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Ecologically different earthworm 
species are the driving force of 
microbial hotspots influencing Pb 
uptake by the leafy vegetable 
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Food chain contamination by soil lead (Pb), beginning with Pb uptake by leafy 
vegetables, is a threat to food safety and poses a potential risk to human health. 
This study highlights the importance of two ecologically different earthworm 
species (the anecic species Amynthas aspergillum and the epigeic species Eisenia 
fetida) as the driving force of microbial hotspots to enhance Pb accumulation in 
the leafy vegetable Brassica campestris at different Pb contamination levels (0, 
100, 500, and 1,000  mg·kg−1). The fingerprints of phospholipid fatty acids (PLFAs) 
were employed to reveal the microbial mechanism of Pb accumulation involving 
earthworm–plant interaction, as PLFAs provide a general profile of soil microbial 
biomass and community structure. The results showed that Gram-positive (G+) 
bacteria dominated the microbial community. At 0  mg·kg−1 Pb, the presence of 
earthworms significantly reduced the total PLFAs. The maximum total of PLFAs 
was found at 100  mg·kg−1 Pb with E. fetida inoculation. A significant shift in the 
bacterial community was observed in the treatments with E. fetida inoculation 
at 500 and 1,000  mg·kg−1 Pb, where the G+/G− bacteria ratio was significantly 
decreased compared to no earthworm inoculation. Principal component analysis 
(PCA) showed that E. fetida had a greater effect on soil microbial hotspots than 
A. aspergillum, thus having a greater effect on the Pb uptake by B. campestris. 
Redundancy analysis (RDA) showed that soil microbial biomass and structure 
explained 43.0% (R2  =  0.53) of the total variation in Pb uptake by B. campestris, 
compared to 9.51% of microbial activity. G− bacteria explained 23.2% of the 
total variation in the Pb uptake by B. campestris, significantly higher than the 
other microbes. The Mantel test showed that microbial properties significantly 
influenced Pb uptake by B. campestris under the driving force of earthworms. 
E. fetida inoculation was favorable for the G− bacterial community, whereas 
A. aspergillum inoculation was favorable for the fungal community. Both 
microbial communities facilitated the entry of Pb into the vegetable food chain 
system. This study delivers novel evidence and meaningful insights into how 
earthworms prime the microbial mechanism of Pb uptake by leafy vegetables by 
influencing soil microbial biomass and community composition. Comprehensive 
metagenomics analysis can be employed in future studies to identify the microbial 
strains promoting Pb migration and develop effective strategies to mitigate Pb 
contamination in food chains.
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1. Introduction

As one of the biologically non-essential metals in soil, lead (Pb) is 
very toxic and easily bioaccumulates in organisms even at low 
concentrations. Pb pollution in leafy vegetable soils poses a serious 
threat to food safety (Zhou et al., 2021), as the leafy vegetable food 
chain is a major pathway of human exposure to soil Pb contamination 
(Wang et al., 2021; Ibrahim and Selim, 2022). Therefore, it is important 
to explore the mechanisms underlying Pb accumulation in leafy 
vegetables to ensure food safety. Chinese cabbage (Brassica campestris) 
is a popular leafy vegetable because of its high nutritional value with 
rich essential nutrients and metabolites (Keim et al., 2020; Liu et al., 
2021) and antioxidant activity (Bhavithra et al., 2021; Wang et al., 
2022). Approximately 1.5% of the total agricultural land area is used 
for vegetable cultivation in China. In 2020, vegetable production in 
China accounted for 30% of the world’s total production [Food and 
Agriculture Organization (FAO), 2020]. Investigation of Pb 
accumulation in leafy vegetables in Pb-contaminated soils can provide 
valuable insights into the potential risks associated with consuming 
Pb-contaminated produce and the need for effective soil monitoring 
and remediation strategies.

Metal bioaccumulation in plants and along the food chain mainly 
depends on the complex interactions between soil organisms and 
plants (Wu et al., 2020). Earthworm activities in soil influence Pb 
bioavailability and plant uptake (Jusselme et  al., 2015a). Different 
earthworm species differ in their ecological strategies (Bottinelli et al., 
2020; Huang et al., 2021), leading to different effects on Pb entry into 
the food chain. Moreover, many soil microbes are well-known to 
influence Pb bioavailability. These microbes include Pb-solubilizing 
bacteria, plant growth-promoting rhizobacteria, and microbes whose 
bioactive metabolites help to alleviate Pb phytotoxicity (Yahaghi et al., 
2018; Al-Maliki and Al-Shamary, 2022). Studies showed that soil 
microbial properties influence metal accumulation in rice grains and 
brassica leaves (Xiao et al., 2017, 2020b). The effects of earthworms on 
soil microbial communities have been well-documented (Liu et al., 
2019; Ahmed and Al-Mutairi, 2022), and the earthworm–microbe 
symbiotic relationship influences Pb transformation in soil and 
accumulation in plants (Das and Osborne, 2018). However, it remains 
unclear how ecologically different earthworm species influence Pb 
accumulation in leafy vegetables in relation to soil microbial properties.

