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The Marburg virus (MV), identified in 1967, has caused deadly outbreaks 
worldwide, the mortality rate of Marburg virus disease (MVD) varies depending 
on the outbreak and virus strain, but the average case fatality rate is around 
50%. However, case fatality rates have varied from 24 to 88% in past outbreaks 
depending on virus strain and case management. Designated a priority pathogen 
by the National Institute of Allergy and Infectious Diseases (NIAID), MV induces 
hemorrhagic fever, organ failure, and coagulation issues in both humans and non-
human primates. This review presents an extensive exploration of MVD outbreak 
evolution, virus structure, and genome, as well as the sources and transmission 
routes of MV, including human-to-human spread and involvement of natural 
hosts such as the Egyptian fruit bat (Rousettus aegyptiacus) and other Chiroptera 
species. The disease progression involves early viral replication impacting 
immune cells like monocytes, macrophages, and dendritic cells, followed by 
damage to the spleen, liver, and secondary lymphoid organs. Subsequent spread 
occurs to hepatocytes, endothelial cells, fibroblasts, and epithelial cells. MV can 
evade host immune response by inhibiting interferon type I (IFN-1) synthesis. This 
comprehensive investigation aims to enhance understanding of pathophysiology, 
cellular tropism, and injury sites in the host, aiding insights into MVD causes. 
Clinical data and treatments are discussed, albeit current methods to halt MVD 
outbreaks remain elusive. By elucidating MV infection’s history and mechanisms, 
this review seeks to advance MV disease treatment, drug development, and 
vaccine creation. The World Health Organization (WHO) considers MV a high-
concern filovirus causing severe and fatal hemorrhagic fever, with a death rate 
ranging from 24 to 88%. The virus often spreads through contact with infected 
individuals, originating from animals. Visitors to bat habitats like caves or mines 
face higher risk. We tailored this search strategy for four databases: Scopus, Web 
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of Science, Google Scholar, and PubMed. we primarily utilized search terms such 
as “Marburg virus,” “Epidemiology,” “Vaccine,” “Outbreak,” and “Transmission.” To 
enhance comprehension of the virus and associated disease, this summary offers 
a comprehensive overview of MV outbreaks, pathophysiology, and management 
strategies. Continued research and learning hold promise for preventing and 
controlling future MVD outbreaks.
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filovirus, pathogenesis, Marburg virus, epidemic, vaccine, treatment

1. Introduction

The Marburg virus (MV) has emerged as a significant global 
threat, instigating multiple fatal outbreaks with a considerable 
mortality rate since its discovery and characterization in 1967. Its 
initial appearance spanned regions including Marburg, Frankfurt 
(Germany), Yugoslavia (now Serbia), and Belgrade, with Africa 
primarily bearing the brunt of its impact (Brauburger et al., 2012). 
According to the National Institute of Allergy and Infectious 
Diseases, the main cause of MVD is Marburg virus (Bente et al., 

2009). The virus’s nomenclature stems from the city where it is 
devastating effects were most pronounced, resulting in seven deaths 
among 31 early patients (Brauburger et  al., 2012). Investigation 
subsequently unveiled the virus’s origin in imported Ugandan green 
African monkeys (Gear et al., 1975). Contrary to the belief that MV 
posed a lesser threat, significant outbreaks in the Democratic 
Republic of the Congo (DRC) from 1998 to 2000 and in Angola from 
2004 to 2005 demonstrated a fatality rate of 83% and 90%, 
respectively, dispelling this notion (Bausch et al., 2006; Qiu et al., 
2014). Different variants were connected to the outbreak in the DRC, 
but just one version spread from person to person in Angola 
(Bertherat et al., 1999; Bausch et al., 2006). By 2008, reported MV 
cases surged to 452, with 368 confirmed deaths, raising concerns of 
underreporting (Brauburger et  al., 2012). Despite receiving less 
media attention than its Filoviridae counterparts, MV’s elevated 
fatality rates underscore its significance. Recent cases in Guinea, 
Ghana, and the ongoing Equatorial Guinea outbreak accentuate the 
necessity for continuous surveillance and containment. The latter 
reported a swift succession of deaths, and Tanzania also reported 
fatalities attributed to the virus, highlighting the ongoing threat 
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(Manohar et al., 2023). MVD’s impact spans hemorrhagic fever and 
organ dysfunction in both humans and non-human primates, 
affecting the liver, spleen, brain, kidneys, and causing coagulation 
anomalies (Mehedi et al., 2011; van Paassen et al., 2012). As a member 
of the Marburg virus genus within the Filoviridae family and 
Mononegavirales order, MV comprises a distinct species (Bukreyev 
et  al., 2014). Its zoonotic connection to the Egyptian fruit bat 
(Rousettus aegyptiacus) and human-to-human transmission parallel 
other Ebola viruses, such as Sudan virus, Bundibugyo virus, and 
EBOV. Ongoing research has elucidated MV’s natural sources, 
including Hipposideros caffer, in tandem with Rousettus aegyptiacus 
(Towner et  al., 2009). With an average incubation period of 5 to 
10 days, ranging from 3 to 21 days, the virus infiltrates immune cells 
like monocytes, macrophages, and dendritic cells via compromised 
skin or mucosal surfaces. It initiates replication in the spleen, liver, 
and secondary lymphoid organs before propagating to hepatocytes, 
endothelial cells, fibroblasts, and epithelial cells. Additionally, it 
thwarts interferon type I (IFN-1) production (Yu et al., 2021). This 
review explores the evolutionary course of MVD outbreaks, 
succinctly delineating the virus’s structure and genome, elucidating 
MV’s origins, and detailing its diverse transmission modes among 
humans and non-human sources. We  comprehensively examine 
MVD’s genesis through scrutinizing pathophysiology, cellular 
tropism, immune evasion, and critical host injury sites. Additionally, 
this overview encompasses current clinical data and treatments, 
underscoring the vital need for robust research to foster effective 
drugs and vaccines. By deepening comprehension of the virus’s 
historical progression and infection mechanisms, this review 
strengthens defenses against MV disease, driving the innovation of 
therapeutic agents and vaccines, thus supporting future researchers 
in countering this enduring health threat.

2. Mutational analysis and genome 
composition

The Marburg virus (MV) exhibits an enveloped and pleomorphic 
structure, displaying uniform diameter but variable length 
filamentous, non-segmented, rod-like, cobra-like, circular/annular, 
and branched particles (Chakraborty et al., 2022; Islam et al., 2023a). 
Its viral genome encompasses seven open reading frames (ORFs), 
namely nucleoprotein (NP), virion protein 35 (VP35), VP40, VP30, 
VP24, glycoprotein (GP), and large viral polymerase, all characterized 
as single-stranded negative-sense RNA (-ssRNA; Zhao et al., 2022). 
The non-coding regions of these seven genes contain cis-acting 
elements implicated in DNA replication, transcription, and packaging 
(Feldmann et al., 1992; Sanchez et al., 1993). The 3′ and 5′ ends of 
these genes possess unusually long non-coding nucleotide sequences 
and highly conserved transcription start and stop signals (Feldmann 
et al., 1992; Sanchez et al., 1993). Intergenic regions separate all MV 
genes except two, ranging from 4 to 97 nucleotides in length, and the 
transcription start and stop signals of the VP24 and VP30 genes share 
an overlapping sequence of five nucleotides (UAAUU). The 
nucleocapsid complex, comprising structural proteins NP, VP35, 
VP30, and L, envelops the MV genome (Becker et al., 1998). VP35, 
acting as a polymerase cofactor, and L, functioning as an 
RNA-dependent RNA polymerase, are essential for replication and 

transcription of viral genomes (Mühlberger et al., 1999). The host-
derived membrane layer of MV is regularly spiked, where highly 
glycosylated protein (GP) plays a key role in binding to receptive host 
cells (Feldmann et  al., 1991). VP40, responsible for budding and 
binding to the matrix and nucleocapsid, constitutes the inner matrix 
of a virion (Kolesnikova et  al., 2004; Swenson et  al., 2004). The 
interaction of the protein VP24 with the membrane NP and other cell 
membranes is vital for the release of virion progeny. Table 1 provides 
an overview of the characteristics and functions of the proteins in 
MV (Bamberg et al., 2005). Phylogenetic analysis of Marburg virus 
sequences has been conducted to ascertain sequence cohesion and 
identify splits between sequences of particular interest and well-
known sequences that exhibit unexpectedly deep divergence 
(Peterson and Holder, 2012). From cDNA clones made from genomic 
RNA and mRNA, the first 3,000 nucleotides of the Marburg virus 
genome were identified (Sanchez et al., 1992). There is up to 21% 
nucleotide diversity among previously characterized East African 
strains of the Marburg virus, according to partial Marburg virus RNA 
sequence study (Towner et al., 2006). Serial passages of Marburg 
virus resulted in a single mutation in the region encoding the 
glycoprotein (GP; Alfson et  al., 2018). To clarify the relationship 
between various Marburg virus strains, phylogenetic analysis of full-
length or partial genomes of Marburg viruses obtained from people 
or bats has been carried out (Towner et  al., 2009). Phylogenetic 
analysis showed the 2021 Guinean Marburg virus’ relationship to 
strains from the 2004–2005 Marburg virus outbreak in Angola, which 
are related to Marburg virus sequences obtained from bats in Sierra 
Leone (2017–2018). The viral genome sequence of the 2021 Guinean 
Marburg virus was recovered to 99.3% (Magassouba, 2021). 
Sequential mouse passaging and cell-culture adaption during deep 
sequencing of the Marburg virus genome have shown significant 
changes over time (Wei et al., 2017). An analysis was performed on 
the sequencing data to identify sites in viral mRNAs (Shabman et al., 
2014). Structural and functional studies on the Marburg virus GP2 
fusion loop have also been conducted (Liu et al., 2015). Marburg 
virus has been subjected to mutational and phylogenetic analysis, and 
the genome has been sequenced to identify changes over time shown 
in Figure 1 (Mühlberger, 2007).

