
Frontiers in Microbiology 01 frontiersin.org

Opportunities in optical and 
electrical single-cell technologies 
to study microbial ecosystems
Fabian Mermans                1,2†, Valérie Mattelin                1†, 
Ruben Van den Eeckhoudt               3, Cristina García-Timermans               1, 
Josefien Van Landuyt               1, Yuting Guo               1, Irene Taurino               3,4, 
Filip Tavernier               5, Michael Kraft               3,6, Hira Khan               1‡ and  
Nico Boon               1*‡

1 Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, 
Ghent, Belgium, 2 Department of Oral Health Sciences, KU Leuven, Leuven, Belgium, 3 Micro- and 
Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium, 
4 Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium, 5 MICAS, 
Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium, 6 Leuven Institute of Micro- 
and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium

New techniques are revolutionizing single-cell research, allowing us to study 
microbes at unprecedented scales and in unparalleled depth. This review highlights 
the state-of-the-art technologies in single-cell analysis in microbial ecology 
applications, with particular attention to both optical tools, i.e., specialized use 
of flow cytometry and Raman spectroscopy and emerging electrical techniques. 
The objectives of this review include showcasing the diversity of single-cell optical 
approaches for studying microbiological phenomena, highlighting successful 
applications in understanding microbial systems, discussing emerging techniques, 
and encouraging the combination of established and novel approaches to address 
research questions. The review aims to answer key questions such as how single-
cell approaches have advanced our understanding of individual and interacting 
cells, how they have been used to study uncultured microbes, which new analysis 
tools will become widespread, and how they contribute to our knowledge of 
ecological interactions.
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1. Introduction

Single-cell analysis has gained increased significance in microbiology. The idea of analyzing 
individual cells emerged back in the 19th century, when Antoni van Leeuwenhoek used his 
self-constructed microscopes to observe microbes for the first time (Lane, 2015). Since then, 
advances in technology have enabled researchers to investigate individual cells in even more 
detail, with significant inferences for understanding microbial ecology.

Microbiologists have traditionally studied microbes using culture-based methods (Hugerth 
and Andersson, 2017). These techniques include the controlled growth of microbial cells in the 
laboratory to produce pure cultures, that can subsequently be  examined using various 
biochemical and physiological assays. The notion of microbial “VBNC (viable but not culturable) 
state of bacteria” was inspired by the fact that many microbial species cannot be successfully 
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grown in the lab using culture-based approaches (Marcy et al., 2007). 
Moreover, cellular heterogeneity is a crucial trait of biological systems 
because it provides for a broader range of responses to changing 
environmental conditions. Understanding the information contained 
inside is critical for developing better models of cell activity, as well as 
serving as meaningful readouts of population physiology and 
predictors of response to perturbations (Furst and Francis, 2019). 
Hence, single-cell analysis, which enables the direct examination of 
individual cells from environmental samples, has the potential to 
reveal this VBNC state of bacteria, as well as cellular heterogeneity 
(Huys and Raes, 2018). Traditionally, the techniques used for 
microbial communities obtain averaged community traits via bulk 
analysis of DNA, RNA, or protein from mixed populations (Lane 
et al., 1985; Stein et al., 1996; Props et al., 2017). Instead of relying on 
averaged bulk data, researchers can better comprehend microbial 
communities and their roles by studying individual phenotypic and 
genotypic traits. Several optical and electrical single-cell technologies 
exist to observe, manipulate, isolate and identify the single cells 
(Figure 1).

Next, to single-cell sequencing, some of the most promising 
methods for single-cell analysis now rely on optical technologies. 
These enable real-time observation and quantification of individual 
cells. However, most of the uncultured microbial species make it 
challenging to research their physiology and interactions with other 
organisms (Nichols et al., 2008; Chaudhary et al., 2019). Hence, with 
optical technologies, single-cell analysis has emerged as a valuable tool 
for exploring the diversity and functional potential of microbial 
communities because they allow analysis of microbes without the 
need for culturing.

Single-cell analysis has been extensively employed using optical 
technologies ever since Robert Hooke published his discovery of cells 
in Micrographia during the 17th century (Hooke, 1665). In the 20th 
century, new technologies such as fluorescence microscopy, flow 
cytometry, and Raman spectroscopy emerged, opening up new fields 
of cell analysis (Laerum and Farsund, 1981; Denk et al., 1990; Puppels 
et al., 1990). The emergence of the laser had a significant impact on 
the study of single cells, leading to the development of novel 
microscopic techniques and flow cytometry (Denk et al., 1990; Bedner 
et al., 1999). In 2014, Nobel laureates in chemistry were awarded for 
their work on super-resolution (SR) microscopy, which enables 
imaging of single cells with resolution beyond the optical diffraction 
limit (Möckl et  al., 2014). Quantitative optical technology 
advancements for single-cell analysis are anticipated to improve 
resolution and throughput, leading to enhanced measuring capabilities 
for single cells.