Potential prospects for effective Pb accumulation in plants lie in 
revealing the mechanisms behind the earthworm–microbe interaction 
since these organisms form a discrete ecological unit and serve as the 
primary engines for terrestrial biogeochemical processes. Earthworms 
have a strong influence on soil microbial abundance and community 
composition, mainly in three ways. First, earthworm activities such as 
digging and casting change the soil microenvironment. Second, the 
feeding and grazing activities of earthworm lead to the selection of 
rapidly growing soil microbes through gut-associated processes. 
Third, microorganisms are dispersed in the soil after surviving the 
transit through the earthworm digestive tract (Medina-Sauza et al., 

2019; Price-Christenson et al., 2020). Bacteria, actinomycetes (ACT), 
and fungi may contribute differently to plant Pb accumulation due to 
their different activity levels, abundances, and compositions (Yu et al., 
2020; Mahohi and Raiesi, 2021). Nonetheless, soil enzymes secreted 
by earthworms and microbes are vital indicators of soil biochemical 
activities and soil quality (Xu et al., 2021). Recent studies reported 
increased Pb uptake by plants due to changes in soil microbial 
activities (Liu Y. et al., 2020; Zhang et al., 2022). Previous research on 
Pb contamination has generally focused on its effect on soil microbial 
characteristics such as microbial biomass, activity, and diversity 
(Stefanowicz et al., 2020; Xiao et al., 2020a). However, it is still unclear 
how different microbial characteristics influence Pb accumulation in 
plants. This knowledge gap restricts us from fully understanding the 
mechanisms underlying the effect of microbial hotspots on the 
rhizospheric soil and plant root functioning.

This study was focused on the earthworm–microbe interactive 
effect on Pb accumulation in plants. Two ecologically different 
earthworm species, including the anecic species Amynthas aspergillum 
and the epigeic species Eisenia fetida, were investigated. E. fetida is 
commonly found in organic matter-rich environments such as 
compost heaps and is known to influence the biogeochemical cycle of 
heavy metals such as Pb, which has a high affinity for organic matter. 
A. aspergillum, a deep-burrowing earthworm species, may affect 
microbial activity, Pb bioavailability, and Pb uptake by plants. In this 
study, we  tested the following two hypotheses. (1) Ecologically 
different earthworm species differ in lifestyle, digestive system, and 
feeding preference and thereby exert different effects on soil microbial 
biomass, structure, and activity in Pb-polluted soils. (2) Pb 
accumulation in plants is driven by earthworm-induced changes in 
soil microbial community composition and activity. To test these two 
hypotheses, PLFA biomarkers were identified to provide information 
about the abundances of bacteria, ACT, and fungi and changes in soil 
microbial community structure. Additionally, fluorescein diacetate 
(FDA) hydrolysis was measured to evaluate the overall microbial 
activity in the soil, and the activities of β-glucosidase (β-glu) and 
N-acetylglucosaminidase (NAG) were determined to investigate the 
transformation of carbon (C) and nitrogen (N), respectively. The 
findings of this study will deepen our understanding of the complex 
interaction between earthworm ecotypes and soil microbes and its 
effect on Pb accumulation by leafy vegetables (e.g., B. campestris) 
grown in Pb-contaminated soils. In addition, this study will shed light 
on the soil microbial mechanism of Pb accumulation in the vegetable 
food chain.

2. Materials and methods

The soil used in this study was collected from the 0–20 cm layer of 
a fallow vegetable field (23°54′ N, 113°27′ E) in Qingyuan City, 
Guangdong Province, China. The basic properties of the soil were 6.06, 
16.6 g·kg−1, 1.30 g·kg−1, and 12.8 for soil pH, organic C, total N, and 
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C:N ratio, respectively, and total Pb was 20 mg·kg−1. Both A. aspergillum 
and E. fetida were purchased from a biofertilizer company in 
Qingyuan, Guangdong Province, China. The seeds of B. campestris 
were provided by the Guangdong Academy of Agricultural Sciences.

The experimental design was described by Tibihenda et al. (2022). 
The experiment included three earthworm treatments with four 
replicates. The soil was spiked with PbCl2 to set up four Pb contamination 
levels (i.e., 0, 100, 500, and 1,000 mg·kg−1) for each earthworm treatment 
and aged for 10 months before the experiment started. The three 
earthworm treatments were: (i) SP, no earthworm inoculation; (ii) SPA, 
A. aspergillum was inoculated; and (iii) SPE, E. fetida was inoculated. 
Each pot (18.5 cm × 12 cm × 16 cm) was filled with 1 kg of soil and 
planted with three healthy B. campestris seedlings at the same growth 
stage. For the SPA and SPE treatments, 23 ± 1 g of healthy clitellate adult 
earthworms, or four A. aspergillum (5.73 ± 0.40 g individual−1) and 
approximately 58 E. fetida (0.4 ± 0.1 g individual−1), were introduced into 
each pot. Soil moisture in each pot was maintained at field capacity. 
After 30 days of cultivation, the plants were harvested, washed, and 
oven-dried at 60°C. The earthworms in each pot were collected, 
counted, weighed, and put in Petri dishes with moisture filter papers at 
25°C to empty their gastrointestinal tracts for 7 days. The soil from each 
pot was divided into two fractions. One was stored at 4°C for later PLFA 
analysis, and the other was air-dried and passed through a 0.149-mm 
sieve for organic C and total N determination or a 2-mm sieve for the 
determination of enzyme activities and other soil chemical properties.