3. Epidemiology

3.1. MVD outbreak in 1967

In the European outbreak, most patients between 2 and 7 days 
after the onset of symptoms had non-itchy rash. The diseases were 
linked to three laboratories in different cities that had each received 
an infected cargo of African green monkeys. The first MVD outbreak, 
which was documented in 1967 and was brought on by laboratory 
workers in Germany and Serbia handling green African monkeys 
called grivets (Chlorocebusaethiops), was brought on by these imports. 
According to grivets’ reports, staff employees were primarily exposed 
to these sick wild animals’ meat and organs, which caused them to 
contract MV (Mehedi et al., 2011; Languon and Quaye, 2019). Seven 
patients died as a result of the sickness, which affected a total of 31 
patients and was caused by 25 primary and 6 secondary infections 
(Deb et al., 2023).
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TABLE 1 Marburg virus: genes, proteins, characteristics, and functions.

S. no Gene 
(sequence)

Protein 
(abbreviation)

Description Amino 
acid

Functions Gene 
length

References

1. NP Nucleoprotein (NP) Binds to VP35 protein, VP40, 

VP30, and VP24, and is a 

component of the RNP complex. 

It also undergoes phosphorylation 

and homo-oligomerizes to form a 

helical polymer. Additionally, it is 

the second-most prevalent 

protein found in virions.

695 Creation of NC and 

cellular inclusion 

body; Encapsidation 

of RNA genome as 

well as antigenome; 

Replication and 

transcription; Budding

2,796/2,088 DiCarlo et al. 

(2011), Brauburger 

et al. (2015), and 

Liu et al. (2017)

2. VP35 Viral protein 35 RNP complex components that 

bind to dsRNA, NP, and L and 

homo-oligomerize. They are also 

weakly phosphorylated.

329 Formation of NC; 

RdRp cofactor; 

Replicase transcriptase 

cofactor; IFN 

antagonist

1,557/990 Bale et al. (2012), 

Brauburger et al. 

(2015), Edwards 

et al. (2016), and 

Bruhn et al. (2017)

3. VP40 Viral Protein 40 It homo-oligomerizes to form 

dimers, circular hexamers, and 

octamers, binds ssRNA and 

VP35, and is one of the most 

common proteins in virions and 

infected cells.

303 Matrix component: 

Negative regulator of 

transcription and 

replication; Budding 

and host adaption; 

regulation of the 

morphogenesis of the 

virion and egress; 

hinders JAK–STAT 

pathway

1,405/912 Kolesnikova et al. 

(2012), Brauburger 

et al. (2015), 

Koehler et al. 

(2018), and Amiar 

et al. (2021)

4. GP Glycoprotein (GP1,2) Uses GP1 and GP2 subunits to 

create heterodimers; the mature 

protein is found as a trimer of 

GP1,2 heterodimers; can insert 

into membranes; Acylated, 

substantially N- and 

O-glycosylated and 

phosphorylated. Class I fusion 

and type I transmembrane 

protein, along with ADAM17, 

convert GP1,2 into soluble GP1,2.

681 Attachment of virions 

to susceptible cells 

using cellular 

attachment factor: 

determination of cell 

and tissue tropism; 

Receptor binding; 

induction of virus-cell 

membrane; Tetherin 

antagonist;

2,846/2,046 Carette et al. (2011) 

and Brauburger 

et al. (2015)

5. VP30 Viral protein 30 

activator

RNP complex components with 

high phosphorylation, ssRNA, 

NP, and L binding, as well as a 

zinc binding domain.

281 Formation of NC; 

Initiation, reinitiation 

and antitermination 

and enhancement of 

transcription

1,249/846 Enterlein et al. 

(2006), 

Wenigenrath et al. 

(2010), and Wan 

et al. (2017)

6. VP24 Viral protein 24 Components of the RNP 

complex; homo-tetramerizes; 

connected with the hydrophobic 

membrane.

253 Formation and 

maturation of NC; 

Negative regulation of 

transcription; 

regulation of 

replication; virion 

morphogenesis 

regulatory function

1,287/762 Edwards et al. 

(2014), Page et al. 

(2014), Zhang et al. 

(2014), Brauburger 

et al. (2015), and 

Wan et al. (2017)

7. L Large protein (L) RNP complex components that 

bind to VP35, VP30, genomic, 

and antigenomic RNA, as well as 

mRNA capping enzymes, and 

homodimerize.

2,331 Catalytic domain of 

RdRp; Replication of 

genome; Transcription 

of mRNA

7,745/69,96 Koehler et al. 

(2016) and 

Kirchdoerfer et al. 

(2017)
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3.2. MVD outbreak in 1975

In 1975, the MVD outbreak marked the second recorded instance 
of the disease and the initial occurrence in Africa. It took place in 
Johannesburg, South Africa, involving three cases and resulting in 
one fatality. The outbreak originated from a 20-year-old Australian 
man who had journeyed to Zimbabwe (then Rhodesia) and explored 
several bat-inhabited caves. After his return to Johannesburg, 
he  exhibited symptoms such as fever, headache, myalgia, and 
vomiting, ultimately succumbing on 5 February 1975. His travel 
companion and a nurse who cared for him were secondary cases, 
both of whom survived through supportive treatment. Swift case 
isolation and contact tracing successfully contained the outbreak. 
While the source of infection remained unconfirmed, suspicion 
centered on the index case acquiring the virus through exposure to 
bats or their droppings within the caves (Gear et  al., 1975; Abir 
et al., 2022).

3.3. MVD outbreak in 1980

In 1980, Kenya experienced the third documented outbreak of 
Marburg-virus disease. The initial patient contracted the infection in 
western Kenya, leading to the subsequent infection of a doctor in 
Nairobi who had close contact with the patient, ultimately resulting in 
severe haematemesis. However, no additional instances of 
transmission within medical settings were observed. Surveillance 
efforts in western Kenya did not uncover evidence of Marburg-virus 
disease, but they did indicate the potential existence of Ebola 
hemorrhagic fever (Smith et al., 1982).

3.4. MVD outbreak in 1987

In 1987, a single case of MVD outbreak emerged in Kenya, centering 
around a 15-year-old Danish boy who fell victim to the infection and 
subsequently passed away. The boy had encountered the virus within a 
cave inhabited by Egyptian fruit bats. This marked the inaugural 
documented instance of Ravn virus transmission, a near kin of the 
Marburg virus responsible for MVD. Effective containment measures 
were enacted through patient isolation and contact tracing, successfully 
preventing the emergence of secondary cases (Johnson et al., 1996).

3.5. MVD outbreak in 1998 and 2000

In both 1998 and 2000, there was a single MVD outbreak situated 
in Durba, Democratic Republic of the Congo (DRC). The affected 
individuals were gold miners who toiled within a mine known to 
be  home to Egyptian fruit bats, the virus’s natural reservoir. This 
outbreak encompassed a total of 154 cases and tragically led to 128 
fatalities, resulting in an 83% case fatality rate. Remarkably, this 
marked the initial occurrence of a substantial MVD outbreak and the 
primary instance of a combined outbreak involving Marburg virus 
and Ravn virus. These two closely related viruses both contribute to 
causing MVD (Colebunders et al., 2007; Towner et al., 2009).

