Horseman and Surani, 2011), the diversity of VFs
and resistance genes among V. vulnificus strains remains unknown.
Despite the frequent occurrence of the pathogen, the number of
cases reported are relatively low, indicating that not all strains
of V. vulnificus are equally virulent (Strom and Paranjpye, 2000;
Rosche et al., 2010).

In this work, we report the complete genome sequence of
V. vulnificus isolated from the blood culture specimen of a
clinical patient with hepatitis B virus cirrhosis in 2018 (named
as V. vulnificus VV2018), in Nantong, Jiangsu Province, China
(Wu et al., 2023), and show that this strain belonged to a novel
sequence type (ST620). We characterized the genomic features of
this strain to reveal the putative molecular mechanisms underlying
its virulence and antibiotic resistance profiles. Furthermore, pan-
genome analysis revealed the distribution of VFs and resistance-
related genes among V. vulnificus strains. Comparative analysis
revealed that the genetic context of varG was conserved with
a sequence of approximately 3 kbp encoding ompV-varG-nodD.
Meanwhile, using comparative analysis, we first identified putative
pgl-like genes in VV2018, that might affect the adherence of the
strain in hosts; however, much work still needs to be done to
confirm this putative effect.

Materials and methods

Bacterial strain and genomic DNA
extraction

VV2018 was isolated from the blood culture specimen of a
clinical patient with hepatitis B virus cirrhosis in 2018, in Nantong,

Jiangsu Province, China (Wu et al., 2023). The clinical blood
sample was used with the approval of the Ethics Committee of
Affiliated Nantong Hospital 3 of Nantong University. The strain
was identified using the bioMérieux VITEK 2 compact instrument
(bioMérieux, Marcy-l’Étoile, France) and average nucleotide
identity (ANI) analysis. The genomic DNA of VV2018 was
extracted using a TIANamp Bacteria DNA Kit (Tiangen Biotech
Company Ltd., Beijing, China), according to the manufacturer’s
protocol.

Assessment of antibiotic resistances

The antibiotic resistance profiles were assessed through
minimal inhibitory concentration (MIC) assays (Liu and Crosa,
2012). Briefly, a final suspension of 10 cfu/mL in broth
supplemented with 2% NaCl and 1 mM CaCl2-H2O were
distributed in triplicate throughout a 96-well microtiter plate.
Escherichia coli ATCC 25922 was used as the susceptible-control
reference bacterial strain for MIC assays. Cells were challenged with
0.25–1,024 g/mL antibiotics. MICs were determined by detection of
cell pellet formation in the bottom of the wells of the 96-well plate
by turbidometry at 600 nm using Multiskan GO (Thermo Fisher
Scientific, USA). Drug susceptibility was determined according
to the Clinical and Laboratory Standards Institute (CLSI) drug
susceptibility test standard from 2018.

Genomic DNA sequencing, assembly and
annotation

Whole genome sequencing (WGS) and assembly were
conducted at Azenta Life Sciences (Suzhou, China). Sequences
of VV2018 were obtained using PacBio Sequel platform (Pacific
Biosciences, Menlo Park, CA, USA) and Illumina HiSeq X Ten
platform (Illumina, San Diego, CA, USA). The PacBio reads were
assembled by Hifiasm v0.13-r308 and Canu v2.2 (Koren et al., 2017;
Cheng et al., 2021), and then the Illumina reads were mapped onto
the assembled contigs to correct the primary assembly and control
assembly quality using Pilon 1.22 and Quiver (Chin et al., 2013;
Walker et al., 2014). The genome completeness and contamination
of all V. vulnificus strains we used were further evaluated by
checkM with default settings (Parks et al., 2015). Prokka 1.14.6 was
used to predict potential CDSs (Seemann, 2014). The functional
annotation of these CDSs was performed by DIAMOND (Buchfink
et al., 2021) against the non-redundant protein sequence (NR)
database of the National Center for Biotechnology Information
(NCBI). Kyoto Encyclopedia of Genes and Genomes (KEGG),
Cluster of Orthologous Groups (COG), UniProt/Swiss-Prot, Pfam,
CAZymes, virulence factors of pathogenic bacteria (VFDB) and
Antibiotic Resistance Genes Database (ARDB) were also used to
annotate the functions of CDSs (Liu and Pop, 2009; Levasseur et al.,
2013; Kanehisa et al., 2017; Galperin et al., 2021; Mistry et al., 2021;
Liu et al., 2022; UniProt Consortium, 2023). The rRNA and tRNA
sequences were annotated by RNAmmer (Lagesen et al., 2007) and
tRNAscan-SE (Lowe and Chan, 2016), respectively. The mobile
genetic elements (MGEs) were annotated using ISfinder (Siguier
et al., 2006). Genomic islands (GIs), prophages, and CRISPR-
Cas systems were identified using online tools IslandViewer 4,
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PHAge Search Tool (PHAST), and CRISPRCasFinder software,
respectively (Arndt et al., 2016; Bertelli et al., 2017; Couvin et al.,
2018). Multilocus sequence typing (MLST) was performed by
analyzing the housekeeping genes on the MLST website.1 The basic
characteristics of the chromosomes were visualized by the CGView
Comparison Tool (Petkau et al., 2010).