2.1. Laboratory analyses

2.1.1. Determination of enzymatic activities
The colorimetric methods used for the determination of β-glu and 

NAG activities were based on the detection of p-nitrophenol (PNP), 
with PNP-β-D-glucopyranoside and PNP-N-acetyl-β-D-
glucosaminide as substrates, respectively. The soil was incubated at 
37°C, and pH 5.0 citrate buffer was used. The enzyme activities were 
expressed as micrograms of PNP released per gram of soil per hour 
under standard conditions (μg PNP·g−1 soil·h−1). Briefly, 2 g of 
air-dried soil with 0.5 mL of distilled water was incubated at 25°C for 
48 h. After 3 mL of ice water was added and mixed thoroughly, 50 μL 
of the soil suspension was taken, mixed with 25 μL of buffer and 50 μL 
of the substrate solution, and incubated on an orbital shaker at 37°C 
for 1 h. The absorbance of the PNP released was measured using a 
microplate spectrophotometer reader at 405 nm (Mora et al., 2005).

The overall enzymatic activity in soil was assessed by FDA 
hydrolysis. Air-dried soil (2 g) was incubated with FDA solution in 
phosphate buffer (pH 7.0) at 25°C for 48 h. The yellow fluorescein 
released from FDA hydrolysis was quantified using a microplate 
spectrophotometer reader at 490 nm (Schnvrer, 1982). FDA hydrolysis 
activity was expressed as μg Fluo kg−1 soil h−1.

2.1.2. Determination of soil microbial biomass 
and community composition

PLFA fingerprints were employed as biomarkers to estimate soil 
microbial biomass and community composition. The PLFA technique 
involved the extraction of lipids from the soil and the separation of 
phospholipids from the lipids. The obtained phospholipids were then 
methylated to form fatty acid methyl esters, which were quantified by 
gas chromatography. To evaluate the extraction efficiency, an internal 
standard fatty acid (19:0) was used, and another fatty acid (10:0) was 

used as an instrumental standard for the gas chromatography analysis, 
which was added prior to detection and quantification (Au-Quideau 
et al., 2016). In this study, 14:0, 15:0, 16:0, 18:0, and i18:0 were used as 
the signature fatty acids for general bacteria (CB), 18:2ω6c and 
18:1ω9c for fungi (F), and 10Me 16:0, 10Me 17:0, and 10Me 18:0 for 
ACT (Frostegård and Bååth, 1996). G+ bacteria were characterized by 
i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0, whereas G− bacteria were 
characterized by 16:1ω7c, 18:1ω7c, cy17:0, and cy19:0. The total 
bacterial biomass (total bacteria) was calculated as the sum of G+ 
bacteria, G− bacteria, and CB bacteria. The ratio of fungal biomass to 
total bacterial biomass was used to estimate the ratio of fungi to 
bacteria in the soil (Moore-Kucera and Dick, 2008). The total content 
of PLFAs (total PLFAs) was determined as soil living microbial 
biomass and expressed as nmol·g−1 soil (Frostegård et al., 1996).

2.2. Statistical analysis

Data were processed using the SPSS statistical software (16.0). 
One-way ANOVA, Duncan’s multiple range test, and t-test were used 
to determine the significant differences in variables such as soil 
enzyme activities and PLFAs between treatments. Data were presented 
as mean ± standard deviation, and the significance level was set at a 
p-value of <0.05. Principal component analysis (PCA) was performed 
using the Ade4 package in R statistical software (4.2.3) to evaluate the 
relationships between soil microbial attributes in the earthworm–plant 
system. The vegan package in R was used for redundancy analysis 
(RDA) to explore the variation in contributions of microbial attributes 
to Pb bioavailability and accumulation in B. campestris. The raw data 
were standardized to eliminate the effects of different data dimensions. 
In the RDA, soil microbial attributes were treated as explanatory 
variables, whereas soil available Pb (DTPA-Pb), plant biomass, and 
plant Pb (concentration and accumulation) were selected as response 
variables. The Mantel correlation test was then used to evaluate the 
strength of the correlations between explanatory variables and 
response variables and to find out other interactions among them.

3. Results

3.1. Effects of earthworms on soil microbial 
biomass and structure in the 
Pb-contaminated soil

The total soil microbial biomass, which was measured as the total 
content of PLFAs, ranged from 12.5 to 22.1 nmol·g−1 soil across the 
treatments (Table  1). The maximum biomass was observed at 
100 mg·kg−1 Pb. At 0 mg·kg−1 Pb, the presence of earthworms 
significantly reduced the total content of PLFAs, by 30.9% and 29.3% 
in SPE and SPA, respectively (p < 0.05). When the soil was contaminated 
with Pb, the total content of PLFAs in SPE increased significantly, 
whereas that in SP did not change much, and that in SPA only 
increased significantly at 100 and 500 mg·kg−1 Pb. For the same Pb 
contamination level, the total content of PLFAs was higher in SPE than 
in SPA, with the difference being significant at 100 and 1,000 mg·kg−1 Pb.