3.6. MVD outbreak in 2004 and 2005

A second significant MV outbreak in the Uige region of Angola 
began in October 2004 and lasted until July 2005. The root cause of 

FIGURE 1

The structure of the Marburg virus and the organization of its genome are depicted in the figure. The upper portion of the figure shows the structure of 
the virus and identifies the structural proteins. The genomic organization of the seven-gene Marburg virus strain is depicted in the lower section of the 
figure, which has been crudely scaled. Light blue boxes indicate non-coding regions, whereas colored boxes depict the coding sections of genes. 
Except for the overlap between VP24 and VP30, which is depicted as a black triangle, the genes are separated by intergenic regions, as shown by the 
black arrows. At the ends, the 3′ and 5′ trailer sequences are also displayed. Bio render software was used to create this figure (Abir et al., 2022).
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the epidemic, which later spread to other provinces, was discovered 
to be the death of a hospital employee in Uige. This epidemic has the 
highest number of illnesses and deaths linked to a single outbreak to 
date, with 252 cases of infection and 227 fatalities (a 90% mortality 
rate). An epidemic that occurred in Uganda in 2007 only resulted in 
four confirmed cases. The patients were Ibanda district workers at the 
Kitaka mine. The two workers contracted the disease after sharing a 
tent camp with the index case in the Kashoya-Kitomi Central Forest 
Reserve close to the mine. The fourth patient was working at the mine 
when the epidemic started, without any personal protective 
equipment (PPE). The mining adit was surrounded by bats, and the 
only personal protective equipment (PPE) accessible was a pair of 
gloves; masks, respirators, or goggles were not. The main source of 
infection was direct contact with bats or bat excretions. During this 
epidemic, MV was isolated from Rousettus aegyptiacus, and the first 
definite filovirus reservoir was discovered by sampling bats (Languon 
and Quaye, 2019).

3.7. MVD outbreak in 2012 and 2017

On 29 November 2012, the Ugandan Ministry of Health declared 
MV infection in Uganda. The Ugandan districts of Kabale, Ibanda, 
Mbarara, and Kampala have recorded about 15 fatalities and 8 
probable cases (Deb et al., 2023). This outbreak in the Ibanda district 
occurred concurrently with the 2007 MV disease outbreak in the 
Kitaka mining region. As a result, Rousettus aegyptiacus bats were 
once more connected to the outbreak in 2012. It is interesting to note 
that the epidemic hit the Rousettus aegyptiacus bat population during 
the second half of the yearly viral cycle (Languon and Quaye, 2019). 
Additionally, the genome sequences of this MV strain and the MV 
strain that had previously been identified in Egyptian fruit bats were 
similar. A health worker contracted the disease and succumbed to it 
in Kampala, Uganda in 2014, where an epidemic also occurred 
(Nyakarahuka et al., 2017). In 2017, a new MV outbreak occurred in 
the Kween region of Uganda. The four family members who became 
MV-infected during this outbreak only had one survivor 
(Nyakarahuka et al., 2019). Nevertheless, extensive studies are still 
being conducted because the clinical evidence for this outbreak is 
still insufficient.

3.8. MVD outbreak in 2021

Last but not least, Guinea saw its most recent outbreak in August 
2021, which was eventually contained in September 2021. One man 
became ill and died during this time, but the strain is still unclear 
(Aborode et al., 2022; Makenov et al., 2023; WHO, 2023a).

3.9. MVD outbreak in 2023

Between 7 January and 7 February 2023, two villages in the 
Nsock Nsomo district of the Ro Muni area in the eastern Kie-Ntem 
province experienced at least eight fatalities. The affected individuals 
presented symptoms such as fever, weakness, vomiting, and bloody 
diarrhea. In two cases, skin lesions and otorrhagia were also observed. 
On 9 February 2023, health authorities collected blood samples from 

eight contacts and submitted them to the Centre Interdisciplinary de 
Recherches Médicales de Franceville (CIRMF) in Gabon. However, 
real-time polymerase chain reaction (RT-PCR) testing at CIRMF 
yielded negative results for the presence of Marburg and Ebola 
viruses (WHO, 2023a). On 12 February 2023, additional blood 
samples were obtained from different contacts and sent to the 
Institute Pasteur in Dakar, Senegal. RT-PCR testing confirmed one of 
these samples to be  positive for the Marburg virus. The patient 
associated with this confirmed case displayed symptoms of fever, 
bloodless vomiting, bloody diarrhea, and convulsions, ultimately 
succumbing to the infection on 10 February 2023, at Ebebiyin 
District Hospital. This case was linked to four other deceased cases 
originating from one of the villages in the Nsoc-Nsomo District. As 
of 21 February 2023, a total of nine cases have been reported, 
consisting of one confirmed, four probable, and four suspected cases, 
all of which resulted in fatalities. Health workers have not been 
affected, and 34 contacts remain under surveillance. After the initial 
outbreak, on 13 March 2023, two individuals from Kié-Ntem 
province, and on 15 March 2023, one person from Litoral province, 
tested positive for the Marburg virus through RT-PCR. On 18 and 20 
March, three more laboratory-confirmed cases were reported from 
Litoral province, and on 20 March, two additional cases were 
identified in Centre Sur province. The extensive geographical spread 
of the infections and the uncertain epidemiological situation in 
Centre Sur Province raise concerns that the virus may be spreading 
undetected within the community (WHO, 2023a). Table 2 represents 
different outbreak of Marburg (Figure 2).

3.10. Socioeconomic impact of MVD 
outbreaks

The socioeconomic impact of MVD outbreaks can significantly 
affect countries with weaker economies, leading to inadequate 
containment and management (Manohar et al., 2023). Epidemics 
can interact at the host population, influencing one another’s severity 
and trajectories when they co-occur (Reuben and Abunike, 2023). 
MVD outbreaks can result in fatalities and socioeconomic 
consequences, including loss of tourism (Nyakarahuka et al., 2017). 
Comprehensive research of MVD is necessary given its link to MV 
infection and the disease’s high fatality rate of up to 90% (Abir et al., 
2022). The Filoviridae family, including MV, has caused significant 
loss of human and animal lives (Languon and Quaye, 2021). Past 
outbreaks have exhibited varying case fatality rates, ranging from 
24% to 88%, contingent upon virus strain and case management 
(WHO, 2021a). According to the World Health Organization 
(WHO), MVD is a highly contagious disease that can cause 
hemorrhagic fever and has a death rate of up to 88%. The WHO 
advises treatment of symptoms, oral or intravenous rehydration, and 
supportive care to increase survival. Although continuing analyses 
of prospective remedies, such as blood products, immunological 
therapies, and pharmacological therapies, are being conducted, there 
is currently no known cure for MVD (WHO, 2023b). Case 
management, surveillance, contact tracing, a well-functioning 
laboratory service, safe and respectable burials, and social 
mobilization are only a few of the actions that are needed to suppress 
outbreaks. Community involvement is also essential for effective 
epidemic control (WHO, 2021a).
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4. Source and transmission of Marburg 
virus

The fruit bat species Rousettus aegyptiacus is the most important 
natural source of MV infection. In addition, some Chiroptera and 
Hipposideros caffer may act as infectious agents. There are several ways 
in which MV strains can be  transmitted from bat to bat. Recent 
research found MV in rectal, oral, and urine samples from infected 
bats as well as in blood and oral samples from bats that had come into 
contact with humans. According to this research, MV is horizontally 
transmitted from infected bats to bat contacts (Schuh et al., 2017). The 
findings of the previous study showed that MV was present in the 
tissues of the lungs, intestines, kidneys, bladder, salivary glands, and 
female reproductive tract of immunized bats, supporting the 
hypothesis that MV transmission might occur (Amman et al., 2012) 
both vertically and horizontally in reservoirs. It has also been 
suggested that bats could spread the illness to one another by bites 
(Amman et  al., 2015), sexual contact (Amman et  al., 2012), or 
hematophagous arthropods (Schuh et  al., 2017). Direct contact 
(injured skin or mucous membranes) with the blood and other bodily 
fluids of infected people (urine, saliva, feces, vomit, breast milk, 
amniotic fluid, and semen) or indirect contact with contaminated 
surfaces and materials, such as contaminated clothing, bedding, and 
medical equipment, are the two main methods of interpersonal 
transmission after infection. Infection may happen if sick people are 
buried (Schwartz, 2019). Infected animals, particularly bushmeat 
(such as monkeys, chimpanzees, forest antelopes, and bats), whether 
alive or dead, can also spread the disease to humans (Figure 3; WHO, 
2021a). Bushmeat consumption has been linked to Ebola virus 
(EBOV) outbreaks (Malik et al., 2023). Because numerous bushmeat 