Comparative sequence analysis

All the available V. vulnificus complete genome sequences
(n = 25) were downloaded from the NCBI database with checkM
values (Supplementary Table 1). The genome sequences were
re-annotated with Prokka 1.14.6 and pan-genome analysis was
conducted based on the output of Prokka using Roary with a
BLASTP identity cutoff of 90% (Page et al., 2015). For genome
similarity assessment, digital DNA-DNA hybridization (dDDH)
values were computed using web tool GGDC 3.0 (formula
2, identities/HSP length) (Meier-Kolthoff et al., 2022). Whole
genome ANI between pairwise V. vulnificus strains was calculated
with Pyani software available at https://github.com/widdowquinn/
pyani. The core genome of these strains was produced by Harvest
software v1.1.2 (Treangen et al., 2014) using the V. vulnificus
CMCP6 genome as a reference. Recombination events were
removed from the core-genome alignment using Gubbins v2.2.0
(Croucher et al., 2015). Single nucleotide polymorphisms (SNPs)
were then extracted from the recombination-free core genome
alignment using the script available at https://github.com/sanger-
pathogens/snp-sites. The multi-alignments were aligned with the
ClustalW in MEGA 11.0 and analyzed using GeneDoc 2.7.0
(Nicholas and Nicholas, 1997; Tamura et al., 2021). The maximum
likelihood (ML) phylogenetic tree of SNPs was constructed using
RAxML in the GTRGAMMA model (1,000 bootstrap) (Stamatakis,
2014) and was visualized using Figtree v1.4.4.2 The neighbor-
joining phylogenetic trees of PglC and PglD performed by MEGA
11.0. CD-HIT used to cluster the retained sequences using the
genome sequence of VV2018 as the reference with identity of 80%
and coverage of 90% (Li and Godzik, 2006).

Results and discussion

Genome characteristics of VV2018

The complete genome of VV2018 comprised two
chromosomes, Chr I and Chr II. The genome completeness
of VV2018 was 100%, and the contamination was 0.05% accessed
by checkM. Chr I consisted of 3,264,146 bp with a GC content of
46.60% containing 2,874 predicted CDSs, 106 tRNA genes and 31
rRNA genes. Chr II consisted of 1,816,653 bp with a GC content
of 47.19% containing 1,515 predicted CDSs, 13 tRNA genes and 3
rRNA genes (Table 1 and Figure 1). MLST revealed that VV2018
belonged to a novel ST620 and was very close to ST387, with eight
loci, isolated from humans in China.

1 http://pubmlst.org/vvulnificus/

2 http://tree.bio.ed.ac.uk/software/figtree/

The distribution of VV2018 CDSs into COG functional
categories is shown in Supplementary Figure 1. Except for
genes with unknown functions (8.57%), most genes were
related to signal transduction mechanisms, amino acid transport
and metabolism, transcription, and carbohydrate transport and
metabolism. The annotation of genes of VV2018 in KEGG
pathway analysis showed that the most genes were involved
in metabolism, including carbohydrate metabolism, amino acid
metabolism, metabolism of cofactors and vitamins, and energy
metabolism (Supplementary Figure 2).