Generally, bacterial biomass (G+, G−, and CB) exhibited the same 
variation trend as the total content of PLFAs. In contrast, fungal and 
ACT biomasses showed different variation patterns. At 0 mg·kg−1 Pb, 
the presence of either earthworm species (A. aspergillum or E. fetida) 
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significantly reduced ACT biomass, whereas only E. fetida 
significantly decreased fungal biomass compared to SP. In the Pb 
contamination treatments, ACT biomass was lower in SPA than in 
SPE, and the difference was statistically significant at 100 and 
1,000 mg·kg−1 Pb. Both earthworm species increased fungal biomass 
at 100 and 500 mg·kg−1 Pb compared to SP. Noticeably, a significant 
difference between SPE and SPA was found at 1,000 mg·kg−1 Pb, 
where the fungal biomass in SPE was significantly higher (Table 1).

In this study, the proportions of specific soil microbial community 
biomass in total biomass revealed that the G+ bacteria had the highest 
relative abundance, ranging from 33% to 39%, whereas CB had the 
lowest relative abundance, ranging from 8% to 9% across the 
treatments. The relative abundances of the microbial communities 
followed the order of G+ > G− > ACT > F > CB (Table 1).

The G+/G− ratio ranged from 1.00 to 1.53 across the Pb levels 
(Table 1), with significantly higher values in SP compared to SPA or 
SPE except at 100 mg·kg−1 Pb. For the SPE treatment, the G+/G− ratio 
decreased with increasing Pb concentration in soil, with significant 
changes observed at 500 and 1,000 mg·kg−1 Pb. In contrast, the G+/
G− ratio did not change consistently with increasing Pb concentration 
for the SPA treatment, with a significant difference only observed 
between 0 and 100 mg·kg−1 Pb (p < 0.05). The t-test showed that the 
G+/G− ratio was significantly higher in SPA than in SPE at 500 and 
1,000 mg·kg−1 Pb (Figure 1A).

The fungal to bacterial biomass (F/B) ratio ranged from 0.13 to 
0.17, with higher values in SPA and SPE than in SP (Table 1). This 
indicates that the presence of earthworms tended to induce changes 
in the microbial community, and fungi seemed to benefit more from 
earthworm activities compared to bacteria. The t-test showed that at 
500 mg·kg−1 Pb, the F/B ratio was significantly higher in SPA than in 
SPE (Figure 1B).

3.2. Effect of earthworms on soil microbial 
activities in the Pb-contaminated soil

Soil enzyme activities related to the cycling of two biologically 
essential elements, C and N, were studied at different levels of soil Pb 
contamination with or without the presence of earthworms. FDA 
hydrolysis, a measure of overall soil enzymatic activities, ranged from 
6.70 to 223.4 μg Fluo kg−1 soil h−1, with the highest value observed in 
SP at 0 mg·kg−1 Pb and the lowest value also in SP but at 1000 mg·kg−1 
Pb (Table  2). Generally, as the Pb concentration increased, FDA 
hydrolysis tended to decrease. For the same Pb contamination level, 
FDA hydrolysis was generally higher in SPA than in SPE, and the 
difference was significant at 500 mg·kg−1 Pb (p < 0.05). In general, the 
activities of β-glu and NAG were not affected by Pb contamination. 
NAG activity was stimulated by the presence of A. aspergillum at 100 
and 500 mg·kg−1 Pb and by E. fetida at 100 and 1,000 mg·kg−1 Pb, 
whereas β-glu activity was generally inhibited by the presence of 
earthworms except in SPA at 500 mg·kg−1 Pb (Table 2).

3.3. PCA of soil microbial attributes in the 
earthworm–plant system

PCA analysis revealed a clear separation of the soil microbial 
attributes between treatments (Figure  2). The first axis, which T
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accounted for 51.6% of the explained inertia, indicated the effects of 
Pb contamination on soil microbial PLFAs (Figure 2C). Both the total 
content of PLFAs and the biomass of each microbial consortium were 
increased in the Pb-contaminated soil with the presence of E. fetida 
(p = 0.001). The second axis, representing 17.1% of the explained 
inertia, described microbial activities and changes in microbial 
community structure (F/B and G+/G−; Figure 2B; p = 0.012). The 
presence of A. aspergillum led to significant changes in microbial 
structure and FDA hydrolysis. Importantly, E. fetida inoculation was 
correlated with microbial attributes, suggesting its significant role in 
influencing soil microbial dynamics. The interspecies comparison of 
earthworms revealed the different effects of E. fetida and A. aspergillum 
on microbial attributes, which in turn affected Pb uptake by 
B. campestris in different ways.

3.4. Effect of earthworm activity on the Pb 
uptake and growth of Brassica campestris

The Pb uptake by B. campestris in this study was examined by 
focusing on the following parameters: soil available Pb (DTPA-Pb), 
plant biomass, and plant Pb (concentration and accumulation). 
Earthworm inoculation led to a Pb increase in soil availability 
compared to SP. Different effects on plant biomass were observed, with 

E. fetida promoting and A. aspergillum inhibiting B. campestris 
growth. As a result of the higher plant biomass, the SPE treatment 
exhibited a higher Pb accumulation in B. campestris at 100, 500, and 
1,000 mg·kg−1 Pb. In contrast, the SPA treatment exhibited a higher Pb 
concentration in B. campestris, especially at 500 and 1,000 mg·kg−1 Pb 
(Supplementary Table S1). Earthworm introduction had an effect on 
the physio-chemical properties of the Pb-contaminated soil, including 
pH, oxidation–reduction potential (Eh), total N, available N, organic 
C, dissolved organic C, and cation exchange capacity 
(Supplementary Table S2). The soil property changes highlighted the 
significant influence of earthworms on soil biogeochemical processes 
and Pb migration in the food chain.

