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In this study, the effects of different enzymes (lysozyme, α-amylase and neutral 
protease) on sludge hydrolysis efficiency and microbial community in sequencing 
batch reactor (SBR) were introduced. The results showed that the hydrolysis 
efficiencies of the three enzymes were 48.5, 22.5 and 31%, respectively, compared 
with the accumulated sludge discharge of the blank control group. However, 
it has varying degrees of impact on the effluent quality, and the denitrification 
and phosphorus removal effect of the system deteriorates. The lysozyme that 
achieves the optimal sludge hydrolysis effect of 48.5% has the greatest impact 
on the chemical oxygen demand (COD), total nitrogen (TN), and nitrate nitrogen 
(NO3

−-N) of the effluent. The sludge samples of the control group and the groups 
supplemented with different enzyme preparations were subjected to high-
throughput sequencing. It was found that the number of OTUs (Operational 
Taxonomic Units) of the samples was lysozyme > α-amylase > blank control > 
neutral protease. Moreover, the abundance grade curve of the sludge samples 
supplemented with lysozyme and α-amylase was smoother, and the community 
richness and diversity were improved by lysozyme and α-amylase. The species 
diversity of the sludge supplemented with lysozyme and neutral protease was 
great, and the community succession was obvious. The introduction of enzymes 
did not change the main microbial communities of the sludge, which were mainly 
Proteobacteria, Actinobacteria and Bacteroidetes. The effects of three enzyme 
preparations on sludge reduction and microbial diversity during pilot operation 
were analyzed, the gap in microbial research was filled, which provided theoretical 
value for the practical operation of enzymatic sludge reduction.
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1. Introduction

Residual sludge is the main by-product of wastewater treatment plants, which originates 
from the biomass growth caused by the degradation and consumption of organic pollutants in 
wastewater. In the activated sludge process, the ratio of COD to sludge is about 0.3–1.2 kg TSS/
kg COD, and the sludge production is huge, which poses a direct or potentially significant threat 
to the ecological environment (Zou et al., 2022; Apollo et al., 2023). As the main tank of domestic 
and industrial wastewater, sewage treatment plants contain a large number of polluting 
substances and are enriched into activated sludge, making these sludge compositions 
complicated without proper treatment and disposal (Huang et al., 2023; Wang et al., 2023). It 
not only contains high water content, sediment, and plant and animal residues, but also a large 
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number of microorganisms, pathogens, heavy metals, and other toxic 
and harmful substances. Special components resulting in the residual 
sludge has long-term toxicity and non-degradability, so it must 
be treated and disposed of in an effective and safe way (Yu et al., 2023). 
In 2022, sludge production has exceeded 65 million and has been 
growing in China (Pang et al., 2021), but for a long time, the research 
on sludge emission reduction has lagged far behind that of developed 
countries. The commonly used sludge end treatment and disposal 
methods require high operating costs and land use (Quan et al., 2022). 
Therefore, the sludge in-situ reduction technology has been widely 
used as a way to reduce excess sludge from the source (Liu Q. et al., 
2022; Liu X. et al., 2022; Liu Z. et al., 2022). It not only reduces the 
environmental impact and economic burden of the sludge treatment 
process, but also does not require extensive modification of the 
original process (Jiang et al., 2021).

In sludge digestion, hydrolysis is considered to be the primary 
rate-limiting step in sludge lysis pretreatment, and a large number of 
studies have adopted the pretreatment method that decomposes 
sludge and releases organic matter into the aqueous sludge phase 
(Peng et al., 2018). In the process of sludge reduction, it can regulate 
cell lysis, hydrolysis, nutrient extraction, sludge improvement and 
other functions, and simultaneously achieve pollutant removal and 
sludge reduction (Zhou et al., 2023). Adding uncoupling agents to 
hydrolysis methods is difficult to degrade, most of them are toxic and 
harmful substances, ozone is costly, and has limitations in application. 
Other methods also have inevitable disadvantages. In contrast, 