Virulence factors and resistance-related
genes

A total 151 putative VFs were predicted among Chr I (106,
70.20%) and Chr II (45, 29.80%). These genes were mainly
associated with motility (polar flagellar proteins), immune evasion
(capsular polysaccharide and iron uptake), secretion system
(type II secretion system proteins), adherence (type IV pilus,
lipooligosaccharide and OmpU) and toxin (RTX toxin) (Table 2).
Iron uptake from host cells plays a key role in the survival of
V. vulnificus (Dittmann et al., 2019). RTX toxin (rtxABCD) and
OmpU have been shown to play important roles in the infection
and pathogenesis, respectively, of V. vulnificus (Goo et al., 2006; Liu
and Crosa, 2012). The vvhA and tlh were another two toxin genes,
encoding cytolysin-hemolysin and thermolabile hemolysin, which
induced acute cell death and were important in the pathogenesis
and dissemination of these bacteria (Wang et al., 2015; Song et al.,
2016). In this case, the patient’s temperature was 40.2◦C after
infection, which was accompanied by chills, unbearable low back
pain, and forced position. Thus, the serious infection of this case
might have a strong relationship with the mixing effect of multiple
VFs (Wu et al., 2023).

Six antibiotic resistance-related genes were identified in the
genome of VV2018, including dfrA3 (encoding a dihydrofolate
reductase), qnrVC1 (encoding a pentapeptide repeat protein), catB9
(encoding a type B-5 chloramphenicol O-acetyltransferase), tet
(Bertelli et al., 2017) (encoding a tetracycline efflux pump), crp
(encoding a cAMP-receptor protein) and varG (showing resistance
to penicillin, carbapenems and cephalosporins in vitro). CRP is
a global regulator that not only regulates the expression of the
multidrug efflux pump but also impacts the expression of multiple
VFs (Nishino et al., 2008; Zhan et al., 2008). The antibiotic

TABLE 1 General features of VV2018.

Features Chr I Chr II

Length (bp) 3,264,146 1,816,653

G+C content (%) 46.60 47.19

Predicted coding sequences (CDSs) 2,874 1,515

Average length (bp) 976 1,048

Known proteins 1,787 829

Hypothetical proteins 1,087 686

Protein coding (%) 85.97 87.47

rRNA genes 31 3

tRNA genes 106 13
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FIGURE 1

Circular genome maps of VV2018. (A) Chromosome I. (B) Chromosome I. Counting from the center toward the outside: (1) the innermost circle
shows the position in kbp. (2) GC skew (G-C/G+C), with a positive GC skew toward the outside and a negative GC skew toward the inside. (3) GC
content, with an average of 50%, whereby a G+C content of more than 50% is shown toward the outside, otherwise, inward. (4) Genes encoded in
the leading strands (outward) or lagging strands (inward).

resistance pattern of VV2018 is shown in Table 3. This isolate
was susceptible to most tested antibiotics, including tetracycline
and chloramphenicol, with the exception of cefazolin. The fact
that VV2018 showed susceptibility to tetracycline may be the
result of acetylation-mediated down-regulation of tetA gene (Pang
et al., 2020). The study also reported that all of Vibrio cholerae
strains harboring catB9 gene were susceptible to chloramphenicol
(Lepuschitz et al., 2019). Further work needs to be done to study
catB9 in Vibrio. V. vulnificus has been reported to show complete
resistance against cefazolin (Pan et al., 2013). The varG gene
has been shown to have beta-lactamase activity against penicillin,
carbapenems, and cephalosporins in vitro (Lin et al., 2017), which
might account for the cefazolin resistance of VV2018.

Genomic islands, prophages and
CRISPR-Cas systems

Large parts of the genome designated as genomic islands
(GIs) and phages were transferred from one bacterium to another

TABLE 2 The annotation of VFs of the VV2018 in VFDB databases.

Virulence factor Gene numbers

Motility 56

Adherence 42

Immune evasion 20

Secretion system 13

Toxin 6

Regulation 1

Others 13

(Canchaya et al., 2003; Dobrindt et al., 2004). Twenty GIs and nine
GIs were detected on Chr I and Chr II in VV2018, respectively
(Supplementary Tables 2, 3). The length of GIs on Chr I ranged
from 4 kbp to 163 kbp. In the GIs of Ch I, a total of 6 transposase
genes were predicted, all of which were classified into the IS4,
IS481 and IS5 families. Meanwhile, one integrases (intS) and two
tyrosine recombinases (xerC and xerD) were encoded. Two genes
were predicted to encode type I restriction enzyme proteins. The
length of GIs on Chr II ranged from 4 kbp to 86 kbp, containing one
tyrosine recombinase-encoding genes (xerC). Meanwhile, sulfate

TABLE 3 The antibiotic resistance profile of VV2018.