species, including chimpanzees and forest antelope, are vulnerable to 
virus multiplication and consumption following infection (Heeney, 
2015), they are regarded as intermediate hosts. There is growing 
concern about the persistence of filovirus in the testis as a potential 
route of transmission. Experimental trials have identified persistent 
MV infection of the immunoprivileged testicular tubules in male 
monkeys (Coffin et al., 2018). During the 1967 MV outbreak, the first 
possible case of sexual transmission was found. Two months after the 
recovery of a male patient, symptoms appeared in his wife, which were 
confirmed by the detection of MV antigen in his semen (Feldmann, 
2018). Simultaneous testing of nine other convalescents for MV did 
not detect virus or viral antigen (Slenczka, 2017). In pregnant women, 
filovirus infection is usually more severe than in nonpregnant women, 
which may be  due to decreased immune function or placental 
involvement (Brainard et al., 2016). Based on case reports, viral titers 
have been found in placental tissue, suggesting that hematogenous 
transplacental transmission is the most typical route of fetal infection 
(Bebell and Riley, 2015). Despite the high rates of pregnancy mortality, 
there is no proof that pregnant women are more prone to contracting 
filovirus than other people (Jamieson et al., 2014). Pregnant women 
who have MVD have an increased risk of stillbirths and spontaneous 
abortions (Schwartz, 2019). Little information is available on the 
effects of MVD infection in infants. There have been reports of several 
MVD clusters in newborns, some of whom had very mild symptoms 
(Borchert et al., 2002). MV can be present in the blood, organs, and 
tissues of sick or recovering individuals, suggesting that the virus can 
be transmitted through transfusion and transplantation. Filoviruses 
can survive for a very long time in liquid or dried materials (Piercy 
et al., 2010). They are inactivated by gamma irradiation, heating to 
60°C for 60–75 min, or boiling for 5 min and are sensitive to fatty 

TABLE 2 Outbreaks of Marburg virus (MV).

MVD 
outbreak

Location Transmission Number of 
deaths

Number of 
cases

Case 
fatality rate

Mortality 
rate

References

1967 Germany, 

Serbia

Contact with 

grivets

7 31 22% 22.6% Mehedi et al. (2011), Languon 

and Quaye (2019), and Deb et al. 

(2023)

1975 South Africa Person-to-person 3 3 100% 100.0% Gear et al. (1975) and Abir et al. 

(2022)

1980 Kenya Person-to-person 1 1 100% 100.0% Smith et al. (1982)

1987 Kenya Unknown 1 1 100% 100.0% Johnson et al. (1996)

1998 and 

2000

Democratic 

Republic of 

the Congo

Unknown 128 154 83% 83.1% Towner et al. (2009) and 

Colebunders et al. (2007)

2004–2005 Angola Person-to-person 227 252 90% 90.1% Languon and Quaye (2019)

2012 Uganda Contact with 

Rousettus 

aegyptiacus bats

15 23 60% 65.2% Deb et al. (2023)

2017 Uganda Unknown 3 4 75% 75.0% Languon and Quaye (2019) and 

Nyakarahuka et al. (2019)

2021 Guinea Unknown 1 1 100% 100.0% Nyakarahuka et al. (2019) and 

WHO (2023a)

2023 Equatorial 

Guinea, 

Tanzania,

Unknown 27 29 93% 86.0% WHO (2023a)
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FIGURE 3

African fruit bats serve as reservoirs for the Marburg virus, which is conveyed by direct contact, sexual contact, or biting. Humans and non-human 
primates can contract the virus through viral-contaminated fruit consumption or direct contact with the reservoir hosts. Disease transmission can also 
occur through direct contact between NHPs and humans, or from NHPs to humans through bushmeat consumption. The image was created using 
Bio render software.

FIGURE 2

The image shows the distribution of confirmed Marburg virus disease (MVD) cases and associated fatalities. The image illustrates that the MVD 
outbreak in Tanzania was confined to a distinct region, with reported cases concentrated in the Kigoma region. Additionally, the image underscores the 
ongoing MVD outbreak in Equatorial Guinea, characterized by a broader geographical spread of cases. Moreover, the image also denotes further 
instances of MVD outbreaks across different African regions (Abir et al., 2022).
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solvents, sodium hypochlorite, and other disinfectants (Kuhn, 2008; 
Feldmann et al., 2019).

5. Clinical signs and disease 
progression

Marburg virus disease (MVD) has an incubation period of two 
to 21 days. According to the World Health Organization (WHO), 
high fever, severe malaise, and headache are some of the sudden 
symptoms associated with Marburg virus infection. Patients 
frequently complain of muscle pain and pains at the same time. 
Patients may experience severe watery diarrhea, cramping in the 
stomach, nausea, and vomiting on the third day. Up to a week may 
pass during the phase of diarrhea. Patients frequently exhibit a 
characteristic appearance during this stage that is characterized by 
sunken eyes, indifferent facial expressions, and extreme sluggishness. 
Within 2 to 7 days of the onset of symptoms, a non-itchy rash 
commonly develops (Elsheikh et al., 2023). Hemorrhagic signs often 
appear 5 to 7 days after the initial episode, with fatal cases showing 
several sites of hemorrhage. Bleeding from the gums, nasal passages, 
and vagina usually accompany fresh blood in vomitus and feces. The 
problem of spontaneous bleeding at venipuncture sites is particularly 
difficult. High fevers characterize the illness’s severe stage. 
Involvement with the central nervous system might result in 
confusion, irritation, and violence. In the later stages of the illness, 
occasional observations of orchitis, which is defined by inflammation 
of one or both testicles, have been made (around day 15). Most 
frequently, death happens 8 to 9 days after the onset, generally after 
a serious bout of blood loss and a subsequent shock (Elsheikh et al., 
2023). Direct contact with the blood, secretions, organs, or other 
bodily fluids of infected people, as well as with surfaces and objects 
contaminated with these fluids, can result in human-to-human 
transmission of the Marburg virus. This contact can happen through 
cuts, scrapes, or other breaks in the skin or mucous membranes. 
Exposure to fruit bat species can also cause transmission (Elsheikh 
et  al., 2023). An alternative classification of MV clinical features 
includes a “Generalization Phase,” which is characterized by flu-like 
symptoms and rash, an “Early Organ Phase,” which involves 
manifestations in specific organs, like encephalitis or hemorrhages, 
and a “Late Organ/Convalescence Phase,” which is characterized by 
multiorgan failure, shock, coma, and either death or recovery. These 
phases, in that order, correspond to the first 4 days, the next 9 days, 
and the time after day 13 (Asad et al., 2020).

5.1. Phase 1 (generalization phase)

Flu-like symptoms such a high fever (>40°C), a strong headache, 
chills, myalgias, and malaise appear during the generalization phase. 
The fifth day from the start of the disease is when this phase may last, 
after which there is a rapid attenuation. There have been reports of 
exhaustion, general malaise, appetite loss, nausea, vomiting, 
abdominal pain, and excessively watery diarrhea (Feldmann et al., 
2013). Pharyngitis, conjunctivitis, enanthem, dysphagia, and 
dysphagia are additional frequent problems. Before developing into a 
maculopapular rash, a rash may also show up on the face, feet, and 
limbs in the middle to late stages of the generalization phase. Other 

symptoms include lymphadenopathy, leukopenia, and 
thrombocytopenia (Leroy, 2009).

5.2. Phase 2 (early organ phase)

A prolonged high temperature and other nonspecific symptoms 
define the early organ phase, which lasts 5 to 13 days following the 
onset of symptoms. Patients may also experience conjunctival 
infections, edoema, tiredness, dyspnea, viral exanthems, and aberrant 
vascular permeability (Klenk et al., 1999). Neurologic symptoms have 
also been characterized by patients as causing disorientation, 
encephalitis, irritability, psychosis, and aggressiveness (Borchert and 
Van der Stuyft, 2008). About 75% of patients experience hemorrhagic 
symptoms, including hematemesis, ecchymosis, melena, petechiae, 
bloody diarrhea, visceral hemorrhagic effusions, uncontrolled leaking 
from venepuncture sites, and mucosal bleeding. Additionally, 
complaints of bleeding from the nose, gingiva, and vagina have been 
made. The kidney, liver, and pancreas are a few of the damaged organs 
at this point in the illness. Additionally, most infected people displayed 
elevated serum activity (Kuhn, 2008).

5.3. Phase 3 (late organ/recuperative 
phase)

There are two distinct outcomes in the late stages of MV infection: 
either the patient enters a protracted period of recovery or the sickness 
is fatal. Eight to 16 days after the onset of the initial symptoms, death 
frequently occurs. Typically, multiorgan failure and shock are the two 
main causes of demise (Martini et al., 1968). The late organ phase 
begins in nonfatal cases on day 13 and lasts until day 20 and beyond 
as the illness develops. Acute metabolic anomalies including 
convulsions and severe dehydration can cause anuria and multiple 
organ failure in addition to harming the patient’s general health. At 
this time, orchitis has occasionally been identified. The neurological 
problems are still there currently. Women who are pregnant who 
have spontaneous.

