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Combination antiretroviral therapy has demonstrated proved effectiveness in 
suppressing viral replication and significantly recovering CD4+ T cell count in HIV 
type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS 
morbidity and mortality. However, the factors affecting immune reconstitution are 
extremely complex. Demographic factors, co-infection, baseline CD4 cell level, 
abnormal immune activation, and cytokine dysregulation may all affect immune 
reconstitution. According to report, 10–40% of HIV-1-infected patients fail to 
restore the normalization of CD4+ T cell count and function. They are referred to 
as immunological non-responders (INRs) who fail to achieve complete immune 
reconstitution and have a higher mortality rate and higher risk of developing 
other non-AIDS diseases compared with those who achieve complete immune 
reconstitution. Heretofore, the mechanisms underlying incomplete immune 
reconstitution in HIV remain elusive, and INRs are not effectively treated or 
mitigated. This review discusses the recent progress of mechanisms and factors 
responsible for incomplete immune reconstitution in AIDS and summarizes the 
corresponding therapeutic strategies according to different mechanisms to 
improve the individual therapy.
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1. Introduction

The hallmark of infection with the human immunodeficiency virus (HIV) is the progressive 
destruction of CD4+ T cells in both count and function, particularly the activated CD4+ T cells. 
Loss of CD4+ T cells can cause opportunistic infections, non-AIDS-defining events (nADEs) and 
death in those who develop acquired immunodeficiency syndrome (AIDS; Deeks et al., 2013; 
Maartens et al., 2014). The development of combination antiretroviral therapy (cART) has achieved 
the suppression of viral replication and the increase in CD4+ T cell count in the majority of patients, 
leading to a significant decrease in morbidity of AIDS and mortality (Vieillard et al., 2016; Saag 
et al., 2020). Yet, 10–40% of people living with HIV (PLHIV) fail to achieve CD4 cell count 
reconstitution with cART, despite achieving suppression of HIV-1 viral load in the blood, and are 
referred to as immunological non-responders (INRs). Compared with immune responders (IRs) 
and sub-optimal immunologic responders (ISRs), INRs still have a higher incidence of AIDS-
related fatalities and morbidity (Piconi et al., 2010; Lederman et al., 2011; Briceno et al., 2020; Shive 
et al., 2021; Wang L. et al., 2021; Zhao et al., 2021). In addition, chronic immune activation has 
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been reported among PLHIV, elevating the risk of cardiovascular 
disease (Shah et al., 2018), metabolic syndrome (Dragović et al., 2021), 
kidney abnormalities (Swanepoel et al., 2018), and non-AIDS-related 
malignancies (Chammartin et  al., 2021) compared with non-HIV 
infected individuals, causing significant negative effects on quality of life 
as well as mortality (Wilson and Sereti, 2013; Ipp et al., 2014; Sims et al., 
2018). As an important global public health issue, incomplete immune 
reconstitution continues to adversely affect the survival quality of 
PLHIV. In this review, we highlight areas of recent advances in the 
mechanisms and risk factors of incomplete immune reconstitution and 
explore new targeted therapeutic interventions to improve 
immune restoration.

2. Complete and incomplete immune 
reconstitution

Immune reconstitution is broadly divided into two phases. First, 
after cART is initiated, HIV viral load declines, and lymphocytes are 
soon redistributed, leading to a rise in peripheral blood memory CD4+ 
T cells (CD45RO+). Naive CD4+ T cell (CD4+ CD45RA+CD62L+) 
regeneration enhances after treatment for 2–3 months which leads a 
slow and steady increase in CD4+ T cells without normal immune 
function. Second, after 3–6 months of late treatment, CD4+ T cells 
gradually recall their antigen-specific response to various antigens, 
such as cytomegalovirus (CMV) and tuberculin, except for HIV 
(Autran et al., 1997; Macdonald et al., 1998). Studies have reported that 
as viral load decreases, T lymphocyte activation markers like CXCL13, 
HLA-DR, and CD38 decline, promoting the immune system return to 
homeostasis (Autran et al., 1997; Li et al., 1998; Mehraj et al., 2019).

However, immune restoration is not always successful. Although 
viral load can be controlled at low or even undetectable levels with 
cART, there is considerable variability in terms of CD4+ T cell 
recovery. And this inconsistency between the decline in plasma viral 
load and the rise in CD4 count is influenced by multiple factors such 
as immune-related or pathogenic host-related which like abnormal 
immune activation and generally characteristics. People failing to 
completely restore CD4 T cell count are called immunological 
non-responders. To date, there is no consensus on the definition of 
“immunological non-responders.” Studies and guidelines generally 
define them in regard to confine CD4+ T cell count, increased CD4+ T 

cell counts from baseline, or confine percentage of CD4+ T cell 
increase over baseline (Yang et  al., 2020; Table  1). In 2008, the 
Department of Health and Human Services (DHHS) defined 
“immunological non-responders” as patients whose CD4+ T cell 
counts had not reached 350–500 cells/μl after 4–7 years of effective 
antiretroviral therapy. In 2021, the World Health Organization 
(WHO) defined adult immunological failure as a CD4 cell count of 
250 cells/μl or a CD4 cell count consistently below 100 cells/μl after 
6 months of effective treatment (WHO, 2021). In 2021, DHHS defined 
“immunological responders” as patients with an increase in CD4 
count of 50–150 cells/μl in the first year of cART treatment. In the first 
3 months, the response of treatment was rapid, followed by an average 
annual increase of approximately 50–100/μl until steady state 
(Adolescents., P.O.A.G.F.A.A, 2021).