3.5. Earthworm survival rate in the 
Pb-contaminated soil

The survival rate of A. aspergillum was consistently high, 81.3%, 
87.5%, 100%, and 87.5% at 0, 100, 500, and 1,000 mg kg−1 Pb, 
respectively. The survival rates of E. fetida were 84.0%, 46.1%, 52.6%, 
and 62.3% at 0, 100, 500, and 1,000 mg kg−1 Pb, respectively. The 
consistently higher survival rate of A. aspergillum at all Pb levels 
demonstrated the greater tolerance of A. aspergillum to Pb 
contamination compared to E. fetida (Tibihenda et al., 2022).

3.6. Relationships between soil microbial 
attributes, plant biomass, and Pb in soil and 
plant

The RDA analysis showed that axes 1 and 2 explained 85.0% and 
12.2% of the total variation in response variables, respectively 
(Figure 3A). The soil microbial attributes as explanatory variables 

FIGURE 1

Gram-positive to Gram-negative bacteria ratio (G+/G−) and fungi-to-
bacteria ratio (F/B) in the treatments with earthworm inoculation at 
different Pb contamination levels (A) G+/G− ratio (B) F/B ratio. SPA, 
Amynthas aspergillum was inoculated; SPE, Eisenia fetida was 
inoculated. Different letters indicate significant differences between 
different soil Pb levels for the same earthworm treatment at a p-value 
of <0.05. The t-test was used to compare the two earthworm 
treatments for the same soil Pb level, with ***p-value < 0.001,  
**p-value < 0.01, *p-value < 0.05, and ns p-value > 0.05 (n  =  4).

TABLE 2 Effects of earthworm inoculation on soil enzyme activities at 
different Pb contamination levels.

Soil Pb TR β-glu NAG FDA

mg·kg−1 μg PNP·g−1 soil·h−1 μg Fluo kg−1 
soil h−1

0

SP 905 ± 384aA 452 ± 442aA 223 ± 214aA

SPA 751 ± 134aB 394 ± 27.3aA 150 ± 161aA

SPE 632 ± 279aA 237 ± 244aA 51.8 ± 34.1aB

100

SP 639 ± 82.9aA 269 ± 194aA 38.0 ± 44.4bB

SPA 611 ± 388aB 480 ± 403aA 118 ± 10.4aA

SPE 565 ± 322aA 277 ± 302aA 128 ± 28.8aA

500

SP 1,179 ± 1093aA 639 ± 1030aA 73.1 ± 27.0abAB

SPA 1,401 ± 331aA 691 ± 113aA 103 ± 30.0aA

SPE 946 ± 547aA 390 ± 253aA 50.1 ± 8.42bB

1,000

SP 1,014 ± 150aA 656 ± 538aA 6.70 ± 11.1aB

SPA 801 ± 321aB 352 ± 281aA 46.8 ± 45.2aA

SPE 521 ± 558aA 887 ± 812aA 34.0 ± 27.0aB

β-glu, β-glucosidase; NAG, N-acetylglucosaminidase; FDA, fluorescein diacetate. SP, no 
earthworm inoculation; SPA, Amynthas aspergillum was inoculated; SPE, Eisenia fetida were 
inoculated. Different uppercase letters indicate significant differences between different Pb 
levels for the same earthworm treatment at a p-value of <0.05; different lowercase letters 
indicate significant differences between earthworm treatments for the same soil Pb level at a 
p-value of <0.05 (n = 4).
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significantly explained 52.5% of the variation in response variables 
(R2 = 0.53, Figure  3B). Specifically, soil microbial biomass and 
community structure explained 43.0% of the observed variation in 
response variables, whereas microbial activities explained 9.51%. The 
G− bacteria contributed 23.2% of the total variation in response 
variables, significantly higher than any other explanatory variable. 
FDA hydrolysis had a notably high contribution of 6.58%, making it 
the most prominent microbial activity variable. The ranking order of 
the top three explanatory variables based on their contributions to the 
total variation in response variables was as follows: G− bacteria (23.2%, 
p = 0.001***) > FDA hydrolysis (6.58%, p = 0.019*) > G+ bacteria 
(5.90%, p = 0.031*; Figure 3B). At the high Pb contamination levels 
(500 and 1,000 mg·kg−1), SPE showed strong linear correlations with 
many explanatory variables and response variables such as plant 
biomass, DTPA-Pb, and plant Pb accumulation, whereas SPA was 
correlated with F/B ratio, plant Pb concentration, and DTPA-Pb. In 
contrast, at low Pb contamination levels (0 and 100 mg·kg−1), all 
earthworm treatments (SP, SPA, and SPE) were associated with FDA 
hydrolysis and the G+/G− ratio. This implies that the increase in the 
G+/G− ratio was negatively correlated with microbial attributes and 
inhibited Pb uptake.