6. Pathogenesis of MVD

MVD models, and lab animals can all be used to study host 
pathophysiology and immune responses, as is widely recognized. 
Currently, NHPs (mainly cynomolgus and rhesus monkeys, African 
vervet monkeys, and baboons), hamsters, guinea pigs, and mice have 
been used to establish four MV disease models. NHPs are the “gold 
standard” among these models because to their great susceptibility 
to MV infections, which are almost always fatal, and their specific 
clinical traits that are like those of human infections. Furthermore, 
it has been demonstrated (Bente et al., 2009), that NHPs can directly 
transmit the MV virus through close contact. In the Kenyan case 
from 1987, MV infection was found in the peripheral blood 
mononuclear cell population of infected macaques using 
immunohistochemical, electron microscopy, and flow cytometric 
investigations (Mehedi et al., 2011). These studies also identified 
viral antigen and virions in both circulating and tissue-associated 
macrophages. Thus, the idea that the mononuclear phagocytic 
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system—which consists of macrophages, monocytes, Kupffer cells, 
and dendritic cells—is the first cell type that MV infection targets—
has been put forth (Brauburger et al., 2012). The lymph nodes, liver, 
and spleen all displayed the most severe necrotic lesions. 
Reticuloendothelial cells are abundant in the tissues, allowing 
infected cells to spread and infect more organs. At the organ level, 
the liver is a key site for MV replication, and the virus preferentially 
targets lymphoid tissues there (Shifflett and Marzi, 2019). There has 
been monocytoidal, plasma cellular alteration in the lymphatic 
tissue. Sites of necrosis also contain basophilic entities, either in the 
form of inclusion bodies in parenchymal cells or near necrotic cells. 
The other organs, on the other hand, are all affected by infection and 
show pathological changes, such as isolated or widespread necrosis 
without obvious inflammatory responses. Patients on MARD 
typically experience proteinuria, a symptom of renal failure. Grossly 
pale, swollen, and exhibiting significant parenchymal deterioration 
as well as indications of tubular insufficiency, the injured kidneys are 
also enlarged. Plasma cells and monocytes are prevalent in the 
mucous membranes of the stomach and intestines. Alveolar 
macrophages are found in hemorrhagic, obstructed alveoli in the 
lungs, and since fibrin surrounds them, these alveoli occasionally 
stain with viral antigen. In addition to necrosis (Shifflett and Marzi, 
2019). The crimson pulp of the spleen, the lymph nodes’ follicles and 
medulla, as well as the lymphocyte count, are all noticeably necrosed 
in humans. Surprisingly, bystander apoptosis promotes lymphocyte 
loss rather than virus infection of cells. Aspartate aminotransferase, 
alanine aminotransferase, serum glutamic oxaloacetic transaminase, 
and serum glutamic pyruvic transaminase rise are liver tests that are 
suggestive of MV infection because the asialoglycoprotein receptor, 
a receptor specific to the liver, can boost these enzymes. Given that 
the liver produces multiple clotting factors, the pathological 
alterations to the liver are probably a contributing factor to the 
abnormalities in coagulation seen following MV infection. Severe 
MARD patients that undergo multiorgan failure do so as a result of 
the fatal virus’s increased mass effect. A decrease in the production 
of the steroid-synthesizing enzyme, involvement of the adrenal 
gland, and its failure all increase the risk of hypotension and 
hypovolemia, which finally result in shock (Figure 4; Mehedi et al., 
2011). The symptoms of this toxic hemorrhagic fever, which have 
nothing to do with jaundice, include hemorrhagic diatheses in the 
skin and mucous membranes. Most of the histological abnormalities 
in the skin tissue include endothelial cell necrosis, localized 
hemorrhage, swelling, and variable degrees of cutaneous edoema. 
Using immunohistochemical stains, it is possible to identify various 
antigens in epidermal dendritic cells, endothelial cells, and 
connective tissue fibroblasts. The sebaceous and sweat gland 
epithelium also contains these antigens. Viral inclusions and 
particles can be observed inside endothelial cells and connective 
tissue using electron microscopy. Furthermore, it has been shown 
that the structural protein VP40 of the MV successfully aids in 
evading the host immune reaction to IFN (Martines et al., 2015).

6.1. Impact of MV on human organs

Multiple human organs may be harmed by the Marburg virus 
disease (MVD), which can result in organ failure and death (Abir 
et al., 2022). The liver and adrenal glands are the primary targets of 

the virus. Along with lymphocyte depletion, MVD can also harm 
lymphatic tissues by causing necrosis of the follicles, the medulla of 
lymph nodes, and the red pulp of the spleen. It is interesting to note 
that lymphocytes are not infected by the virus, despite the fact that 
bystander apoptosis causes a decrease in lymphocyte numbers 
(Mehedi et al., 2011; Abir et al., 2022). Monocytes and macrophages 
are two examples of mononuclear phagocytic cells that MV targets. 
By activating these cells, MV causes secondary targets like 
endothelial cells to get damaged. The advancement of shock, which 
is the main cause of death in MVD, is caused by the production of 
cytokines and pro-inflammatory mediators by activated 
macrophages and monocytes. The virus can also result in 
hemorrhagic signs, increased vascular permeability, and aberrant 
coagulation, all of which are interconnected and lead to the 
emergence of the classic symptoms of viral hemorrhagic fever 
(Mehedi et al., 2011; Abir et al., 2022). Orchitis (inflammation of 
the testicles) has been observed in male survivors, and central 
nervous system involvement can cause disorientation, irritability, 
and violence (Mehedi et al., 2011).

6.2. Diagnosis of MV

Due to the fact that the symptoms and signs of MVD overlap with 
those of endemic illnesses like Ebola and Lassa fever as well as 
infectious diseases like malaria, dengue fever, and typhoid fever, it can 
be  difficult to diagnose. The fact that MVD symptoms cannot 
be  present at first presentation and that fever may even go away 
entirely during the disease adds to its complexity (CDC, 2023a). This 
makes MVD prone to misdiagnosis, particularly outside of outbreak 
situations. Additionally, some women have presented with abortion 
as a manifestation of the disease, and pregnant females affected by 
MVD have shown higher mortality rates (CDC, 2023a; Roy et al., 
2023). To properly manage the illness, a prompt and correct laboratory 
diagnosis is essential. PCR, immunoglobulin M Capture ELISA, and 
enzyme-linked immunosorbent assay (ELISA) are crucial confirming 
procedures for the diagnosis of MVD (Marburg Virus Disease). While 
IgG capture ELISA is used for late confirmation or finding recovered 
cases, the IgM capture ELISA is particularly helpful for early disease 
confirmation. Testing in Biosafety Level-IV laboratories is required for 
MVD diagnosis since handling the virus has a high level of risk (Islam 
et al., 2023b). To optimize efficiency and cost-effectiveness for the 
Ghanaian government, it is crucial to utilize advanced technologies 
and efficient transportation methods (CDC, 2023a; Roy et al., 2023). 
By implementing these measures, a limited number of laboratories can 
handle many samples quickly, while ensuring all necessary safety 
protocols are strictly adhered to. This approach will not only accelerate 
the diagnosis process but also enhance overall containment and 
protection against the spread of the virus.

7. Control and prevention of MV

To prevent the disease’s spread, the WHO has prescribed several 
measures to manage the virus (Mittler et al., 2018). When caring for 
patients with suspected or confirmed Marburg virus infections, 
healthcare professionals should take extra precautions to prevent 
infection. This means avoiding contaminated things and surfaces 
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including soiled bedding and clothing in addition to the patient’s 
blood and bodily fluids. When near patients with MVD (within 1 m), 
healthcare staff should wear gloves, a clean, non-sterile long sleeve 
gown, and facial protection (a face shield or a medical mask and 
goggles). Residents of the affected areas should endeavor to educate 
the public about the signs and symptoms of the virus and the 
precautions that must be taken to prevent a pandemic. Healthcare 
professionals should think about building isolation units to 
immediately segregate MV-infected patients and stop person-to-
person transmission (Brauburger et al., 2012). With the creation of 
accurate test diagnoses for suspected instances, the concept of halting 
transmission will also be  strengthened even more. Contrary to 
previous epidemics, the deployment of barrier nursing techniques 
and training of hospital staff have benefited the general populace and 
decreased the incidence of nosocomial infections. Safe burial 
practices, sanitation standards, and public awareness campaigns are 
necessary to keep the virus under control since, as previously 
mentioned, close contact with the remains of infected people also 
contributes to the transmission of infection (Brauburger et al., 2012). 
Additionally, it is important to avoid direct contact with bodily fluids 
like blood, saliva, vomit, urine, and other bodily fluids from infected 
people. Additionally, care must be taken when handling vegetative 
items, such as infected needles and pins. It is also advisable to stay 
away from prospective carriers who are still alive and those who have 
passed away (such as monkeys, chimps, gorillas, fruit bats, and pigs; 
Government of Canada, 2023). Additionally, it is imperative that 