INRs are unable to maintain the basic normal immune function 
of the body due to low CD4+ T cell counts and exhibit severe immune 
dysfunction. Under the influence of lifestyle, drug toxicities, chronic 
inflammation, immune activation, and many other factors, nADEs 
still account for an increasing proportion of PLHIV, despite viral load 
being controlled to undetectable levels after cART (Elvstam et al., 
2021). However, the normal CD4 counts could not always reflect 
complete restore, though it be  extensively applied in evaluating 
immune reconstitution (Ron et al., 2023). Recently, CD4/CD8 ratio 
was demonstrated having an amazing performance in immune 
reconstitution. Some studies insisted that a low CD4/CD8 ratio 
reflects increased immune activation and immune senescence, also 
associating with an higher risk of severe nADEs (Gibellini et al., 2017; 
Serrano-Villar et  al., 2022). Therefore, we  suggested incomplete 
immune reconstitution an independent risk factor for increased risk 
of SNAEs under sustained viral suppression (Prabhu et  al., 2019; 
Noiman et al., 2022).

3. Potential mechanisms of 
incomplete immune reconstitution

Failure to normalize the reduced CD4+ T cell population after 
treatment is regard as incomplete immune reconstitution. This outcome 
results from decreased production, increased destruction, and increased 
senescence of CD4 cells. The mechanisms that cause these abnormal 
changes in CD4 cells are currently the subject of much speculation. Such 

TABLE 1 Definitions of INR from the literature and guideline.

Definition of INRs References

Increase in the CD4+ T cell count <200 cells/μl from baseline at 2 years after cART initiation, with an undetectable plasma VL García et al. (2019)

Total CD4+ T cell counts <200 cells/μl at 2 years after cART initiation, with an undetectable plasma VL Xie et al. (2021)

Total CD4+ T cell count <350 cells/μl 2 years after cART initiation, with an undetectable plasma VL Dai et al. (2021), Rousseau et al. (2021), 

Shive et al. (2021)

Total CD4+ T cell count <350 cells/μl 2 years after cART initiation, with plasma HIV-1 RNA < 50 copies/ml Geng et al. (2021), Malazogu et al. (2021), 

Vlasova et al. (2021)

Total CD4+ T cell count <350 cells/μl 2 years after cART initiation, with plasma HIV-1 RNA < 50 copies/ml at least 12 months Bandera et al. (2018)

Total CD4+ T cell counts <350 cells/μl 8 years after cART initiation, with an undetectable plasma VL Luo et al. (2022)

Increase in the CD4+ T cell count <20% from baseline at 1 year after cART initiation, with an undetectable plasma VL Lv et al. (2021)

CD4/CD8 ratio < 1 at 24 weeks after cART initiation, with plasma HIV-1 RNA < 50 copies/ml Russo et al. (2022)

VL, viral load.
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as damage and hypofunction of lymphoid organs, residual viral 
replication, disruption of T cell subpopulation homeostasis, 
dysregulation of cytokine secretion, and translocation of 
microorganisms might reduce CD4+ T cell count directly and induce 
inflammation and immune activation. It is worth to mention that 
excessive activation of CD4+ T cells during cART has been suggested to 
upregulate the expression of the HIV-1-binding target CCR5 on CD4+ 
T cells, thereby accelerating the depletion of CD4+ T cells (Gandhi et al., 
2017; Xia et al., 2018). Therefore, long-term chronic abnormal immune 
activation can also affect immune reconstitution. In addition, factors 
associated with the host can also affect CD4 cell recovery (Figure 1).

To this end, we discuss herein the possibilities affecting incomplete 
immune reconstitution and its mechanisms (Figure 2).

3.1. Dysfunction of the lymphoid organs

T cells are produced from hematopoietic progenitor cells 
(HPCs) and hematopoietic stem cells (HSCs) in the bone marrow, 
educated on thymic tissue for development and maturation. 

Hematopoietic stem and progenitor cells (HSPCs) have the capacity 
for lifelong survival, self-renewal, and daughter cell production. 
HIV-1 infection can lead to impaired hematopoietic function of 
HSPCs in several ways. First, a large body of evidence indicates that 
low levels of CD4 receptors expressed by HSPCs can be targeted by 
HIV thereby leading to impaired function (Sebastian et al., 2017; 
Chen, 2019; Karuppusamy et al., 2022). Second, HIV-1-produced 
Nef proteins expressed in HSPCs impeding the development and 
production of myeloid–erythroid cells and inducing apoptosis (Zou 
et al., 2021). In addition, HIV-1 is capable of causing alterations to 
the bone marrow hematopoietic microenvironment. HIV-1 may 
complete with stromal cell-derived factor-1 (SDF-1, also known as 
CXCL12) for the site of binding to CXCR4, affecting the homing of 
HSCs (Tsukamoto, 2020). However, efficient homing is a 
prerequisite for the successful re-establishment of hematopoiesis in 
the bone marrow hematopoietic microenvironment. Furthermore, 
Yuan et al. (2019) found that HIV-Tat reduced the ability of bone 
marrow mesenchymal stem cells (BMSCs) to support HSC 
expansion in vitro and reduced the expression levels of a series of 
key hematopoietic factors produced by BMSCs. These studies 

FIGURE 1

Potential risk factors for incomplete immune reconstitution. Including general characteristics (e.g., age, gender, CD4+ T-cell counts, body mass index 
(BMI) and the underlying diseases), metabolic and genetic factors also be confirmed can make some difference in immune recovery between different 
people living with HIV (PLHIV). Furthermore, coinfections with other virus, poor adherence and the regimens which with severe side effects also can 
interfere the immune restore. Factors that contribute to the reduction and destruction of CD4+ T cells also affect immune reconstitution, including: 
reduced haematopoiesis of bone marrow, thymic insufficiency, replication of HIV reservoirs, alteration of CD4+ T cell subpopulations, gut microbial 
translocation, transport effects of extracellular vesicles, dysregulation of cytokine and, immune senescence.
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suggest that incomplete immune reconstitution in HIV-1-infected 
patients may be  associated with reduced bone marrow 
hematopoietic function and HSPCs numbers.