The Mantel correlation test was utilized to examine the 
correlations between the explanatory and response variables 
(Figure 4). The bacterial communities, such as the G+ bacteria, G− 
bacteria, and CB, were significantly positively correlated with 
DTPA-Pb (p < 0.01), plant biomass (p < 0.001), Pb accumulation 
(p < 0.01), and Pb concentration (p < 0.05). ACT biomass was positively 
correlated with DTPA-Pb (p < 0.001), Pb accumulation (p < 0.01), 
plant biomass (p < 0.05), and Pb concentration (p < 0.05). Fungal 
biomass was positively correlated with DTPA-Pb only (p < 0.05). Total 
PLFAs and total bacteria were significantly positively correlated with 
all four response variables. Moreover, the G+/G− ratio was significantly 
correlated with Pb accumulation (p < 0.05), whereas the F/B ratio did 

not show a significant effect on the response variables. FDA hydrolysis 
was significantly correlated with DTPA-Pb (p < 0.01). Remarkably, 
β-glu and NAG activities were significantly correlated with soil 
microbes. For instance, the G− bacteria, CB, and fungi were correlated 
with NAG activity. Total PLFAs and total bacteria were significantly 
correlated with the constituent microbial communities and NAG 
activity. Some explanatory variables did not contribute significantly to 
the total variation in response variables but exhibited significant 
correlations in the Mantel test. These results support the finding of 
RDA and provide convincing proof that soil microbial attributes, 
particularly microbial biomass and community, affect Pb uptake by 
plants with the driving force of earthworms.

4. Discussion

4.1. Microbial property variations induced 
by earthworms in the Pb-contaminated soil

The earthworms had a greater influence on the microbial 
characteristics than on the chemical properties of the Pb-contaminated 
soil (Supplementary Figure S1). This finding aligns with previous 
research indicating that the behavioral and feeding traits of 
earthworms could lead to soil microbial community composition 
changes as well as soil enzyme activity changes (Omosigho et al., 2022).

At 0 mg·kg−1 Pb, the presence of earthworms dramatically reduced 
the total microbial biomass, which was due to the earthworms feeding 
on the microbes (Table 1; Edwards and Arancon, 2022). The microbes 
ingested by earthworms may be killed by the microbicidal substances 
in the gastrointestinal fluid or may not be able to survive the anaerobic 
conditions in the earthworm gut (Nechitaylo et al., 2010; Gómez-
Brandón et al., 2011; Thakur et al., 2022). Although both G+ and G− 
bacterial biomasses were decreased by earthworm presence (Table 1; 

FIGURE 2

Principal component analysis (PCA) illustrating the distribution of soil microbial attributes in the earthworm–plant system (A) PCA projection of soil 
microbial properties with scattered treatment points. (B) Earthworm treatment plot. (C) Treatments of different Pb contamination levels of 0, 100, 500, 
and 1,000  mg  kg−1 Pb. G+, Gram-positive bacteria; G−, Gram-negative bacteria; ACT, actinomycetes; F, fungi; CB, general bacteria; total bacteria, total 
bacterial biomass; and total PLFAs, total microbial biomass; G+/G−, Gram-positive to Gram-negative bacteria ratio; F/B, fungi-to-bacteria ratio; β-glu, 
β-glucosidase; NAG, N-acetylglucosaminidase; FDA, fluorescein diacetate. SP, no earthworm inoculation; SPA, Amynthas aspergillum was inoculated; 
SPE, Eisenia fetida was inoculated.
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Figure  1A), the latter was less negatively influenced. This may 
be  attributed not only to the presence of amino acids, mucosal 
saccharides, and soluble organic C but also to the neutral pH and 
anaerobic conditions in the earthworm gut, which are more favorable 
for the survival and growth of G− bacteria (Liu et al., 2018; Hu et al., 
2020; Liu P. et al., 2020).

Soil Pb contamination deleteriously affects enzyme activities, 
microbial diversity, and microbial abundance (Xiao et al., 2020a; Sun 
et al., 2023). Pb contamination did not significantly affect the total 
microbial biomass in SP (Table  1; Figure  2), suggesting that the 
microbiome in soil may have developed effective Pb resistance and 
tolerance mechanisms (Mao et al., 2022), resulting in resilience in 
maintaining microbial biomass under Pb stress. Interestingly, the total 
microbial biomass was increased in SPE at 100, 500, and 1,000 mg·kg−1 
Pb (Table 1). This may be because when exposed to high levels of Pb, 
E. fetida secretes a diverse range of substances such as defensive 

peptides called drilodefensins and other metabolites for Pb 
detoxification (Gudeta et al., 2023). These metabolites nourish the soil 
microbes, leading to an increase in total microbial biomass (Table 1). 
In addition, E. fetida prefers high-quality organic matter, which is a 
good energy source for soil microbes and thereby promotes a high 
microbial biomass (Lin et al., 2016; Sun et al., 2019; Yadav and Singh, 
2023). Another reason for the increased microbial biomass that should 
not be ignored is the death of E. fetida due to Pb toxicity (Tibihenda 
et al., 2022), leading to less microbes being ingested and killed in the 
earthworm gut. The higher G+/G− ratios in SPA compared to SPE at 
100, 500, and 1,000 mg·kg−1 Pb indicate that the presence of 
A. aspergillum might be more favorable for the G+ bacteria compared 
to E. fetida. The predominance of G+ bacteria can also be credited to 
their exceptional survival in Pb-contaminated environments (Biswas 
et al., 2021; Borozan et al., 2021). Earthworms generally promote soil 
fungal and ACT biomasses through their physical and biochemical 
activities (Medina-Sauza et al., 2019; Song et al., 2020). In contrast, Pb 
contamination has inhibitory effects on soil fungal and ACT biomasses 
(Xiao et al., 2020a,b). As a result, the combined effect of earthworm 
presence and Pb contamination led to complex changes in soil fungal 
and ACT biomasses.