Antibiotics MIC (µg/ml) Susceptibility

Ampicillin ≤ 2 S

Cefuroxime-axetil 4 S

Cefazolin 16 R

Ceftazidime ≤ 1 S

Piperacillin ≤4 S

Imipenem ≤ 1 S

Amikacin 8 S

Meropenem ≤ 0.25 S

Gentamicin 4 S

Ciprofloxacin ≤ 0.25 S

Cefepime ≤ 1 S

Tetracycline 1 S

Chloramphenicol 1 S

Aztreonam 4 S

S, susceptible; R, resistant.
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permease genes (cysTWA) which allowed the bacteria survive in
selenite environment by decreasing the expression, were found on
Chr II_GI2 (Tempel et al., 2022). Only one incomplete prophage
sequence was predicted on Chr I with a length of 9.7 kbp
encoding genes with unknown functions (Supplementary Table 4).
Thus, further work needs to be done to investigate the functions
of these genes.

One CRISPR locus was predicted without Cas genes on Chr
I (Supplementary Table 5), the phenomenon that CRISPR locus
without Cas genes was also found in other Vibrio strains, Listeria
monocytogenes and Staphylococcus, indicating that it was unable
to effectively exert adaptive immunity (Mandin et al., 2007; Zhang
et al., 2019, 2021). There were four direct repeats with a length of
32 bp and three spacers. The sequences of spacers closely matched
other V. vulnificus strains in the NCBI database.

Comparative genome analysis of VV2018

The ANI and dDDH values of 26 V. vulnificus strains are
summarized in Supplementary Table 6. The ANI value between
VV2018 and other V. vulnificus strains was 97.14% (range 95.41
to 98.45%) (Figure 2A). The most similar strain compared to
VV2018 was V. vulnificus FORC_017 (98.45% identity) isolated
from human in South Korea. The heatmap showed that all 26
V. vulnificus strains were divided into two clusters, most strains
including VV2018 in cluster 1 were isolated from human, and most
strains in cluster 2 were isolated from seafood or unknown places.
Meanwhile, the phylogenetic tree of all 26 V. vulnificus strains
constructed on the basis of the core SNPs showed that VV2018
was grouped with two other V. vulnificus strains isolated from
human (V. vulnificus FORC_009 and V. vulnificus FORC_016)
(Figure 2B). The dDDH values among 26 V. vulnificus strains
were more than 60%. An ANI cut-off of around 95% did not
correspond to an absolute dDDH value (70% cut-off for dDDH).

A previous study reported that the value of 70% dDDH could
not be used as absolute boundary, but still a gap between
60 and 70% similarity seemed to embrace clear-cut clusters of
organisms, given the large extent of diversity among prokaryotes
(Richter and Rosselló-Móra, 2009).

VV2018 shared a total of 3,016 core genes and 314 soft
core genes with other 25 V. vulnificus strains according
to the pan-genome analysis. A total of 138 strain-specific
genes, accounting for 3.14%, were identified in VV2018. The
functions of the majority of VV2018 specific genes (78.26%)
were unknown, the other specific genes were involved in
functional categories of replication/recombination/repair
(7.97%) and cell wall/membrane/envelope biogenesis (4.36%)
(Supplementary Table 7).

A total of 180 specific VFs were identified in 26 V. vulnificus
strains and 115 VFs were included in core genes. The heatmap
based on the presence and absence of all VFs clearly showed that
the distribution of virulence genes differed between V. vulnificus
strains (Figure 3A), and the VFs in VV2018 were similar to
those in V. vulnificus 07-2444. Meanwhile, the differences in VFs
between strains were among adherence and the immune system.
In addition, some V. vulnificus strains isolated from humans were
closely clustered with those isolated from seafood, indicating that
these strains may cause foodborne infection.

Due to the misuse of antibiotics, V. vulnificus in seafood
and aquatic environments are exhibiting resistance to multiple
antibiotics (Elmahdi et al., 2016). V. vulnificus resistance toward
common antibiotics has reached alarming levels in many countries
which has serious implications for the treatment methods for
bacterial infections (Heng et al., 2017). The distribution of
antibiotic resistance genes in the V. vulnificus strains was
also investigated. All 26 V. vulnificus strains possessed the
resistance-related genes dfrA3, varG, tet (Bertelli et al., 2017),
qnrVC1 and crp (Figure 3B). The prevalence of dfrA3, varG,
tet (Bertelli et al., 2017), qnrVC1, and crp genes in these strains