The thymus is the site of T cell development and maturation, 
and good thymus function ensures the stability of CD4+ T cell 
count and function. As a marker of thymic function, CD31+CD4+ 
T cells (CD31%) reflects the kinetics of the recent thymic 
immigrant CD4+ T cells. In a research, the results revealed a lesser 
percentage of CD31% in the INR group than in the IR group, and 
both of them exhibited significantly lesser percentages than the 
healthy volunteer group (Li et al., 2011). Ferrando-Martinez et al. 
(2017) applied sj/β-TREC (accurate technique for measuring 
thymic function) to 774 PLHIV of different types and found that 
patients with thymic failure (sj/β-TREC ratio < 10) had 
significantly lower levels of CD4+ T cells, suggesting that thymic 
function influences AIDS progression. Recent thymus emigrants 
(RTE) is one of the most established markers to evaluate recent 
thymic output function, representing a high sj-TRECs content 
CD4+ T cell subpopulation (Kimmig et al., 2002). Briceno et al. 
(2020) identified that HIV-positive subjects had fewer RTEs in 
absolute terms compared with the HIV-negative group. The 
application of cART resulted in increased levels of circulating 
RTEs in IRs compared with those in INRs. A further study (Rb-
Silva et al., 2019) reported that IRs demonstrated a significant 
increase in thymus volume at 12 months of cART treatment, were 
prone to higher sj-TREC and sj/β-TREC, and had higher 
proportions and absolute numbers of RTEs in peripheral blood 
CD4+ T cells than INRs. These studies suggest that the thymus 
influences HIV progression by affecting CD4+ T cell levels, and 
impaired thymic output and reduced function are one of 
important mechanisms leading to incomplete reconstitution.

3.2. Replication of residual virus in HIV 
reservoirs

HIV-1 invades the body and preferentially attacks activated CD4+ 
T cells, most of which die rapidly after infection, whereas a small 
proportion, called latent cells, tend to enter a resting state and stay 
dormant for a long time. HIV-1 proviruses have the capacity for stable 
integration and high replication and can persist in vivo in cells 
(Wacleche et al., 2018; Zaikos et al., 2018; Kruize and Kootstra, 2019; 
Wallet et al., 2019; Lutgen et al., 2020; Wiche Salinas et al., 2021; Chen 
et al., 2022b) and tissues (Damouche et al., 2015; Cantero-Pérez et al., 
2019; Ganor et al., 2019; Wallet et al., 2019; Chaillon et al., 2020a) of 
PLHIV receiving cART. Reactivation of these latent proviruses is 
regarded as the leading cause of rebound viremia after cART cessation 
(Vanhamel et al., 2019; Cohn et al., 2020). We found a majority of 
people on suppressive cART have residual virus production, which 
may cause immunological activation as a result of the anti-HIV 
immune response. Therefore, the increased immune activation and 
inflammation in those using cART appears to be mostly caused by 
HIV persistence (Scherpenisse et al., 2021). Mavigner et al. (2009) 
investigated the connection between residual virus and T-cell 
activation in both groups of good immunological responders and 
incomplete immunological responders. In individuals with incomplete 
immunological responses, there was a strong correlation only between 
the degree of residual viremia and the frequency of CD4 T-cell 
activation. Furthermore, they also found the prevalence in CD31+ 
naive CD4 T cells of RTEs seemed to be inversely linked with the 
residual viremia (Mavigner et al., 2009). The findings of these studies 
imply that the presence of prolonged HIV-1 replication in vivo 
provides a basis for viral rebound while leading to a long-term chronic 
reduction in CD4 T cells.

FIGURE 2

Pathways contribute to poor immune reconstitution from the above factors.
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3.3. Breakdown of CD4 T cell subsets

During chronic HIV infection, a slow and sustained decline in 
circulating CD4 T cells is accompanied by changes in major CD4 cell 
subsets. Regulatory T cells (Treg) are one of the most important 
elements in suppressing immune responses, which can both control 
aberrant immune activation and suppress specific T cell responses to a 
variety of pathogens for causing immunodeficiency, critical in 
maintaining immune homeostasis (Chen Y. et al., 2020). As they express 
the CCR5 receptor, Tregs are vulnerable to HIV infection, and the 
interaction of gp120 and CD4 inhibits Treg apoptosis and improves its 
survival. Therefore, Treg is also a potential reservoir for the HIV-1 virus 
(Nilsson et al., 2006; Sivanandham et al., 2020). In addition, Tregs are 
capable of controlling low residual immune activation in virologically 
suppressed patients under cART. A previous study (Chevalier and 
Weiss, 2013) found that the proportion of Tregs under cART treatment 
was negatively correlated with CD 4 and CD8 T cell activation. Thus, 
under viral control, Treg frequency is negatively correlated with residual 
immune activation. While the early initiation of cART restored CD4+ T 
cell count, it was unable to control the massive expansion and intestinal 
migration of Treg, which may eventually cause HIV disease progression 
and intestinal tissue fibrosis (Yero et al., 2019, 2021).