visitors to fruit bat colonies’ mines and caves wear gloves and other 
protective gear, including masks. The WHO further advises male MV 
disease survivors to practice safe sex and hygiene for 12 months from 
the onset of symptoms or until their semen has tested negative for 
MV twice (WHO, 2021a). Infection combat for Viral Hemorrhagic 
Fevers in the African Health Care Setting is a set of useful, hospital-
based guidelines that the CDC and WHO have created in order to 
combat this deadly infection. Using locally accessible materials and 
minimal resources, this guideline intends to assist healthcare facilities 
in identifying cases and preventing the transmission of nosocomial 
diseases (CDC, 2023b). The European Network for Infectious 
Diseases (EUNID) outlines strategies for containing group 3 and 4 
pathogen infections. Handling highly infectious diseases (HID) like 
MV requires cautious procedures in labs and hospitals. EUNID 
recommends initiating treatment for MV cases in high-level isolation 
units (HLIU), emphasizing isolation and cautious management. It 
advocates constructing specialized HLIUs for HID patients. 
Emergency departments must follow protocols for suspected MV 
cases. Laboratory personnel should inactivate samples, perform 
bedside tests, and adhere to safety measures. Intensive care for MV 
patients demands extra precautions and well-supported negative-
pressure breathing apparatus. Careful management, including mask 
treatments and intubation, is crucial. Children with MV require 
careful handling to prevent spread. EUNID also offers guidelines for 
investigational interventions, emphasizing patient bedside procedures 
to minimize transmission risks (Brouqui et al., 2009).

FIGURE 4

The pathogenesis of Marburg virus (MV) hemorrhagic fever in humans involves a complex sequence of interactions with various cell types. MV 
predominantly targets dendritic cells, monocytes, liver parenchymal cells, adrenocortical cells, and diverse lymphoid tissues. Dendritic cell infection 
results in compromised T lymphocyte stimulation, inducing lymphocyte apoptosis and subsequent immune suppression. This state amplifies 
cytokines/chemokines levels, culminating in shock and multiorgan damage. T lymphocytes and endothelial cells continue to suffer damage as a result 
of macrophage or monocyte infection, which sets off an unchecked cascade of cytokines and chemokines. Hemorrhaging is facilitated by endothelial 
cell infection, which increases blood vessel permeability and causes disseminated intravascular coagulopathy (DIC). Systemic replication may arise 
from endothelial cell infection. Parenchymal cell infection within the liver diminishes coagulation factors, potentially leading to later hemorrhage 
events. Infection of adrenocortical cells within the adrenal gland results in metabolic disturbances and dysregulated blood pressure, which can 
ultimately culminate in hemorrhage. Lymphoid tissue infections, especially those that affect the lymph nodes and spleen, cause tissue necrosis and 
impair adaptive immunity. In the later stages of the illness, shock and harm to the lymphoid organs can appear.

https://doi.org/10.3389/fmicb.2023.1239079
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Srivastava et al. 10.3389/fmicb.2023.1239079

Frontiers in Microbiology 12 frontiersin.org

7.1. MV’s surveillance strategy

The World Health Organization (WHO) advocates the 
implementation of vigilant surveillance for Marburg virus disease 
(MVD) as a preventive measure against outbreaks, alongside aiding 
countries at risk in formulating preparedness plans (WHO, 2021a). 
The subsequent recommendations, grounded in empirical evidence, 
delineate the optimal approaches for Marburg virus surveillance:

 a. Healthcare practitioners are advised to assess individuals 
exhibiting illness for the presence of Marburg virus disease, 
especially if they have been in close proximity to a person with 
suspected or confirmed MVD within the preceding 21 days or 
have visited an area with an ongoing Marburg outbreak during 
the same period (CDC, 2023c).

 b. Healthcare providers should exercise heightened vigilance and 
conduct evaluations for patients displaying symptoms suggestive 
of MVD (CDC, 2023d).

 c. Health care personnel tending to patients with presumed or 
confirmed Marburg virus infections are to implement 
supplementary infection control measures to avert contact with 
the patient’s blood, bodily fluids, and contaminated surfaces or 
items such as garments and bedding (WHO, 2023b).

 d. A variety of precautions can be taken by those who live in or 
travel to areas where the Marburg virus may be present to protect 
themselves and prevent the virus from spreading. These 
precautions include avoiding contact with the bodily fluids of 
those who are ill, delaying interaction with the semen of those 
who have recovered from MVD until the virus has been proven 
to be  absent, and avoiding animals that may be  carriers 
(CDC, 2023e).

 e. Marburg virus infection is categorized as a notifiable condition, 
necessitating the implementation of rigorous isolation 
precautions in instances of suspected infection. It is imperative 
to emphasize that Marburg virus disease is classified as a 
notifiable condition, mandating healthcare professionals to 
promptly report any confirmed case or suspected instances 
(CDC, 2023e).

7.2. Public awareness campaigns for MV

The Marburg virus infection can be addressed by departmental 
cooperation and public awareness efforts. Public education efforts can 
increase understanding of the disease’s severity and methods of 
prevention, influencing people to adopt healthy habits and seek the 
right medical care (Blasi et al., 2015). To effectively spread information 
and encourage safety precautions, these campaigns can make use of a 
variety of techniques, including media coverage, educational 
initiatives, and social campaigns (Raj, 2008; Akdim et al., 2021). In 
order to successfully use resources and knowledge, departmental 
coordination is crucial for a coordinated response to the disease 
(Kortepeter et al., 2020). The reach and impact of public awareness 
campaigns can be increased by cooperation across many ministries, 
including the Federal Ministry of Information, Federal Ministry of 
Health, and non-governmental organizations (Chagutah, 2009). 
Together, these initiatives can help to prevent, treat, and control the 

Marburg virus disease, thereby reducing its effects on people 
and communities.

7.3. Case studies in MV outbreak 
management

Several strategies are crucial in controlling Marburg virus (MV) 
outbreaks, as evidenced by various scientific studies and expert 
recommendations. Case isolation has been identified as a potent 
measure; a study published by the National Center for Biotechnology 
Information (NCBI) emphasizes that timely case isolation can 
effectively contain a MV outbreak (Ajelli and Merler, 2012). Successful 
outbreak control demands a multifaceted approach, involving case 
management, surveillance, and contact tracing, as advocated by the 
World Health Organization (WHO, 2021a). A robust laboratory 
service also plays a pivotal role in outbreak management, with WHO 
stressing its significance. Thorough evaluation of PCR-based methods, 
focusing on detection limits, proves essential for reliable diagnostics 
during monitoring phases (Timen et al., 2009). Ensuring safe and 
dignified burials for the deceased is another critical aspect of outbreak 
containment, as emphasized by WHO (2021a). Community 
engagement and social mobilization are integral to outbreak control. 
WHO underscores the importance of raising awareness about 
Marburg infection risk factors and protective measures to mitigate 
human transmission (WHO, 2021a). In terms of intervention, the 
development of effective vaccines, antivirals, and other therapeutic 
approaches, alongside appropriate mitigation strategies, emerges as 
paramount. This priority is affirmed by a bibliometric study published 
in Frontiers in Tropical Diseases (Islam et al., 2023a). Collectively, 
these strategies constitute a comprehensive framework for mitigating 
and controlling MV outbreaks.