enzyme treatment has been extensively studied as a mild, 
environmentally friendly, and efficient treatment method (Liu et al., 
2019). Some researchers found that amylase, neutral protease and 
other enzymes in different conditions could improve the hydrolysis 
efficiency of residual sludge and specific types of enzymes catalyze 
only one defined substrate (Yu et al., 2013; Chen et al., 2015; Lu et al., 
2022; Kang et al., 2023a,b). Liu et al. (2019) as well as Song et al. (2013) 
investigated the catalytic performance of lysozyme on residual sludge 
hydrolysis and decomposition, and found that it could serve as a lysis 
agent to effectively reduce the amount of residual sludge produced in 
SBR systems. In addition, extracellular polymeric substances (EPS), 
the main component of sludge floc, is easier to extract after enzyme 
treatment, and the floc structure is looser, which is the key to the 
reduction process (Kang et al., 2023a,b). These studies proved the 
necessity and effectiveness of the application of enzymes in sludge 
reduction and the rationality of the selection of neutral protease, 
α-amylase and lysozyme in this study. However, most current studies 
focus on exploring the effects of different enzyme preparations on 
sludge reduction and dehydration (Pang et al., 2022), ignoring the 
effects of the addition of enzyme preparations on water quality and 
microbial community structure. Therefore, this study will use enzyme 
preparations as a starting point and put them into a pilot experimental 
device simulating an actual sewage treatment plant. The analysis of 
effluent quality as well as changes in microbial community structure 
in the sludge provides new insights for the formation of a more 
integrated and comprehensive system for enzyme treatment to provide 
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a disposal strategy in future practical wastewater treatment 
plants operation.

2. Materials and methods

2.1. Experimental setup

After fresh sludge was taken back to the laboratory, it was cultured 
for 24 h, then moved into the SBR for incubation. The operation cycle 
is 8 h, and the operation mode is intermittent inlet and outlet, 
including 0.5 h inlet stage, 1.5 h anaerobic stirring, 3 h aeration stirring 
(DO is about 2.0 mg/L), 1.5 h static sedimentation, and 0.5 h outlet. 
The next cycle starts after the system is static and the water is changed. 
Three cycles were run daily with regular quantitative mud discharge, 
and the domestication time was 21 days. In order to ensure the stability 
and accuracy of water, the experiments were conducted by artificially 
preparing simulated domestic wastewater with 510 mg/L CH3COONa, 
82 mg/L NH4Cl, 53 mg/L KH2PO4, and 16 mg/L K2HPO4 to provide 
carbon, nitrogen, and phosphorus sources required for microbial life, 
and added NaHCO3 to control the pH of the water in 7.5 ~ 8.5. In 
addition, appropriate amounts of trace elements were added to the 
synthetic wastewater, including 44 mg/L MgSO4, 100 mg/L 
FeCl3·6H2O, 0.12 mg/L MnCl2·H2O, 0.15 mg/L CoCl2·6H2O, 0.15 mg/L 
H3BO3, 0.12 mg/L ZnSO4·7H2O, 0.06 mg/L Na2MoO4·2H2O, and 
0.03 mg/L KI (He et al., 2021).

2.2. Sludge and enzymes

The residual sludge was obtained from Panji Wastewater 
Treatment Plant, Huainan, China. The sludge characteristics are as 
follows: pH is about 8, mixed liquor suspended solids (MLSS) is 
2,571 mg/L, mixed liquor volatile suspended solids (MLVSS) is 
1831 mg/L, COD is 31 mg/L, ammonia nitrogen (NH4

+-N) is 
0.657 mg/L, and sludge retention time (SRT) is about 15 d. Neutral 
protease was purchased from Hefei Bomei Biotechnology Co. Ltd., 
with an activity of 200 u/mg, the optimum pH of 7.0, and a reaction 
temperature of 50°C. α-Amylase was purchased from Hefei BASF 
Biotechnology Co. Ltd., with an activity of about 10,000 u/g, the 
optimum pH of 7.0 and the reaction temperature of 55°C. Lysozyme 
was purchased from Shanghai IKA Biotechnology Co. Ltd., with an 
activity of 33,000 u/mg, the optimum pH of 7.0, and a reaction 
temperature of 35°C (Kang et al., 2023a,b; Zou et al., 2023).