Helper T cells (Th) are the most numerous subsets of T cells and 
work by amplifying the immune response function of other immune 
cells. HIV preferentially infects Th1 and Th17 cells. Among them, 
Th17 cells are enriched within the mucosal tissue and promote 
protective immune responses against extracellular bacteria and 
fungi, preserving the integrity of the mucosal barrier and 
maintaining immune homeostasis at mucosal sites (Planas et al., 
2019; Wiche Salinas et  al., 2021). PLHIV commonly exhibits a 
progressive decline in intestinal CD4+ T cells, with a preferential 
absence and significant depletion of Th17 cells, throughout 
infection (Le Hingrat et  al., 2021). Depletion of Th17 cells has 
important implications for disease progression and viral persistence 
and is a major cause of microbial translocation and inflammatory 
progression (Ortiz et al., 2016). At the same time, Th17 cells are 
closely associated with Treg and altered Th17/Treg balance is 
associated with a persistent chronic inflammatory state in HIV-1 
disease (Chevalier and Weiss, 2013). Chronic inflammation has 
long been known to be harmful in conditions when the immune 
system is unable to successfully remove infectious germs. Therefore, 
chronic HIV-1 infection activated the host immune system and 
attacked the virus through multiple mediators. Then, it led to 
deprivation of T-cell function and ultimately to immunosuppression 
(Favre et  al., 2010). The alterations in T cell subsets can affect 
immune activation through multiple pathways leading to 
incomplete control of viral replication and facilitating the 
progression of immune activation. And now, how to detect changes 
in each subpopulation and discover their role is crucial to our next 
step of targeted preventive and control for this progression.

3.4. Gut microbial translocation

The gut-associated lymphoid tissue contains at least 80% of the 
body’s lymphocytes, including approximately 60% of the body’s CD4+ 
T lymphocytes, making the intestinal mucosal immune system a 
major target of HIV-1 attack, and the body’s immune function is 

closely related to the intestinal microenvironment (Brenchley and 
Douek, 2008). Microbial translocation can lead to changes in species 
diversity and composition, affecting systemic inflammation and thus 
CD4 T cell recovery.

In healthy individuals, a wide variety of microorganisms reside in 
the gut, including beneficial and pathogenic bacteria, which together 
participate in various host physiological functions and maintain 
normal physiological activities. Lee et  al. (2018) found that 
Lactobacillus is involved in maintaining the integrity of the intestinal 
mucosal barrier. It reduces microbial translocation, has a role in 
reducing systemic immune activation, and its abundance is positively 
correlated with CD4+ T cell count. Another study confirmed that 
Bacteroides has LPS or LOS molecules capable of signaling through 
TLR4 to induce IFN-β to initiate antiviral responses and resistance to 
viral infection (Stefan et al., 2020).

However, HIV-1 infection leads to a disruption in the bacterial 
community structure and function of the intestinal microbiota, 
primarily characterized by an overall decreased α diversity, a 
significant increase in relative abundance of Prevotella and reduced 
abundances of Bacteroides and Faecalibacterium (Vujkovic-Cvijin 
et al., 2013; Dillon et al., 2014; Mak et al., 2021). These changes in 
the gut microbiota can stimulate the activation of T cells and 
chronic inflammation directly or indirectly, leading to systemic 
immune activation (Vujkovic-Cvijin and Somsouk, 2019; Geng 
et  al., 2020; Serrano-Villar et  al., 2021). Ishizaka et  al. (2021) 
observed that compared with healthy controls, PLHIV with low 
CD4 counts had reduced gut microbiome α diversity and a higher 
abundance of Prevotella, and the relative abundance of it was 
positively correlated with inflammatory cytokines and negatively 
correlated with anti-inflammatory cytokines. A recent study 
concluded that Prevotella increased the susceptibility to gut 
inflammation through the suppression of IL-18 production 
indirectly (Iljazovic et al., 2021). The findings of Pinacchio et al. 
(2020) suggest that Prevotella levels were negatively correlated with 
IFN-I gene expression and Th17 cell counts. It is further 
hypothesized that Prevotella enrichment may affect intestinal 
mucosal IFN-I pathways and T cell response in HIV-1-infected 
patients, therefore leading to immune dysfunction. Another study 
(Pickard et al., 2017) suggested that gut microbes can induce Th17 
and Treg production by modulating immune cell differentiation. In 
addition, some studies have demonstrated that gut microbes can 
regulate myeloid hematopoietic cell development and maturation 
by modulating local metabolites and tissue-specific mediators as 
well as by driving Toll-like receptor (TLR) and myeloid 
differentiation factor 88 (MyD88)-mediated signaling pathways 
(Khosravi et al., 2014; Serrano-Villar et al., 2016; Thaiss et al., 2016). 
The results of these studies suggest that gut microbes have a role in 
the regulation of T-cell subsets and bone marrow hematopoiesis. 
The above findings suggest that alterations in the gut microbiota 
may be associated with abnormal immune activation and chronic 
inflammation during chronic HIV-1 infection. We suggest that after 
HIV-1 invasion, intestinal mucosal lymphocytes, the primary target 
of attack, are depleted by direct viral action and post-activation 
apoptosis, and the intestinal mucosal barrier is compromised, 
indirectly leading to dysbiosis/microenvironmental changes in the 
intestinal flora. These changes in turn further exacerbate the 
damage to the intestinal mucosa, leading to an increased risk of 
inflammation and promoting abnormal immune activation.
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3.5. HIV-1 infected extracellular vesicles 
changed structure and function, interfering 
immune reconstitution

Extracellular vesicles (EVs) are heterogeneous phospholipid 
bilayer vesicles released from cells into the external environment 
and act as specific carriers and mediate intercellular communication 
in the immune system (Théry et al., 2018; Gudbergsson et al., 2019). 
Furthermore, they are involved in the regulation of immune 
responses in different physiologic and pathogenic settings, by 
delivering nucleic acids, lipids, and proteins from their surface or 
lumen to target cells (Cheruiyot et  al., 2018; Witwer and 
Théry, 2019).