FIGURE 2

Comparative analysis between VV2018 and 25 other V. vulnificus strains. (A) Heatmap of ANI of 26 V. vulnificus strains. Blue color represents low
identity and red color represents high identity. (B) An unrooted maximum-likelihood phylogeny tree of VV2018 with 25 other V. vulnificus strains
based on core genome SNPs.
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suggested that these genes may increase the resistance of these
strains to trimethoprim, penicillin, tetracycline, quinolone and
oxacillin. The phenicol resistance gene catB9 were also in most
genomes of V. vulnificus strains, except V. vulnificus CECT
4999 and V. vulnificus MO6-24/O. In addition, among these

strains, V. vulnificus VV2014DJH carried the fosfomycin resistance
gene fosC2. Moreover, V. vulnificus VV20-8B-2 isolated from
seafood possessed the most antibiotic resistance genes than other
V. vulnificus strains, indicating that its antibiotic resistance may be
more extensive.

FIGURE 3

Presence/absence pattern of VFs and resistance-related genes in each V. vulnificus genome. (A) Presence/absence pattern of VFs in each
V. vulnificus genome. (B) Presence/absence pattern of resistance-related genes in each V. vulnificus genome. ∗Unique genes were in only one strain
included in cloud genes.

FIGURE 4

Comparative analysis of the varG-related regions of eight representatives from 26 sequences. The direction of genes is indicated by an arrow.
Homologous genes are shown in the same colors.

TABLE 4 The result of BLASTP of Pgl in VV2018 against Pgl in Neisseria.

Gene id Protein name Coverage (%) Identity (%) Strains of Neisseria

LNNJENCE_00237 PglA 97% 37% N. meningitidis G2136

LNNJENCE_00238 PglBa 97% 68% N. elongata subsp. glycolytica ATCC29315

LNNJENCE_00239 PglBb 88% 42% N. elongata subsp. glycolytica ATCC29315

LNNJENCE_00240 PglC 99% 75% N. elongata subsp. glycolytica ATCC29315

LNNJENCE_00241 PglD 97% 53% N. elongata subsp. glycolytica ATCC29315
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FIGURE 5

Comparative pgl gene content and synteny between VV2018 and N. elongata subsp. glycolytica strain ATCC29315. The direction of genes is
indicated by an arrow. Homologous genes are shown in the same colors.

FIGURE 6

Comprehensive comparisons of PglC by sequence similarity and phylogenetic analysis. (A) Multisequence alignment of PglC with amino acids.
Multisequence alignment was conducted using ClustalW. (B) A neighbor-joining phylogenetic tree of PglC was estimated by MEGA, and the
sequence of Morococcus cerebrosus (M. cerebrosus) CIP 81.93 was used as outgroup. *The markers of length such as 10, 30, that are provided by
software.
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The genetic context of the varG gene

The genetic context of the resistance-related genes of VV2018
was almost the same compared with other 25 V. vulnificus strains,
except the varG gene. The gene varG might account for the
cefazolin resistance of VV2018, and showed resistance to penicillin,
carbapenems, and cephalosporins in vitro (Lin et al., 2017),
however, the genetic context of varG was unknown in V. vulnificus
strains. The varG gene was present in all 26 V. vulnificus strains,
and the sequences containing varG were clustered into eight

clusters with coverage of 90% and identity of 80% (Supplementary
Table 8). The largest cluster was cluster 3 containing 12 sequences,
and most of them (8/12, 75.0%) were isolated from humans
including VV2018. Eight representative sequences were chosen for
further analysis (Figure 4). The results of this gene neighborhood
analysis of representative sequences revealed that a few transposase
genes (IS30, IS5 and IS110) were upstream and downstream of
varG. The genetic context of varG was conserved and the genes
upstream and down of varG were ompV and nodD that were
present in 96.15% of the sequences. These observations indicated

FIGURE 7

Comparative genomic analysis of pgl-like genes. (A) Comparative genomic analysis of the genetic context of pgl genes in VV2018 with the
sequences carrying their homologous genes in three other V. vulnificus strains. The direction of genes is indicated by an arrow. Homologous pgl
genes are shown in the same colors, syntenic regions between the sequences are displayed as gray blocks. All other genes are shown in green.
(B) Schematic diagram depicting the total domain structure of PglA, PglBa, PglBb, PglC and PglD. Each scaled box denotes a functional module
labeled with the term short name.
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that sequence rearrangement rarely occurs in the varG-encoding
region, and genetic commonalities of ompV-varG-nodD across
sources strongly suggested the structure of ompV-varG-nodD was
conserved in V. vulnificus strains.