2.3. Experimental method

The purpose of the experiments is to investigate the changes in the 
microbial community structure of the sludge in each reactor at the 
end of the reaction cycle run when different enzymes were used to 
treat sludge in the plant. Four identical SBR reactors with a total 
reaction volume of 4 L (effective volume of 2.5 L) were used in the 
experiment. They were labeled as A1, A2, A3, and A4, and the first one 
was used as a blank control. Then, different enzymes of the same 
concentration were added to A2, A3, and A4 reactors, respectively. 
The A2 reactor had 0.2 g lysozyme/g SS, the A3 reactor had 0.2 g 
α-amylase/g SS, and the A4 reactor had 0.2 g neutral protease/g 

SS. Before stopping aeration in each reaction cycle, 10% of the sludge 
mixture was taken out from the enzyme reaction tank, left to settle, 
and then the supernatant was removed. Then the enzyme reagent was 
added to the settled sludge, and adjusted to the optimal pH, 
respectively. After stirring at different temperatures for 30 min in the 
water bath, the sludge was added back to the drained SBR reactor. The 
sludge samples were taken from the last day of continuous operation 
for 24 days for microbiological assays. Each experiment was 
performed in duplicate and repeated to determine the accuracy of the 
results obtained.

2.4. Analysis methods

2.4.1. Analysis of sludge and water quality 
indicators

MLSS were determined according to the standard method 
(APHA, 2005) to reflect the sludge discharge. The sludge volume index 
(SVI) measured by sedimentation method reflects the sedimentation 
property of sludge. Water quality indicators, including chemical 
oxygen demand (COD), ammonia nitrogen (NH4

+-N), total 
phosphorus (TP) and total nitrogen (TN) parameters, were 
determined by potassium dichromate method, nano reagent 
spectrophotometry, molybdate spectrophotometry and potassium 
persulfate oxidation-ultraviolet spectrophotometry. Nitrous nitrogen 
(NO2

−-N) and nitrate nitrogen (NO3
−-N) which reflected the 

nitrification and denitrification ability of the system were determined 
by the N-(1-naphthyl)-ethylenediamine spectrophotometry and UV 
spectrophotometry. The pH and DO values were determined by an 
FE28 pH meter and a JPB-607A portable dissolved oxygen meter, 
respectively.

2.4.2. Analysis of microbial community diversity
The bacterial composition of the bioreactor was examined by 

high-throughput sequencing of a 16S rRNA gene library generated by 
amplification primers for the V3-V4 region of the bacterial 16SrRNA 
gene. The V3-V4 region of the 16S rRNA gene was amplified with 
forward primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 
reverse primer 806R (5′ -GGACTACHVGGGTWTCTAAT-3′). The 
V3 and V4 regions were chosen because they were reported to 
represent reliable regions of the full-length 16SrRNA gene in many 
studies (Plotnikov et al., 2019).

Sludge samples run for 24 d in four devices, A1, A2, A3, and A4, 
were pretreated to dissolve the DNA, SDS was added to remove 
impurities and destroy the cells before the cell was broken, and the 
DNA was split by mechanical crushing method. Meanwhile, 
Nanodrop was used to quantify the DNA, and the DNA extraction 
quality was detected by 1.2% agar-gel electrophoresis. Then, specific 
gene fragments were amplified by polymerase chain reaction (PCR), 
and magnetic beads were added to the amplified products for 
purification and recovery. The recovered products were quantified by 
PCR amplification. The fluorescence reagent was Quant-iT PicoGreen 
dsDNA Assay Kit, and the quantitative instrument was Microplate 
reader (BioTek, FLx800). Based on the quantitative results, sequencing 
libraries were prepared using Illumina’s TruSeq Nano DNA LT Library 
Prep Kit as required. Finally, high-throughput sequencing was carried 
out on the computer. This project conducted double-ended sequencing 
of community DNA fragments, adopted DADA2 and Vsearch for 
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sequence denoising or clustering, used Greengenes database to 
annotate species taxonomy, completed bioinformatics analysis, and 
then performed species composition analysis. The specific results of 
each sample at different species classification levels were obtained. The 
differences and significance of microbial diversity can be seen from 
ASV/OTU, species classification and other aspects.