8. Vaccine strategy of Marburg virus

The illness is caused by a virus that has no known cure and can 
only be passed from person to person or animal to animal through 
direct contact. Getting vaccinated is the greatest way to prevent the 
Marburg virus from spreading. Unfortunately, there is no Marburg 
virus vaccine available for use in the prevention of infection currently. 
Despite this, researchers have been working hard to create a vaccine 
for the Marburg virus, and several potential strategies have been 
assessed. Vaccination strategies, including the use of inactivated or 
destroyed Marburg virus particles, have been studied and assessed 
(Hunegnaw et al., 2021; Cross et al., 2022). This approach involves 
growing the virus in a petri dish and then killing it with heat or 
chemicals. The inactivated viral particles are then employed to create 
a vaccine. Vaccines against numerous viruses, including polio and 
hepatitis A, have been successfully developed using this method. One 
approach that has been studied is the use of a live-attenuated strain of 
the Marburg virus as a vaccine. This method involves making the virus 
less infectious or virulent by laboratory manipulation. After then, the 
engineered virus is used to make a vaccine. Measles and mumps can 
be prevented by the use of vaccines that include reduced forms of the 
infectious agent. The third sort of vaccination strategy that has been 
researched is the use of vaccines that are based on viral vectors. The 
core of this method is to deliver genetic material from the Marburg 
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virus into the body via a non-pathogenic virus. An immune response 
will be triggered by the presence of the genetic material, protecting the 
body from the Marburg virus (Matassov et  al., 2018; Cross et  al., 
2020). Infectious diseases like Ebola can be prevented and treated by 
vaccines that use viruses as “vectors.” A fourth method that has been 
tried and tested is the use of protein-based vaccines. The purpose of 
this method, which involves the use of a protein isolated from the 
Marburg virus, is to provoke an immune response. Vaccines frequently 
include the protein, which has been created using recombinant DNA 
technology. Protein-based vaccines have proven to be  effective, 
leading to the development of preventative measures against diseases 
like human papillomavirus (HPV). Vaccines against Marburg virus 
are currently in development, although there are other choices. 
Possible vaccine targets include the use of vesicular stomatitis virus 
(VSV) as a vector, the VSV-EBOV-MV vaccine is a viral vector-based 
vaccination that protects against both Ebola and Marburg (Woolsey 
et al., 2022). The vaccine is currently being tested in clinical settings 
after displaying encouraging outcomes in preclinical research. The 
Ad26.ZEBOV/MV vaccine delivers antigens against the Ebola and 
Marburg viruses using an adenovirus as a vector. The NIH oversees 
developing this vaccine. After showing promising results in preclinical 
tests, the vaccine is currently being studied in clinical settings. The 
vesicular stomatitis virus (VSV) serves as a vector to transmit genetic 
material from the Ebola and Marburg viruses for the rVSVG-
ZEBOV-GP/MV-GP viral vector-based immunization. Researchers 
from the University of Maryland created this vaccination. The vaccine 
is currently being tested in clinical settings after displaying 
encouraging outcomes in preclinical studies. A Marburg virus vaccine 
known as mRNA-1,360 creates an antiviral protein using mRNA 
technology. The vaccine is currently being tested in clinical settings 
after displaying encouraging outcomes in preclinical studies. The 
Marburg Vax vaccine is a dead virus-based immunization since it is 
made from inactivated Marburg virus particles. Its main goal is to 
provide protection (Jones et al., 2005; Marzi et al., 2019, 2021). The 
vaccine is currently being tested in clinical settings after displaying 
encouraging outcomes in preclinical studies. The creation of a 
Marburg virus vaccine is essential for stopping future epidemics. 
Although there are many ways to make vaccines, the relevant 
authorities have not yet approved any treatments or vaccines for 
MV. Prior to the 2013–2016 EBOV pandemic, there was a paucity of 
significant public sector investment for the development of 
pharmaceutical countermeasures, despite the catastrophic effects of 
filovirus infections on public health. However, funding for basic and 
translational studies of filoviruses has increased since 2016 as a result 
of biodefense and research grants. As a result, the licensing procedure 
for EBOV vaccines and medications to be  used in suppressing 
outbreaks has advanced. With the help of this financing, MV was able 
to expand its study of animal models and preventative measures, both 
of which are essential before the start of clinical testing. In NHP 
research, several approaches have showed promise, and these 
approaches are now being developed via Phase I clinical trials for the 
clinical development of vaccines and antivirals (Marzi et al., 2015; 
Krause et al., 2020). Since almost the moment the virus was identified, 
a MV vaccine has been under development, but results have been 
patchy. Only a few of the prospective MV vaccination platforms have 
shown protective efficacy in NHPs, despite being extensively tested in 
rodent models. The MV glycoprotein (GP) is used by all presently 
available successful vaccine candidates as their primary antigen. It 

offers defense against a variety of RAVV and MV strains. As MV 
vaccines, fast-acting, live-attenuated, non-replicating, and replicating 
viral vector regimens may be utilized in multidose, single-dose, and 
other forms. In the event of an outbreak, reactive vaccination 
campaigns would make use of single-dose, quick-acting vaccinations. 
There are, however, a number of candidate vaccines that could 
be employed for at-risk groups’ regular vaccination. The duration of 
the acquired immunity created by the vaccine will determine whether 
additional immunizations are required (Dean et  al., 2020; 
WHO, 2023c).

8.1. Vaccine status and WHO guideline

The two-day-old vaccine that prevents illness is supported by the 
National Institute of Health. In this investigation, a deadly dose of the 
Marburg virus vaccine was given to rhesus macaques. After 48 h, just 
two of the five to six monkeys that had received the vaccine were still 
alive (Geisbert, 2015). These infections can only be  treated in 
laboratories with the utmost level of safety and containment because 
there are not any licensed immunizations that have been approved for 
use in humans. As indicated in Table 3 (Grant-Klein et al., 2015), 
several vaccination approaches had been developed for the treatment 
of MV in NHP models. There is not a licensed vaccination or antiviral 
medication for MVD now. Supportive therapy that restores lost blood 
and clotting elements while also preserving blood pressure, oxygen 
levels, and electrolyte balance may be helpful. There are several MV 
vaccines developed. For instance, the VSV-MV vaccine, a recombinant 
VSV-based immunization that produces the MV glycoprotein, 
instantly shields hosts from MVD in animal models (Marzi et al., 
2021). Another strategy for prevention against both hemorrhagic 
viruses is the vaccine candidate MVABN-Filo, which contains antigens 
from the Marburg and the Ebola viruses (Barry et al., 2021). A phase 
3 trial that appears to create a powerful defense against the Ebola virus 
is currently being carried out. In addition to developing preventive 
vaccines, researchers are currently striving to develop effective 
postexposure therapies for MVD, such as small molecule antivirals 
and monoclonal antibodies (mAbs) specific to the MV. Researchers 
combined a monoclonal antibody (MR186-YTE) with an antiviral 
(remdesivir) using a non-human primate model of MVD (Cross et al., 
2021). The statistics show that this combination was very effective in 
treating the condition. A summary of the advancement of MVD 
vaccines and experimental therapies is shown in Table  4 (Baby 
et al., 2022).

9. T-705 and remdesivir: promising 
antiviral strategies for Marburg virus 
disease

Two antiviral agents, T-705 (favipiravir) and remdesivir, have 
exhibited efficacy against Marburg virus disease (MVD) through 
preclinical investigations. These agents function as RNA polymerase 
inhibitors, impeding viral replication and transcription processes 
(Furuta et al., 2013; Bixler et al., 2018; Marlin et al., 2022). T-705 
(favipiravir), a pyrazinecarboxamide derivative, boasts comprehensive 
antiviral activity across diverse viruses and holds clinical approval in 
Japan for addressing influenza (Zhu et al., 2018; Zadeh et al., 2022). A 
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research study disseminated by the National Center for Biotechnology 
Information (NCBI) proposes T-705 as a viable therapeutic candidate 
against Marburg virus, particularly valuable for outbreak scenarios 
due to its prompt and secure oral administration following exposure 
(Zhu et  al., 2018; Zadeh et  al., 2022). Angola, a mouse-adapted 
Marburg virus strain, was used to infect mice in a different 
investigation, and T-705 showed excellent survivability in these mice 
(Zhu et al., 2018; Zadeh et al., 2022). Oral dosing that began 1 or 2 
days after infection and continued for 8 days resulted in full mouse 
survival. Remdesivir functions as a monophosphoramidate nucleoside 
prodrug, which undergoes intracellular metabolic alteration into an 
active nucleoside triphosphate form, thereby inhibiting viral RNA 
polymerase (Malin et al., 2020). Notably, a study revealed the curative 
effectiveness of remdesivir in nonhuman monkeys infected with the 
Marburg virus experimentally, particularly when therapy started 5 
days after inoculation (Porter et  al., 2020). Remdesivir was 
demonstrated to be effective against a variety of RNA viruses in vitro 
and using macaque models, including the Ebola virus, Lassa virus, and 
Marburg virus (Malin et al., 2020). This research was published in 
Clinical Microbiology Reviews. It is imperative to acknowledge that 
the efficacy and safety of these agents in human MVD cases remain 
untested. Moreover, the application of antiviral drugs necessitates 
integration with supplementary control measures, including case 
isolation, surveillance, contact tracing, laboratory services, secure 
burials, and community mobilization, to ensure the effective 
management of MVD outbreaks (Cross et al., 2018; Zhu et al., 2018). 
T-705, also known as Favipiravir, has demonstrated effectiveness in 
vitro and in vivo against Marburg virus infection (Zhu et al., 2018). 
Mice that had been intraperitoneally infected with Marburg virus that 
had been modified for mice completely survived when given T-705 
beginning 1 or 2 days after infection and continuing for 8 days (Zhu 
et al., 2018). Vero E6 cells showed no negative effects (Zhu et al., 2018). 
A broad-spectrum antiviral drug called Remdesivir has previously 
shown antiviral effectiveness against filoviruses including the Marburg 
virus (Levien and Baker, 2021). Respiratory failure and organ 
malfunction, including low albumin, low potassium, low red blood 
cell count, low platelet count, which aids clots, and yellow skin 
coloring, are the most frequent side events in Remdesivir trials for 
COVID-19 (Zadeh et al., 2021). Pyrexia, sleeplessness, multi-organ 
malfunction, DVT, and hypersensitivity/anaphylactic reactions 
connected to the infusion are additional negative consequences 
(Levien and Baker, 2021). A combination therapy of monoclonal 
antibodies (mAbs) and remdesivir has been shown to induce an 80% 
protection rate against Marburg virus in rhesus macaques (Cross et al., 

2021; Rees, n.d.). The combination therapy was initiated 5 days post-
inoculation with Marburg virus (Cross et al., 2021). High temperature, 
severe headaches, severe malaise, muscle aches and pains, 
gastrointestinal problems, migraines, and dizziness are all signs of 
Marburg virus sickness (Kortepeter et  al., 2020; WHO, 2021b,c). 
Marburg virus sickness has a case fatality ratio that can reach 88%, but 
it can be significantly reduced with proper patient care (WHO, 2021b). 
In summary, Remdesivir has shown antiviral activity against 
filoviruses like Marburg virus, whereas T-705 has showed efficacy 
against Marburg virus infection in vitro and in vivo. In rhesus 
macaques, monoclonal antibody and remdesivir combination therapy 
has been reported to result in an 80% protection rate against Marburg 
virus. High temperature, severe headaches, severe malaise, muscle 
aches and pains, gastrointestinal problems, migraines, and 
disorientation are all signs of Marburg virus sickness.