Molecular characterization and
comparative analysis of pgl-like genes

Two (LNNJENCE_00235 and LNNJENCE_00237) of six genes
on Chr I_GI4 were glycosyl transferases, belonging to the
GT4 family (Supplementary Table 9). LNNJENCE_00237 was
compared with PglA in Neisseria including N. elongata subsp.
glycolytica, with 37% identity. Meanwhile, four genes downstream
of LNNJENCE_00237 also shared a high identity compared
with Pgl-related proteins in Neisseria such as N. elongata subsp.
glycolytica ATCC29315 (Table 4 and Figure 5). Broad-spectrum
O-linked protein glycosylation (pgl) systems have been defined in
Neisseria, such as N. gonorrhoeae, N. meningitidis, and N. elongata
subspecies glycolytica (Ku et al., 2009; Vik et al., 2009; Naess et al.,
2023). The pglA and pglBCD may be involved in pilin glycosylation
(Power et al., 2003).

We selected six sequences of Neisseria for further analysis and
the result of the multiple sequence alignment showed that the
sequences of PglC and PglD were highly conserved (Figure 6A
and Supplementary Figure 3A). The phylogenetic tree of PglC
and PglD showed that the PglC of VV2018 was closest to the
protein of N. weaveri LMG 5135, and PglD of VV2018 was
closest to N. bacilliformis ATCC BAA-1200 and N. elongata
subsp. glycolytica ATCC29315 (Figure 6B and Supplementary
Figure 3B). Meanwhile, comparative genomic analysis revealed
that the sequence of VV2018 containing pgl-like genes was similar
to the sequences of V. vulnificus 07-2444, V. vulnificus YJ016 and
V. vulnificus FORC_017 (Figure 7A). The result showed that the
pglA gene was only found in V. vulnificus 07-2444 with coverage
of 76% and identity of 85%. The other genes pglBa, pglBb, pglC,
and pglD also had high homology with identity ranging from 90
to 100%. In addition, in the genome of V. parahaemolyticus, the
pglB2 gene is associated with a pglC and pglD homolog, suggesting
that a complete glycosylation system might also be present
(Chamot-Rooke et al., 2007). In V. cholerae, O-glycosylation via
PglLVc and possibly RbmD could represent a fine-tuned feedback
mechanism controlling release of type II secretion system (T2SS)
effectors by modulation of secretion efficacy (Vorkapic et al., 2019).
Therefore, pgl-like genes (pglABCD) may play important roles in
Vibrio species.

The total domain structures of PglA, PglBa, PglBb, PglC and
PglD were also analyzed and compared with protein sequences in
Neisseria. The domains of PglA, PglBa, PglC and PglD were similar,
except for PglBb (Figure 7B). The PglD_N domain was found in
the N-terminus of all PglBb sequences, besides the number and
location of hexapeptides. There were three hexapeptides in PglBb
of VV2018 and V. vulnificus 07-2444. The pglBb of V. vulnificus
YJ016 and V. vulnificus FORC_017 had two hexapeptides in
the second and third position. The pglBb of N. elongata subsp.
glycolytica strain ATCC29315 had two hexapeptides in the first and
third position. A number of different transferase protein families
contain hexapeptide repeats, such as galactoside acetyltransferase-
like proteins (Wang et al., 2002). It has been shown that most

hexapeptide acyltransferases form catalytic trimers with three
symmetrical active sites (Bergfeld et al., 2007). This is the first study
to report that pglA and pglBCD genes were found in V. vulnificus
strains. The pgl-like genes may affect the adherence of the strain,
however, much more work is need to prove this hypothesis.

Conclusion

In this study, we investigated the genomic features of VV2018
with novel strain ST620 that was isolated from the blood culture
specimen of a clinical patient with hepatitis B virus cirrhosis
in China. Multiple VFs and resistance genes were identified in
the genome sequence of VV2018. Pan-genome analysis of 26
V. vulnificus strains revealed their pan-genome characteristics,
evolutionary relationships, and virulence and antibiotic resistance
profiles. This study provides a snapshot of the genomic diversity
and evolution of different strains that contribute to the pathogenic
diversity of 26 V. vulnificus strains. We also found that the
resistance gene varG was present in all 26 V. vulnificus strains
and the genes upstream and downstream were conserved. In
addition, it’s the first to report the presence of pgl-like genes
in V. vulnificus based on amino acid sequence homologies with
genes in Neisseria. The pgl-like genes may affect the adherence
of the strain in hosts, and much work still needs to be done to
confirm this theory.
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