3. Results and discussion

3.1. Mechanism of action of enzyme 
preparations

Neutral protease can dissolve. Under certain conditions, using the 
characteristics of the enzymatic reaction, it can hydrolyze the peptide 
bonds in macromolecular proteins in sludge, and release amino acids 
or small molecule peptides (Zou et al., 2023), The catalytic reaction is 
fast and destroys the stability of the sludge floc structure. α-Amylase, 
also known as 1,4-α-D-glucan glucan hydrolase, can catalyze the 
hydrolysis of α-1,4-glycosidic bonds (Plaza-Vinuesa et al., 2019). As a 
result, the hydrolysis of carbohydrates in the sludge is combined 
during the reaction process, resulting in sludge reduction. Lysozyme, 
as known as N-acetylmurastin hydrolase, continuously catalyzes the 
peptidoglycan hydrolysis of the cell wall by cutting the β-1,4 glycosidic 
bond, and then dissolves the bacterial cell wall until the cell wall is 
completely disintegrated. This leads to the release of intracellular 
substances, and the lysis is completed to achieve the effect of sludge 
reduction (Shi et al., 2022; Figure 1).

3.2. Effects of sludge reduction and 
wastewater treatment performance

During the experiment, the sludge samples were extracted and 
measured at regular intervals. The results are shown in Table 1. During 
the operation, the cumulative discharge of residual sludge in A1, A2, 
A3, and A4 was 2,668 mg, 1,373 mg, 2067 mg, and 1840 mg, 

respectively. The reduction of residual sludge in A2, A3, and A4 
reached 48.5, 22.5, and 31%, respectively, which proved that adding 
enzyme preparation could enhance the residual sludge hydrolysis and 
promote sludge reduction. The SVI values can reflect the looseness, 
coalescence, and sedimentation performance of activated sludge (Li 
et al., 2016). When the SVI value is higher than 150 mL/g, expansion 
will be considered (Han et al., 2018). At the end of the operation 
cycles, SVI values were 98 mL/g, 72 mL/g, 270 mL/g, and 87 mL/g of 
A1, A2, A3, and A4, respectively. The sludge particles in the A2 device 
were dense and inorganic. The sludge in A3 had a pronounced 
tendency to swell, which may be caused by the filamentous bacteria 
on the surface, which will limit the operation of the SBR unit. The 
sediment produced by A4 with the addition of neutral protease had 
good settling performance.

After adding the enzyme preparation, the effluent COD of the 
A2, A3, and A4 enzyme reaction tanks was higher than that of the 
A1 reaction tank, mainly because the sludge was hydrolyzed and 
the microbial cells were cleaved and died. As a result, intracellular 
organic matter was released, leading to an increase in COD. On the 
one hand, the increase in TP content was due to the reduction of 
microbial biomass and activity with removal ability due to cell 
rupture. On the other hand, due to the reduction of the external 
discharge of surplus sludge, the phosphorus absorbed by 
phosphorus accumulating bacteria cannot be discharged from the 
system (Sarvajith and Nancharaiah, 2022). A reduction in the 
amount of sludge discharged in the reactor will prolong the SRT, 
and a longer SRT may also have a negative impact on phosphorus 
removal (de Sousa Rollemberg et  al., 2022). The TN in the A2 
device containing lysozyme was too high, which exceeded the 
system’s ability to accommodate the decomposition of nitrogen. 
The slight decrease in A3 and A4 was due to the hydrolysis of the 
enzyme preparation, which led to the sludge reduction and 
increased the sludge age of the activated sludge in the system. As a 
result, the denitrification ability of the system was enhanced. There 
was no significant difference in the NH4

+-N removal rate between 
the experimental and control groups. During the experiment, the 
system had good nitrification capacity and stable operation, and 

FIGURE 1

Mechanism of sludge hydrolysis by lysozyme, α-amylase, and neutral protease.
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the activity of ammonia-oxidizing bacteria in the sludge was good 
(Wang et al., 2020). The effluent concentration of NO2

−-N did not 
change significantly, and the nitrite produced by ammonia 
oxidation could be oxidized to nitrate in time, so that there was no 
excessive accumulation of NO2

−-N in the water. The NO3
−-N 

content of A2 changed significantly, which seriously affected the 
denitrifying bacteria, and even died. The denitrification process 
was inhibited, A3 and A4 were reduced compared with A1, and the 
system reduced more nitrite to nitrogen gas from the water (Song 
et al., 2022).