First, EVs can contribute to HIV transmission and HIV reservoirs 
in direct and indirect ways. Several studies have demonstrated that 
large numbers of EVs released from HIV-1-infected cells are involved 
in HIV-1 transmission under their carrier properties, and cART is 
unable to reduce their concentration levels (Lee et al., 2016; Patters 
and Kumar, 2018). Weber et al. (2020) treated cultured monocytes 
with HIV-Tat in vitro and found that monocyte-derived microvesicles 
(MDMVs) released by Tat-treated monocytes into the culture medium 
were significantly increased. In addition, another HIV protein, Nef, 
can promote HIV infection by decreasing the expression of CD4 in 
exosomes to improve the ability for neutralize with CD4-bearing cells 
(Navarrete-Muñoz et al., 2021). Another study (Perez et al., 2019) 
found that EVs secreted by infected cells carry pathogen-associated 
molecular patterns, which that interact with immune cells to produce 
inflammation and also evade recognition by the immune system. EVs 
can also expand the number of susceptible target cells by mediating 
the transfer of CXCR4 and CCR5 to target cells that do not express or 
low express these molecules.

Secondly, EV can promote immune cell activation and secondary 
inflammatory responses leading to failure of immune reconstitution. 
Okoye et  al. (2021) noted that plasma extracellular vesicles from 
HIV-1 patients could induce miR-139-5p expression to promote CD4+ 
T cell activation. Gabriel et al.(Duette et al., 2018) observed that T cells 
in the HIV-1 replication cycle can enhance viral replication by 
inducing hypoxia-inducible factor 1α (HIF-1α) activity. They also 
noted that HIF-1α induced the release of EVs, causing associated 
inflammation to stimulate the secretion of inflammatory mediators 
IL-6 and IL-1β by uninfected lymphocytes and macrophages, 
further promoting viral replication and inflammation. EVs are 
involved in HIV-1 and intercellular communication, contributing to 
the spread of the virus between cells. The presence of this modality 
greatly increases HIV-1 latency and also results in the inability of 
cART to completely clear the virus, increasing the risk of inducing an 
inflammatory response.

3.6. Dysregulation of cytokine secretion

Interleukin-2 (IL-2) promotes the activation and proliferation of 
T lymphocytes and NK cells, stimulates the secretion of various 
cytokines, and provides important common signals for the specific 
immune response. As a result of HIV-1 infection, the production of 
IL-2-expressing memory CD4+ T cells is reduced, leading to decreased 
IL-2 levels. This is one of the earliest functional defects observed in 
chronic PLHIV and predicts the loss of CD4+ T cells and the 
progression of AIDS (Xia et al., 2018).

IL-7 and IL-15 are the primary stimulators for the production of 
naive and memory T cells during chronic infection, maintaining T cell 
function and internal environmental stability (Nasi and Chiodi, 2018; 
Harwood and O'Connor, 2021; Simonetti et al., 2021). However, the 
persistent low proliferative response of CD8+ T cells and Th17 CD4+ 
T cells to IL-7 after cART affects immune dysfunction among PLHIV 
(Côté et al., 2020). However, by observing IRs and ISRs after cART, 
Pino et al. (2021) found that ISRs had higher plasma levels of IL-7 and 
IL-15 before cART compared with IRs, which in turn supported 
homeostatic proliferation of T cells. This paradox led us to speculate 
that elevated levels of IL-7 and IL-15 in ISRs might also promote the 
persistence of HIV-1 viral hosts by enhancing cell survival. This has 
the same results as chemokine IP-10, which exerts a pro-inflammatory 
effect by triggering the activation of cofilin and actin to enhance the 
kinetic activity of quiescent CD4+ T cells and induce viral entry, 
thereby promoting latent HIV infection (Wang Z. et al., 2021).

IL-17 is mainly produced by Th17 and Tc17 cells, and can 
encourage the integrity of the intestinal mucosal barrier by promoting 
tight junctions of intestinal epithelial cells, secreting antimicrobial 
peptides, and summoning neutrophils to the sites of mucosal injury 
(Liang et  al., 2006; Lee et  al., 2015). During HIV-1 infection, the 
number and function of IL-17-producing Th17 cells and Tc17 cells are 
impaired in the peripheral and intestinal mucosa due to direct viral 
infection and impaired IL-23 signaling pathways that maintain Th17 
cell production and stability, and IL-17 levels are reduced, exacerbating 
impaired intestinal barrier integrity and thus causing microbial 
translocation and immune activation (Fernandes et  al., 2017; 
Perdomo-Celis et  al., 2018). Furthermore, Moreira Gabriel et  al. 
(2021) found that overexpression of IL-32b mRNA in the colon of 
HIV-1 patients receiving cART had a negative correlation with IL-17A 
mRNA levels, suggesting that overexpression of IL-32 may also affect 
the integrity of the intestinal epithelial barrier.

Studies have reported that PLHIV has higher levels of 
pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and IL-18 
compared with healthy individuals, which are associated with reduced 
CD4+ T cell recovery at month 12 after cART treatment (Vanpouille 
et al., 2020; Nganou-Makamdop et al., 2021). In addition, Wang et al. 
(2020) found that the persistent inflammatory response caused by 
HIV-1-induced cytokine production leads to a reduction in the 
intestinal mucosa in ILCs. ILCs do not express markers or receptors 
such as CD4 or CCR5, even with the application of cART, ILCs in 
blood and intestinal were depleted. That also led to a loss of intestinal 
epithelial integrity and microbial translocation, further exacerbating 
chronic inflammation.