Microbial activities in soil are biological fingerprints and reliable 
indicators of Pb toxicity (Luo et al., 2018). In contrast to the study of 
Yang et  al. (2014), this study demonstrated a significant negative 
correlation between FDA hydrolysis and soil Pb contamination level 
in SP (Table 2; Figure 2). A high Pb level in the soil would lead to the 
denaturation of enzymes such as esterases, proteases, and lipases 
involved in FDA hydrolysis (Patle et al., 2018; Ramana et al., 2021; Li 
et  al., 2022). The different feeding habits of different earthworm 
ecotypes can have different influences on microbial activity 
(Boughattas et al., 2019). This may be the reason why the presence of 
A. aspergillum led to a higher FDA hydrolysis activity than that of 
E. fetida. The toxic effect of Pb on soil enzyme activity is primarily due 
to its binding to the active sites of enzyme proteins (Dick, 1997; Utobo 
and Tewari, 2015). This suggests that the interface between Pb and 
enzyme active sites or substrates may be limited even at high soil Pb 
concentrations, resulting in minimal inhibition of enzyme activities 
responsible for soil N (NAG) and C (β-glu) transformation. Since a 
majority of enzymes are released by soil microbes (Wang et al., 2023), 
the presence and activity of the latter have an important effect on the 
activities of the former. In this study, soil enzyme activities, notably 
NAG activity, were enhanced by both earthworm species (Table 2), 
which was also found in a previous study (Jusselme et  al., 2013), 
indicating the potential of earthworms to stimulate microbial activities 
in Pb-contaminated soils. In summary, the findings confirm our 
hypothesis that each earthworm ecotype has a unique effect on soil 
enzyme activities, microbial biomass, and community composition in 
Pb-contaminated soils due to its distinct lifestyle and 
feeding preference.

4.2. Influence of soil microorganisms on Pb 
uptake by Brassica campestris with 
earthworm inoculation

Earthworms influence soil microbial functioning, mitigate the 
toxic effect of metals on microbial population, structure, and diversity 
(Šrut et al., 2019; Ren et al., 2021), and promote metal transfer from 

FIGURE 3

Redundancy analysis (RDA) of soil microbial attributes and plant Pb 
uptake in the different treatments (A) Diagram of RDA of soil 
microbial attributes as explanatory variables computed over 
response variables (plant biomass and Pb uptake). (B) Contribution of 
each microbial attribute to the variation in plant biomass and Pb 
uptake. G+, Gram-positive bacteria; G−, Gram-negative bacteria; ACT, 
actinomycetes; F, fungi; CB, general bacteria; total PLFAs, total 
microbial biomass; total bacteria, total bacterial biomass; G+/G−, 
Gram-positive to Gram-negative bacteria ratio; F/B, fungi-to-
bacteria ratio; β-glu, β-glucosidase; NAG, N-acetylglucosaminidase; 
FDA, fluorescein diacetate, SP, no earthworm inoculation; SPA: 
A. aspergillum was inoculated; SPE, E. fetida was inoculated; soil Pb 
contamination levels include 0, 100, 500, and 1,000  mg  kg−1 Pb. 
Permutation test was run 999 times to reveal the percentages of 
variation explained by the explanatory variables, the significance 
levels indicated by ***p-value < 0.001, **p-value < 0.01, *p-value  
< 0.05, no significant (ns), and p-value > 0.05.
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soil to plant. The RDA results revealed that the soil microbial attributes 
significantly influenced Pb uptake by B. campestris, with a contribution 
of 52.5%, much higher than the 17% reported by Xiao et al. (2020b). 
Explaining 43% of the total variation in Pb uptake, soil microbial 
biomass and community structure had a greater influence on Pb 
transfer from soil to plant compared to microbial activity (Figure 3B). 
The increase in soil microbial biomass due to earthworm activities 
suggests a likely more diverse soil microbial community with a more 
diverse genetic pool for more diverse soil functions (Tardy et al., 2014; 
Li et  al., 2018) to influence Pb uptake by plants. Pb-accumulating 
microbes might serve as a potential Pb reservoir for plant Pb uptake 
(Pham et al., 2022; Rajivgandhi et al., 2022). The G− bacteria in the 
drilosphere and rhizosphere might play an important role in the Pb 
uptake by B. campestris. They promote Pb uptake under the synergistic 
effects of plant root exudates and earthworms (Das and Osborne, 2018; 
WeiXie et  al., 2022). G− bacteria release growth regulators, 
siderophores, exopolysaccharides, and organic acids, which change Pb 
bioavailability and boost plant growth by reducing Pb phytotoxic 
effects (Jusselme et al., 2015a; Alexandra et al., 2022). Although G+ 
bacteria were abundant in the Pb-contaminated soil and expected to 
have a major influence on Pb uptake, they only accounted for 5.90% of 
the total variation in Pb uptake. The possible reason could be the lack 
of functioning G+ bacterial strains that can influence Pb availability. 
Earthworm introduction altered fungal abundance, which was 
positively correlated with soil DTPA-Pb (Figure 4), emphasizing the 
noteworthy symbiotic colonization of plant roots by fungi to enhance 