3.3. Effects of enzyme preparation on 
microbial community structure

3.3.1. Alpha diversity analysis
The diversity of the treated samples is shown in Table 2. A total 

of 10,945 OTUs were obtained in all the test samples, and the 
number of OTUs contained in A1-A4 ranged from 1,900 to 3,200. 
This indicates that the structure of the microbial community has 
changed. Alpha diversity statistics are shown in the Table 2. The 
sequencing coverage of all samples was more significant than 0.99, 
indicating that the sequencing results can reasonably reflect the 
microbial community structure in the samples. The number of 
OTUs was positively correlated with species richness. The number 
of OTUs of microbial communities in A2 and A3 was stable and 
increased compared with the control group. In contrast, the 
number of OTUs in A4 decreased significantly to 1921 due to the 
impact of neutral protease reagent, which destroyed the function 
of some microbial cells. The Chao1 index also showed a significant 
trend, indicating that the abundance of microbial communities in 
A2 and A3 was higher than that in A1, and the abundance of A4 
was lower than that in A1. This may be due to the rapid occupation 
of niches by opportunistic populations in the presence of 

competing strains, and the subsequent dominant species eventually 
dominating community turnover and development, which leads to 
the separation of microbial community function and community 
stability over time scales (Wan et al., 2022). Compared with the A1 
system, the Simpson index of A2, A3, and A4 fluctuated but not 
much, and had no response to the addition of enzyme agents. The 
Shannon indices of A1 and A2 were similar. The Shannon index of 
A3 was relatively increased, indicating an increase in community 
diversity. The Shannon index of A4 was decreased (Zhang et al., 
2021). The Pielou_e index represents the evenness of the 
community, and its trend of the four reaction devices was the same 
as the previous analysis. Lysozyme and α-amylase had no 
significant effect on the microbial communities of species in the 
SBR system, and neutral protease caused a decrease in system 
diversity and abundance.

Further analysis of the sparse curves in Figure 2A verified the 
information of valid reads and aggregated OTU in the three samples. 
At the same sequencing depth, the number of OTUs of the samples 
was in the following order: A2 > A3 > A1 > A4, which reflected the high 
diversity of the four samples and the difference in the effect of different 
enzyme reagents on the system. In addition, it can be seen from the 
sparse curve that the four samples in this experiment eventually 
reached a plateau, indicating that the amount of data for this 
sequencing was sufficient. The sequencing depth has basically covered 
all species in the sample, and the results can reflect the real situation 
of microbial diversity.

The abundance rank curve in Figure 2B shows the homogeneity 
of the microbial community based on the distribution of OTUs in 
each sample, which reflects the distribution pattern of abundance. In 
this curve, each OTU in the sludge was sorted according to the 
number of DNA sequences, and the abundance rank curves of OTU 
of A1, A2, A3, and A4 became relatively flat with the increase in the 
number of analyzed sequences, which indicated that the results of this 
study were reasonable and accurate. As shown in the figure, compared 

TABLE 1 Sludge and water quality indicators.

Indicators A1 A2 A3 A4

Cumulative residual sludge discharge (mg) 2,668 1,373 2067 1840

Final SVI (ml/g) 98 72 270 87

COD of effluent (mg/L) 14.97 41.52 27.12 27.12

TP of effluent (mg/L) 5.38 5.86 9.13 9.34

TN of effluent (mg/L) 14.92 45.69 14.75 7.40

NH4
+-N of effluent (mg/L) 0.60 1.15 0.56 0.73

NO2
−-N of effluent (mg/L) 0.47 0.48 0.53 0.47

NO3
−-N of effluent (mg/L) 14.04 41.95 14.93 9.07

TABLE 2 Microbial community diversity indices of four SBRs.