10. Emerging therapeutic agents in 
clinical trials

Clinical trials have been conducted for some drugs to treat MV; 
some of these trials have been completed and others are ongoing. MV 
drug development has progressed much more slowly than preclinical 
and clinical trials for the treatment of EBOV. Antiviral effectiveness 
against MV infections in nonhuman primates (NHPs) has long been 
regarded as the gold standard to assess prospective efficacy in humans 
and support subsequent clinical trials, much like EBOV. Following 
exposure in NHPs with advanced disease, several promising 
strategies, such as pan-filoviral small-molecule antivirals and 
MV-specific monoclonal antibodies, have shown excellent success. 
Table 5 shows the biologics currently being tested in clinical trials, 
along with their current status and research center location (Citeline 
Clinical, 2023).

11. Conclusion

The emergence of Marburg virus (MV) has presented a 
complex global challenge characterized by fatal outbreaks and 
significant clinical hurdles. The extensive analysis conducted in 
this study sheds light on the multifaceted nature of MV, 
encompassing its origin, transmission dynamics, clinical 
manifestations, and the intricate interplay between the virus and 
its human hosts. The documented outbreaks underscore the 

TABLE 3 Vaccine efficacy on the non-human primate model.

S. no. Vaccine type Dose Survival % References

1 Virus like particles + RIBI (Vaccine adjuvant) 3 100 Hevey et al. (1998)

2 EBOV GP + SUDV GP + MV GP + RAVV GP 3 100 Ashique et al. (2023)

3 rAD5 (vector) + MV GP + DNA MV GP 4 100 Barry et al. (2021)

4 Intact MV, RAVV 2 50 Swenson et al. (2004)

5 VEEV + MV GP + VEEV-MV NP 3 67–100 Marzi et al. (2021)

6 Cad Vax-Pan Filo 2 100 Cross et al. (2021)

7 MV GP 3 67 Geisbert (2015)

8 VSV + MV 1 100 Grant-Klein et al. (2015)
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TABLE 4 Development of a vaccine and advancements in experimental therapies for Marburg virus sickness.

Vaccine Description Animal studies Clinical trials References

MVA-BN-Filo A multivalent vaccination formulation called 

Mvabea (MVA-BN-Filo) is intended to give 

active acquired immunity to the Sudan virus, 

Ebola virus, Marburg virus, and Tai Forest 

virus.

No data. Eight months after 

immunization, phase 1 results 

showed persistent GP immunity 

against Ebola.

Marzi et al. (2015)

No MV-related findings were 

reported.

rVSV-MVGP A vesicular stomatitis virus vector that is 

recombinant and expresses the MV 

glycoprotein (GP).

100% of animal studies are 

successful. One year after 

the shot

No data. Henao-Restrepo et al. (2017)

cAd3-MV In this immunization, a modified chimpanzee 

adenovirus known as cAD3 is utilized.

No data for cAd3-MV Four weeks following a single 

vaccination, 95% of individuals 

exhibited a glycoprotein-specific 

antibody response, which 

persisted in 70% of them at 

48 weeks.

Dean et al. (2020)

CAdVax-panFilo The complex encodes GPs from EBOV, SUDV, 

and MV as well as GPs from EBOV and MV 

Musoke nucleoproteins.

Antibodies were tested 

against all five filoviruses, 

and no macaques displayed 

symptoms of a clinical 

disease.

No data. Dean and Longini (2022)

DNA plasmid vaccine MV Angola DNA is expressed by a Marburg 

DNA plasmid.

A DNA prime/boost vaccine 

in macaques provided 

protection, although all of 

the animals eventually 

became ill.

In a phase 1 experiment, 10 

participants showed 90% 

antibody responses.

Cross et al. (2022)

TABLE 5 Ongoing clinical trials for therapeutics.

S. no Research study Research place Disease Interceding Status of 
trial

References

1. Healthy Adults Receiving the CAd3-

Marburg Vaccine

WRAIR-clinical trials center, 

silver spring, US

Marburg virus Biological: cAd3 

vaccine

Completed Ashique et al. 

(2023)

2. Single Administration Safety Study American West Coast, 

California

Marburg 

Hemorrhagic 

Fever

Drug:AVI-6003 Completed Ashique et al. 

(2023)Treatment for the Marburg Virus Post-

exposure Prophylaxis

Drug: Placebo

3. Filo and Ad26 from MVA-BN(R). On 

healthy volunteers, ZEBOV vaccines are 

being tested for safety.

Atlanta, Georgia, US Marburg 

Hemorrhagic 

Fever

Biological: Ad26 Zaire 

Ebola Vaccine.

Completed Ashique et al. 

(2023)

Ebola virus 

disease

Biological: MVA 

Multi-Filo Ebola 

Vaccine

4. An investigation on the safety, tolerability, 

and pharmacokinetics of a single dose of IV 

BCX4430

US-Kansas City, Lenexa, 

PRA Health Sciences

Marburg Virus Drug: Galidesivir Active, not 

recruiting

Ashique et al. 

(2023)Drug: Placebo

5. Avi-7,288 Pharmacokinetics, Safety, and 

Tolerability Study in Healthy Adult 

Volunteers

Clinical Pharmacology 

Center at SNBL. USA, 

Baltimore

Marburg 

Hemorrhagic 

Fever

Drug: AVI-7288 Completed Ashique et al. 

(2023)Other: Placebo

6. Marburg and Ebola virus vaccines 9,000 Rockville Pike, 

National Institutes of Health 

Clinical Center, Bethesda, 

Maryland (USA)

Marburg Virus 

Illness

Drug: VRC-

EBODNA023-00-VP

Completed Ashique et al. 

(2023)

Ebola Virus 

Illness

Drug: VRC-

MARDNA025-VP
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urgency of understanding and effectively addressing the threat 
posed by MV to global health security. Throughout this 
investigation, it has become evident that the clinical challenges 
posed by MV are substantial, with its virulent nature leading to 
high mortality rates and a range of severe symptoms. The lack of 
specific antiviral therapies or vaccines further amplifies the 
urgency of comprehensive prevention and control strategies. The 
cases studied emphasize the need for rapid, coordinated responses 
involving healthcare providers, researchers, and governmental 
bodies to curtail the impact of MV outbreaks. The global 
perspective on MV’s emergence emphasizes the need for proactive, 
multidisciplinary approaches to prevent and mitigate its 
devastating impact. The lessons learned from past outbreaks 
underscore the importance of preparedness, collaboration, and 
innovation in addressing this ongoing threat to public health. 
Through these concerted efforts, we can hope to avert future MV 
outbreaks and minimize their toll on human lives.

12. Future perspectives

Looking ahead, several crucial research and intervention 
directions emerge from our analysis. First, continued efforts are 
imperative to elucidate the intricate mechanisms of MV transmission 
from its reservoir hosts to humans, allowing for the identification of 
potential intervention points. Collaborative studies integrating 
virology, epidemiology, and ecology will be pivotal in achieving a 
comprehensive understanding of the virus’s life cycle. Second, the 
development of effective preventative measures remains paramount. 
Advances in vaccine technologies offer promise for the creation of 
MV-specific vaccines, analogous to strategies employed against 
related pathogens. In parallel, research should focus on identifying 

small molecule antiviral compounds that can impede MV replication 
and spread. Third, bolstering healthcare infrastructure in regions 
susceptible to MV outbreaks is essential. Strengthening diagnostic 
capabilities, training healthcare workers in effective infection control 
measures, and establishing rapid response protocols are vital 
components of managing MV cases and preventing 
wider disseminations.
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