soil Pb bioavailability (Manzoor et al., 2019). The correlations between 
fungal biomass and enzyme activities (Figure 4) indicate that soil fungi 
probably secrete enzymes in the rhizosphere and the drilosphere (Frey, 
2019). As a result, enzymatic breakdown of organic and inorganic 
Pb-bearing substrates occurs, and DTPA-Pb increases, which explains 
the high Pb concentration in B. campestris (Supplementary Table S1; 
Figure 3A). The direct and indirect influences of ACT on Pb uptake by 
vegetables have rarely been reported. In this study, the earthworms had 
an effect on ACT biomass, and the latter was correlated with Pb uptake 
(Figure 4), which was consistent with previous studies (Ali et al., 2017; 
Liu X. et al., 2020). ACT are well-known to secrete various growth-
promoting substances and secondary metabolites, such as metal 
chelators and organic acids, which promote plant growth and solubilize 
and mobilize metals, including Pb (Taj and Rajkumar, 2016; Shanthi, 
2021). Therefore, ACT played a crucial role in promoting Pb uptake by 
B. campestris. This study provides evidence and new insights into the 
microbial mechanism of Pb uptake by B. campestris driven by 
earthworms via influencing soil microbial biomass and community 
structure. Comprehensive metagenomics analysis can be employed in 
future studies to identify the microbial strains promoting Pb uptake 
by plants.

The increased Pb accumulation in B. campestris was mainly a result 
of plant growth promotion enhanced by E. fetida (Figure 3A). Though 
biomass increase would lead to Pb concentration dilution (known as the 
growth dilution effect), the latter would stimulate Pb uptake, eventually 
resulting in higher Pb accumulation in B. campestris. Therefore, 

FIGURE 4

Mantel correlation analysis between soil microbial attributes and Pb uptake indicators in different treatments. G+, Gram-positive bacteria; G−, Gram-
negative bacteria; ACT, actinomycetes; F, fungi; CB, general bacteria; total bacteria, total bacteria biomass; total PLFAs, total microbial biomass; G+/G−, 
Gram-positive to Gram-negative bacteria ratio; F/B, fungi to-bacteria ratio; β-glu, β-glucosidase; NAG, N-acetylglucosaminidase; FDA, fluorescein 
diacetate. SP, no earthworm inoculation; SPA, Amynthas aspergillum was inoculated; SPE, Eisenia fetida was inoculated. ns, not significant p-value  
>0.05, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 (n  =  4).
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earthworms play an important role in promoting metal bioaccumulation 
and plant tolerance to heavy metal stress in contaminated soils (Mahohi 
and Raiesi, 2021). The decreased plant biomass in SPA led to higher Pb 
concentration compared to SPE. Moreover, some studies have 
demonstrated that plant Pb uptake is related to plant biomass, soil 
microbial biomass, and community structure (Jusselme et  al., 2012, 
2015b), which is consistent with our findings in the present study. 
E. fetida played a role in promoting Pb transfer in the vegetable food 
chain system by decreasing the G+/G− ratio (Table  1), which was 
associated with Pb uptake increase (Figure 3A). This finding supports the 
well-established idea that a change in microbial community structure is 
always accompanied by a change in microbial activity and community 
function (Price-Christenson et al., 2020). Furthermore, it was found that 
SPA exhibited high F/B ratios, DTPA-Pb, and plant Pb concentrations 
(Figures 1B, 3A). This indicates that A. aspergillum introduction tended 
to shift the microbial community toward being fungi-dominated, which 
can promote Pb transfer from the soil into the vegetable food chain by 
improving Pb bioavailability. These findings highlight the potential 
influence of earthworms on soil ecosystems and the entry of metals into 
the food chain.

5. Conclusion and perspective

Hitherto, studies have provided direct evidence of the cause–
effect interaction between earthworms and microbes in the context 
of Pb accumulation in leafy vegetable systems. However, no study has 
been conducted to investigate how ecologically different earthworm 
species differ in promoting the entry of Pb into the food chain. In this 
study, both soil microbial biomass and community composition had 
a stronger effect than microbial activity on Pb transfer into the 
vegetable food chain. The possible soil microbial mechanism of Pb 
accumulation in B. campestris is driven by earthworms, which 
influence microbial biomass and community structure. In the 
Pb-polluted soil, the two ecologically different earthworm species 
exhibited different effects on soil enzyme activities, microbial 
biomass, and community composition due to their different lifestyles 
and feeding preferences. However, both earthworm species 
contributed to Pb uptake by B. campestris, which raises a concern 
about food safety. Understanding the interactions between soil 
microbes and Pb can help develop effective strategies to reduce Pb 
contamination in the food chain. Therefore, comprehensive 
metagenomics analysis can be employed in future studies to identify 
the microbial strains promoting Pb uptake in vegetable soil systems.
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