Samples OTUs Chao1 Simpson Shannon Pielou_e Goods_
coverage

A1 2,802 2,837 0.972 7.884 0.689 0.994

A2 3,131 3,146 0.966 7.821 0.674 0.996

A3 3,091 3,106 0.989 8.752 0.755 0.996

A4 1921 1904 0.952 6.979 0.640 0.997
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with A1, A2, and A3, A4 had a steeper fold, a greater different in 
community abundance, and lower bacterial diversity and homogeneity. 
In contrast, A2 and A3, with the addition of enzyme reagents, had 
smoother folds and contributed to the microbial diversity of 
the system.

3.3.2. Beta diversity analysis
Figure 3A shows the difference in the bacterial community among 

samples principal coordinate analysis (PCoA), in which the weighted 
UniFrac distance was calculated to more comprehensively reflect the 
similarities and differences between sample community compositions. 
From Figure 3A, principal coordinates 1 and 2 accounted for 48.4 and 

32.6% of the total community variables, respectively. There were 
different groups in the four sludge samples. The results showed that 
there were deviations between the results of the experimental and 
control groups under different exposure conditions. The changes of 
microbial communities in A2 and A4 injected with lysozyme and 
neutral protease were much more obvious than those in A3, injected 
with α-amylase.

As shown in Figure 3B, UPGMA cluster analysis clustered the 
samples based on the similarity between them. The shorter the 
branch length between the samples, the more similar the two 
samples were. The results further showed that the neutral protease 
dosing treatment caused the greatest change in the microbial 

FIGURE 2

Alpha diversity analysis of samples A1-4: (A) Sparse curves; (B) Abundance rank curve (A1: Blank control A2: lysozyme A3: α-amylase A4: neutral 
protease).

FIGURE 3

Beta diversity analysis of samples A1-4: (A) Principal coordinate analysis (PCoA); (B) UPGMA cluster analysis (A1: blank control A2: lysozyme A3: 
α-amylase A4: neutral protease).
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community, followed by lysozyme, while the microbial community 
in the device dosed with α-amylase was not significantly different 
from the control. These findings demonstrate that enzyme 
preparations can exert a suppressive effect on microorganisms 
while exerting a sludge reduction effect, significantly altering the 
composition of the microbial community.

3.3.3. Species variation analysis and marker 
species

The Venn diagram in Figure  4A shows the changes in the 
microbial community structure in the four reaction systems. A total 
of 97 species were found in all samples, confirming the homology 
between A1, A2, A3, and A4. All four samples had a large number of 
different species, which was related to the dosing of different types of 
enzyme reagents, indicating a significant succession and change in 
bacterial community structure during the sludge initiation process. 
The abundance of microbial community in the system was increased, 
and the dominant flora was enriched, which was conducive to the 
stability of the system. The number of the same bacterial genus in the 
four types of sludge accounted for 3.5, 3.1, 3.1 and 5% of the total 
bacterial genera in A1, A2, A3 and A4, respectively, indicating that the 
species gradually increased during the operation process (Song 
et al., 2022).

The heat map in Figure  4B shows the trend of species 
abundance distribution of the samples, with red color blocks 
representing a relatively high abundance of the genus and blue 
color blocks representing a relatively low abundance of the genus. 
From the figure, all four samples are less closely related at the 
taxonomic level, with more pronounced differences in microbial 
composition and relative abundance. During evolution, only a few 
of the dominant genera in the control group ended up in slightly 
higher abundance in the A3 response group, while they were all at 
lower abundance levels in A2 and A4, with significant success in 
the microbial community.