Cytokines regulate cell growth and differentiation, immune 
response, and inflammatory response. Excessive immune activation 
leads to persistent chronic inflammation, causing loss of T-cell 
function and ultimately immunosuppression.

3.7. Premature immune senescence due to 
increased T cell apoptosis and senescence

T-cell-mediated cellular immunity is the primary mode of defense 
against foreign pathogens. However, with prolonged and sustained 
exposure to chronic stimuli such as chronic infections and cancer, 
T cells can enter a state of dysfunctional failure if the immune response 
is unable to fully clear foreign antigens. This failure is first manifested 
in PLHIV by a progressive decline in the killing function of CD8+ T 
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cells (Barber et al., 2006; Okoye and Picker, 2013). Without CD8+ T 
cell suppression, viral load rises rapidly, and as antigen levels continue 
to rise, T cells, which are the target cells of HIV-1, are depleted and 
gradually failed to kill infected cells effectively (Collins et al., 2021). 
Meantime, the body’s negative regulatory factors are highly expressed 
in CD4+ and CD8+ memory T cells, including a variety of inhibitory 
receptors associated with T cell failure, also known as immune 
checkpoint inhibitors (ICIs), such as programmed cell death 1 (PD-1), 
lymphocyte-activation gene 3 (LAG-3), cytotoxic T lymphocyte 
antigen 4 (CTLA-4), and the newly identified T-cell immunoglobulin 
and ITIM domains (TIGIT) and T cell immunoglobulin and mucin-
domain containing protein 3 (TIM3; Minnie et al., 2018; Dixon et al., 
2021; Kubli et  al., 2021; Tawbi et al., 2022). These ICIs negatively 
regulate T cell function by binding to their respective ligands to 
generate-T cell-suppressive signals, which associate with viral load 
and CD4+ and CD8+ T cell counts and dysfunction, reflecting to some 
extent the state of T cell failure (Fenwick et al., 2019).

3.8. Coinfection

In cART, HIV is often combined with other types of viral 
infections due to low immunity, and studies have found that hepatitis 
B virus (HBV), hepatitis C virus (HCV), cytomegalovirus (CMV), 
Epstein–Barr virus (EBV), and other viruses may affect CD4+ T cell 
recovery and immune reconstitution. Plasma sCD163 and sCD14 are 
sensitive indicators of the level of response to chronic immune 
activation and have a significant relation with the progression of HIV 
and HBV (Wilson et al., 2014; Shive et al., 2015). He et al. (2021) 
found both sCD163 and sCD14 presented elevated expressions in 
groups with coinfected and single-infected patients compared with 
those in the healthy group. However, compared with HIV-1 single-
infected patients, sCD14 expression remained at a high level after 
reduction in HIV-1/HBV-coinfected patients, and the Treg cell 
frequency was significantly higher than the former, at week 24 of 
cART. It has been reported that PLHIV (Garcia-Broncano et al., 2018; 
Gobran et  al., 2021) were noted to be  six folds more likely to 
be exposed to HCV and get infected compared normal people. The 
infection affects the stability of CD4+ T cell count negatively while 
promoting HIV-1 replication and viral reservoir persistence. 
Moreover, several studies have affirmed that HIV-1/HCV-coinfected 
individuals presented a remarkable reduction in the median 
expression of HLA-DR and CD38 on CD4 and CD8 T cells, as HCV 
is controlled. Meanwhile, after HCV eradication, significantly lower 
levels of innate immune activation markers (sCD163, sCD14), HIV-1 
proviral load and LPS (López-Cortés et al., 2018; French et al., 2021). 
Furthermore, the coexistence of CMV or EBV with HIV-1 in PLHIV 
also contributes to elevated plasma inflammatory factors and 
promotes chronic immune activation, which is a key element for T cell 
activation and incomplete immune reconstitution after cART 
(Hernandez et al., 2018). Chaillon et al. (2020b) observed a significant 
increase in the diversity of HIV-1 DNA molecules among partitions 
with high CMV and EBV transmission, thus suggesting that sustained 
CMV and EBV replication and associated inflammation may maintain 
the persistence of HIV-1 hosts. These studies suggest that HIV-1 in 
combination with other viral infections leads to disruption of T cell 
subpopulation homeostasis, increased HIV-1 replication, and 
abnormal activation of CD4+ T and CD8+ T cells, further causing 
massive CD4+ T cell destruction and a chronic inflammatory response.

3.9. Host-associated factors

In addition, some of the risk factors for immune reconstitution 
recovery include older age (Kroeze et al., 2018; Ahn et al., 2019; Chen 
et al., 2022a), males (Boatman et al., 1999; Fiseha et al., 2022), low 
CD4+ T cell baseline level (Davy-Mendez et al., 2019; Handoko et al., 
2020)，delay in cART initiation (Sharma et al., 2019; Saluzzo et al., 
2021; Jesson et al., 2022)，inappropriate cART regimen (Veil et al., 
2020; Lu et al., 2022), adherence, and the underlying diseases.