3.4. Effects of microbial community 
structure

3.4.1. Community structure analysis at the 
phylum level

In order to visualize the changing trend of microbial community 
structure in activated sludge, the species with the top 10 relative 
abundance of the microbial community at the phylum level in each 
activated sludge was selected, and the remaining species were 
combined and set as Others. As shown in Figure 5A. The dominant 
phylum included Proteobacteria (25.826–76.753%), Patescibacteria 
(0.087–39.991%), Actinobacteria (0.411–20.655%), Bacteroidetes 
(4.786–7.574%), Nitrospirae (1.210–17.319%). Proteobacteria are the 
largest phylum of bacteria. Most of the phosphorus-polymerizing 
bacteria belong to the Proteus. In addition, many bacteria can fix 
nitrogen and can effectively remove nitrogen and degrade organic 
matter (He et  al., 2018), including AOB (Ammonia Oxidizing 
Bacteria), NOB (Nitrite Oxidizing Bacteria), and denitrifying 
bacteria, which are the main microorganisms involved in 
denitrification process and play an important role in anaerobic 
digestion (Su et al., 2020; Lu et al., 2021). The Proteobacteria of A2 
increased to 76.8%, and the addition of lysozyme increased the 
bioavailable material content and dissolved sludge reflux, which 
promoted the growth of the Proteobacteria (Su et al., 2021). There was 
no significant difference in Proteobacteria of A3. The Proteobacteria 
of A4 decreased to as low as 25.8%, indicating a strong inhibition of 
the phosphorus removal effect of the system. Compared to A1, 
Patescibacteria increased by 99.8% in the reactor of A4. Actinobacteria 
are related to the settling performance of the system and can 
be involved in the degradation of refractory organic matter and the 
uptake of inorganic nitrogen and denitrification (Zhang et al., 2018). 
At the same time, it is also a common category of phosphorus 
removal bacteria, including a variety of metabolic species, with the 
function of nitrogen and phosphorus removal. Actinobacteria of A2 

FIGURE 4

Species variation analysis and marker species of samples A1-4: (A) venn; (B) heat map (A1: blank control A2: lysozyme A3: α-amylase A4: neutral 
protease).
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showed a decreasing trend, corresponding to a sharp increase in its 
TN and NO3

−-N content. Actinobacteria of A3 and A4 showed an 
increasing trend, probably due to their adaptation and resistance to 
enzymatic agents. Bacteroidetes are common bacteria in wastewater 
treatment, usually participating in wastewater treatment as 
heterotrophic bacteria and denitrification functional bacteria (Pan 
et al., 2020), and playing an important role in COD degradation and 
denitrification and phosphorus removal (Yao et  al., 2021). It can 
decompose proteins, carbohydrates and other macromolecules, and 
nitrify to remove nitrogen (Seo et  al., 2019), effectively degrade 
organic pollutants under anaerobic conditions. Bacteroidetes and 
Proteobacteria are considered a common functional phylum in 
wastewater treatment systems. Compared to A1, Bacteroidetes of A2 
were mostly unchanged, and Bacteroidetes of A3 and A4 were 
decreasing. Nitrospirae is mainly responsible for nitrification 
processes, including autotrophic metabolism and subsequent nitrite 
oxidation (Luo et  al., 2013). Nitrospirae in A2, A3, and A4 all 
decreased sharply, affecting the nitrification–denitrification process 
of the system. Compared to A1, the number of phyla in A3 and A4 
increased significantly and the number of phyla in A2 decreased 
significantly, indicating that the action of enzyme preparation on SBR 
system had a great influence on the microbial community structure.

3.4.2. Community structure analysis at the class 
level

The species with the top  10 relative abundance of microbial 
communities at the class level in each activated sludge were selected, 
and the remaining species were combined and set as Others. As shown 
in Figure 5B, the dominant bacterial class in the A1 blank control 
group included Gammaproteobacteria (25.429%), Alphaproteobacteria 
(25.822%), Bacteroidia (6.738%), Nitrospira (16.157%), and 
Fimbriimonadia (6.514%). All of them contributed to the nitrification–
denitrification performance in the system and the reactor operated 
well. The top three bacteria in relative abundance play an important 
role in degrading nitrogen-containing compounds (Liu Q. et al., 2022; 
Liu X. et al., 2022; Liu Z. et al., 2022). Due to the addition of lysozyme 
in A2, the dominant class during the evolution became 
Gammaproteobacteria (64.714%), Alphaproteobacteria (11.771%), 
Bacteroidia (7.553%), Holophagae (9.631%), and Nitrospira (1.21%). 
The reagent dosing promoted the growth of some dominant bacteria, 
exemplified by the increase in the relative abundance of Holophagae, 
a strictly anaerobic bacterium belonging to the Acidobacteria phylum. 
The similarity in microbial composition between reactors A3 and A1 
is related to the domestication process of the reactors in the system. 
The dominant classes in A4 were Gammaproteobacteria (7.647%), 
Alphaproteobacteria (18.031%), Saccharimonadia (39.983%), 
Actinobacteria (19.868%), and Bacteroidia (4.516%). While the sludge 
was reduced, the effluent water quality was good due to the removal 
of nitrogen and phosphorus and the removal of organic matter by the 
dominant bacteria. It can be  seen that the relative abundance of 
Bacteroidia in the four reactors is at a relatively stable level, and the 
slight differences may be due to the death of other classes. In general, 
the microorganisms that are not adapted to the system will gradually 
be eliminated with the operation of the reactor, and finally show the 
difference of microbial community structure (He et al., 2022).