In addition, host metabolic level and genetic factors play a role in 
immune reconstitution. Studies (Zhu et al., 2022) have demonstrated 
that PLHIV had better immune reconstitution with a higher baseline 
BMI. This may be due to the fact that leptin has higher levels in people 
with a higher BMI. As an adipokine regulatory protein, leptin play an 
essential role in acquired immunity (de Candia et al., 2021). Many 
researches pointed that abnormalities in leptin synthesis contribute to 
the dysregulation of T-cell immunity (Batra et al., 2010). Therefore, 
we speculate that a lower BMI may predicts an incomplete immune 
reconstitution. Furthermore, hereditary variables of the organism have 
been suggested to influence immune reconstitution. A previous study 
(Pereira et al., 2022) HLA class 1 B*13, B*35 and B*39 alleles were 
linked to influence recovery failure. And even while cART is being used, 
HLA can facilitate the loss of CD4 T cells in non-responders due to the 
uncontrolled immunological activation in HIV infection.

4. Interventions for poor HIV immune 
reconstitution

Since the residual virus cannot be completely removed from the 
body, once cART is started it is a lifelong treatment. However, some 
patients do not recover well after treatment, and at the same time, 
long-term adherence problems and adverse effects lead to poor 
outcomes in an increasing number of patients, which affects the 
progression of the disease. Heretofore, there is no definitive treatment 
for patients with incomplete immune reconstitution, but there are 
many attempts and trials to improve immune reconstitution and slow 
down disease progression (Figure 3).

4.1. Immunotherapy

The prime goal of immunotherapy, a novel alternative strategy, is 
to induce immune recovery, reduce pathogenicity, reduce HIV-1 
inflammation and immune activation, promote a direct and effective 
specific immune response, and normalize the immune system. The 
main approaches currently available include cytokine therapy, 
therapeutic vaccines, and targeted antibody therapy.

Some cytokines appear to improve CD4+ T cell count in 
modulating immunity. Many studies have found that IL-7 does not 
cause significant changes in plasma viral load while amplifying CD4+ 
and CD8+ T cells (Vassena et al., 2012; Thiébaut et al., 2016; Steele 
et al., 2017). Thus, the application of recombinant human interleukin-7 
stimulates the proliferation of CD4+ T cells in circulating blood and 
helps INRs to re-establish immune function (Logerot et al., 2018; 
Wang et al., 2018). Moreover, Goshu et al. (2020) and Chen P. et al. 
(2020) found that rhIL-15/PD-L1 antibody combination therapy 
resulted in a transient increase in Ki67+ NK cells and CD8+ T cells as 
well as enhanced CD8+ T cell function safely and endurably, with no 
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significant increase in plasma viral load after cART interruption 
(Okoye et al., 2019). In rhesus monkeys infected with the Simian 
immunodeficiency virus, Harper et al. (2021) found that combination 
therapy with IL-21 and IFNα during cART was effective in promoting 
NK cell terminal differentiation maturation and production of IFN-γ, 
which contributed to the clearance of virus from tissue cells.

Presently, HIV-1 vaccines can be categorized into therapeutic and 
preventive vaccines. In 2009, a DNA vaccine, ALVAC-HIV+, was 
reported to prevent HIV-1 infection by eliciting antibody-dependent 
cytotoxic effects, and numerous clinical trials have shown efficacy rates 
of up to 31.1% (Rerks-Ngarm et al., 2009). However, data from a recent 
phase III clinical replication trial (HVTN702) showed no protective 
effect in the vaccination group compared with the control group (Gray 
et al., 2021). Furthermore, the main peptide vaccines currently available 
are C4-V3 polyvalent peptide vaccine (Vieillard et al., 2016), Vacc-4x 
(Pollard et al., 2014), and VAC-3S (Vieillard et al., 2019), and there are 
also several prophylactic or therapeutic dendritic cell vaccines, such as 
Dec205 (Hossain and Wall, 2019; Matsuo et  al., 2021) and Clec9A 
(Canton et al., 2021), Ags-004 (Gay et al., 2018), and DCV-2 (Espinar-
Buitrago and Muñoz-Fernández, 2021).

Tat proteins can influence the activation and latency of the HIV-1 
reservoir, thereby determining disease progression. A few studies have 
reported that anti-Tat immunization during infection or cART may 
inhibit potential HIV reactivation, thereby reducing persistent low-level 
viremia and T cell activation and promoting CD4+ T cell recovery, with 
positive effects on the long-term kinetics of immune reconstitution in 
individuals on long-term cART therapy (Sgadari et al., 2019; Tripiciano 

et al., 2021). A study found that HIV-1 gp120 envelope V1V2 region 
epitope-specific V2p and V2i antibodies failed to neutralize HIV-1 in 
plasma effectively but could mediate Fc segment-dependent antiviral 
activity, thereby inducing a more focused functional V2p and 
V2i-specific antibody response such as antibody-dependent cell-
mediated cytotoxicity and antibody-dependent cell-mediated 
phagocytosis (Weiss et al., 2022). It has been reported frequently that 
anti-HIV-1 broadly neutralizing antibodies (bNAbs), such as 3BNC117 
(Gaebler et al., 2022), 10-1074 (Gaebler et al., 2022), and VRC01 (Bar 
et al., 2016; Corey et al., 2021), are safe and effective for maintaining viral 
suppression in a short period and can be used as an adjunctive therapy 
to cART.

The main immunotherapeutic strategies currently available are 
targeting the inducible activation of latently infected cells and 
enhancing their own immune killing capacity. Although numerous 
researchers have been fruitful in this field over the years, whether the 
desired effect on HIV clearance mechanisms can be  achieved 
remains unanswered.

4.2. Gene therapy

With two HIV-infected patients successfully achieving a 
“functional cure” after receiving CCR5Δ32D allele-pure HSC 
transplants (Hütter et al., 2009; Gupta et al., 2019; Claireaux et al., 
2022), scientists believe that HIV-1 target cells can be made resistant to 
viral infection by targeting the anti-HIV-1 gene. The three main types 

FIGURE 3

Interventions for poor HIV immune reconstitution. The mechanisms of incomplete immune reconstitution in PLHIV have not yet been clarified. The 
current intervention strategies for recover the CD4+ T cells mainly through two methods, immunotherapy and gene therapy. Immunotherapy can use 
the cytokines, vaccines or antibodies to activate latent cells and enhancing immune killing capacity. Similarly, treatments of targeting the anti-HIV-1 
gene could make target cells resistant to viral infection. Other treatments to modulate immune also have some effect, like the application of vitamin D 
and probiotics.
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of gene therapy currently under investigation are blocking co-receptor 
binding, blocking CD4 binding, and blocking membrane fusion.

Co-receptors play a critical role in the entry of HIV-1 into CD4+ 
cells. Scientists have conducted numerous trials and found that T cells 
infused with zinc finger nucleases disrupted the CCR5 gene giving 
transgenic cells a survival advantage and a good safety profile (Tebas 
et al., 2014, 2021).

Ibalizumab, a humanized IgG4 monoclonal antibody, blocks HIV-1 
binding to chemokine receptors to inhibit viral entry by binding 
non-competitively to the CD4 receptor and causing deformation of the 
CD4-gp120 complex (Jacobson et al., 2009; Beccari et al., 2019; Kufel, 
2020). Several clinical trials (Gathe et al., 1999; Emu et al., 2018) have 
shown that significant antiviral activity of Ibalizumab in advanced 
disease and multidrug-resistant PLHIV with limited treatment options.

Enfuvirtide (T20) is a synthetic peptide antiretroviral drug and 
the only entry inhibitor approved by the Food and Drug 
Administration (FDA) for the treatment of HIV-1. As a mimic of the 
HIV-1 glycoprotein gp41, enfuvirtide binds to the viral envelope and 
interferes with membrane fusion by interfering with the conformation 
required for viral invasion into the host cell, blocking viral entry into 
the host cell (Carr, 2003; Lalezari et al., 2003).

Although the application of gene therapy in HIV treatment still faces 
some limitations, more strategies need to be  developed in order to 
improve the therapeutic power. Effective gene modification options, 
smart targeting combined with CAR T-cell therapy, and novel genome 
editing strategies, are novel future research directions (Sheykhhasan 
et al., 2021).

4.3. Extracellular vesicles therapy

At present, EVs control HIV-1 infection mainly via two aspects: 
blocking HIV infection and reactivating the HIV reservoir. Tetherin 
proteins that mediate MVs transport and contact with receptor 
membranes can keep microvesicles arrested on the cell surface prevent 
the release and transmission of HIV-1-carrying extracellular vesicles 
and, to a certain extent, alleviate the associated inflammatory disease 
(Weber et al., 2020). A3G is a human cytidine deaminase that can 
potentially hypermutate viral genomes, causing impairment of reverse 
transcriptase activity during the retrotranscription process (Kaake 
et  al., 2021; Chesarino and Emerman, 2022). Tetherin and A3G 
expressions might be increased by EVs at the mRNA level of cellular 
restriction factors (Navarrete-Muñoz et al., 2021).

Current research has demonstrated that EVs can act as the latency 
reversal agents (LRAs) delivered to target HIV-1 infection cells. 
Activation of latent viruses and their elimination by cART therapy is 
currently a hot topic of research for functional cures. Tang et al. (2018) 
showed that after exogenous Tat protein targeting, the virus reactivated 
and produced replication-competent HIV-1  in three of the six 
subjects. Nef and TAR have also been shown to activate the Akt–
mTOR and NF-kβ pathways by triggering immunity leading to 
persistent inflammation (Arenaccio et  al., 2014, 2015; Navarrete-
Muñoz et al., 2021; Sviridov et al., 2022).

4.4. Other treatments

Vitamin D can modulate innate and adaptive immune (Al-Tarrah 
et al., 2018; Eckard et al., 2018) and maintain intestinal flora balance 

(Dimitrov and White, 2017). Appropriate exogenous Vitamin D 
supplementation can promote CD4+ T cell proliferation, reduce 
inflammation and immune activation, prevent PLHIV from 
developing immune reconstitution inflammatory syndrome, 
tuberculosis, and mortality, and delay HIV disease progression 
(Jimenez-Sousa et al., 2018; Currò et al., 2020).

Other studies have demonstrated that probiotics/prebiotics can 
improve microbial translocation, regulate intestinal microbes, help 
increase Th17 frequency, and promote CD4 T cell rebuilding (Ortiz 
et al., 2016; Geng et al., 2020).

5. Summary

In conclusion, the process of incomplete immune reconstitution 
in AIDS is extremely complex and is the result of a multiplicity of 
factors which can reinforce each other and continuously advance 
the disease. The most obvious manifestations include a reduction in 
the number and function of CD4+ cells and chronic and sustained 
immune activation. Different INRs and ISRs may behave in the 
same way but may have different pathogenic mechanisms, and 
therefore, individualized treatment for each of these mechanisms is 
necessary to achieve good outcomes and restore immune 
reconstitution. Although the mechanisms of incomplete immune 
reconstitution are currently incompletely elucidated and its 
application in targeted therapy still faces some difficulties, extensive 
and ongoing research can help conquer many of these challenges. 
Therefore, in addition to early cART where possible, clarifying the 
mechanisms of incomplete immune reconstitution and developing 
targeted individualized treatment regimens is currently a daunting 
task in the field of AIDS.
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