3.4.3. Community structure analysis at the genus 
level

The species with the top  10 relative abundance of microbial 
communities at the genus level in each activated sludge were selected, 
and the remaining species were combined and set as Others. As shown 
in Figure 5C, A1 dominant genera were Defluviicoccus (19.624%), 
Nitrospira (6.157%), 966–1 (6.916%), Fimbriimonadaceae (6.502%), 
and unclassified_Burkholderiaceae (3.942%). Defluviicoccus belongs to 
a genus of Gram-negative cocci that is usually highly abundant in 
wastewater treatment plants and can be used for phosphorus removal 
(Maszenan et al., 2022). Nitrospira is an aerobic autotrophic bacterium, 
which is considered to be the most common and abundant NOB in 
sewage treatment (Martins et al., 2020), and can oxidize nitrite into 
nitrate. In the reactor with lysozyme, α-amylase and neutral protease 
added, the dominant bacteria evolved. On the one hand, due to the 
impact of reagents on the system, the relative abundance changed; on 
the other hand, due to the reduction of sludge discharge, the system 
would lead to a certain degree of sludge aging, and microorganisms 
would metabolize to alleviate the aging of the sludge (Liu Q. et al., 
2022; Liu X. et  al., 2022; Liu Z. et  al., 2022). Thermomonas is a 
denitrifying genus in wastewater treatment systems, which is 
beneficial to denitrification. Thermomonas reached a relative 
abundance of 24.566% in A2. The relative abundance of 
Exiguobacterium (11.238%) and Thauera (6.302%) were higher in A3. 
Exiguobacterium is a Gram-positive species, which acts in nutrient 

FIGURE 5

The microbial classification of bacterial 16S rDNA gene reads of 
samples A1-4: (A) phylum; (B) class; (C) genus (A1: Blank control A2: 
lysozyme A3: α-amylase A4: neutral protease).
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fixation and degradation of toxic substances. Thauera belongs to 
denitrifying bacteria, which is an important function in the 
denitrification and degradation of pollutants in the system, and also 
has the function of EPS secretion. Saccharimonadales (39.692%) and 
Defluviicoccus (8.259%) were more abundant in A4, Saccharimonadales 
survive in an anaerobic environment and participate in denitrification 
(Huang et al., 2022). Defluviicoccus has a phosphorus removal effect.

4. Conclusion

This study revealed that using enzymes to act on the SBR system 
can promote sludge hydrolysis and achieve volume reduction. By 
comparing the accumulated excess sludge emissions during the 
experimental process, it can be  shown that after treatment with 
different enzyme preparations, different degrees of effect were 
obtained, among which, lysozyme had the best sludge hydrolysis effect 
of 48.5%, followed by neutral protease (31%) and α-amylase (22.5%).

The four sludge samples were sequenced with high throughput, and 
the richness and diversity of the sludge community supplemented with 
lysozyme and α-amylase were higher. Compared with the control group, 
the sludge community supplemented with lysozyme and protease was 
significantly different, and the community succession was obvious. At 
the three levels of phylum, class and genus, the dominant species of 
bacteria in different reactors did not change much, but their abundance 
was different, and the content of bacteria related to water treatment was 
reduced, which affected the operation ability of the system. The feasibility 
and defects of enzyme treatment for sludge reduction were proved. Next, 
the operation time should continue to be extended, and in the case of 
complex actual wastewater, the experimental details should be further 
optimized to improve the shortcomings of the treatment process, so that 
it can be run in actual wastewater treatment applications.
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