Due to their capacity to provide real-time, label-free and 
non-invasive observations (Hedayatipour et al., 2019), electrical and 
electrochemical methods are gaining popularity as a viable tool for 
single-cell analysis in microbial ecology. Impedance flow cytometry 
(IFC), for instance, enables the characterization of a range of biological 
characteristics of a cell, such as size, viability and biophysical changes 
in membrane permeability (Spencer et al., 2020). Complementary 
metal-oxide semiconductor microelectrode arrays (CMOS MEAs), on 
the other hand, provide the ability to detect and characterize microbial 
cells or biofilms with an array of parallel sensors (Valente and 
Demosthenous, 2017). These methods have the ability to open up new 
avenues for the study of microbial systems and offer insightful 
information on the physiology and behavior of microbes.

In order to investigate microbial ecosystems, this review 
emphasizes the theoretical foundations of quantitative optical and 
electrical single-cell technologies. It supports the blending of known 
and creative ideas by providing examples from recent research to show 
how they have been applied successfully. Applications of discussed 
technologies will focus on microbial cells in liquid suspension mostly 
since the majority of these techniques are best suited for this sample 
type. Each approach’s benefits and drawbacks will be  thoroughly 
discussed, and prospective research possibilities will be offered to shed 
light on the anticipated future tools and procedures. The knowledge 
gained in these fields can aid in controlling the role of microbes in life. 
Therefore, we can expect that there will be numerous advancements 
in the study of single-cell microbial ecology through the use of optical 
and electrical techniques.

2. Microscopy

Since more than a century ago, microbes have been observed and 
studied using the well-established method of microscopy (Gest, 2004). 
As it enables researchers to see individual cells’ shape, activity, and 
interactions with other cells and the environment, it is very helpful for 
analyzing single cells. Microbial ecology frequently uses microscopy 
methods to investigate microbial diversity, community structure, 
and function.

For single-cell investigation, a range of microscopy methods can 
be utilized, each with unique advantages and disadvantages. One of 
the most used microscopy methods in microbiology is light 
microscopy (Reymond and Pickett-Heaps, 1983). It gives excellent 
spatial resolution and contrast while using visible light to monitor 
cells, making it suitable for examining the morphology of single cells. 
A particular kind of light microscopy called bright field microscopy 
depends on the sample’s inherent contrast, with light passing the 
sample and diffracting differently depending on the cells’ 
characteristics (Selinummi et al., 2009). It is simple to use and offers 
an overall picture of the sample, but it provides little insight of the 
interior cellular components. Fluorescence microscopy, on the other 
hand, labels specific cellular structures or molecules with fluorescent 
dyes or proteins, allowing imaging of biological processes such as 
gene expression, protein localization, and cell signaling (Kural 
et al., 2005).

For focused investigation of certain sample components, other 
microscopy methods including confocal microscopy (Nancharaiah 
et al., 2007) and electron microscopy (Paddock, 1999; Croix et al., 
2005) are utilized. Confocal microscopy offers high-resolution 3D 
imaging of cells and tissues by combining the benefits of both light 
and fluorescence microscopy, while electron microscopy provides 
thorough information on the cellular structure by using an electron 
beam to see cells at the nanoscale level (van Manen and Otto, 2007). 
For example, scanning electron microscopy (SEM) may be used to 
scan samples’ surfaces to examine the structure and morphology of 
cells (Paddock, 1999; Croix et al., 2005), and transmission electron 
microscopy (TEM) (Kemmerling et al., 2013) employs an electron 
beam to produce a high-resolution image of the interior structures of 
fixed and sectioned cells. Other techniques like atomic force 
microscopy (AFM) (Li et  al., 2019) uses a tiny probe to provide 
topographic images of the sample’s surface and can scan living cells in 
their hydrated condition. Raman microscopy employs laser light to 
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look at molecules’ vibrational modes. Raman scattering causes 
photons from a laser beam that interact with a sample to disperse in 
various directions (often at a wavelength that differs from the initial 
laser light) (Schuster et al., 2000).

Combining different microscopic methods to gain more detailed 
information on a sample has grown in popularity in recent years. 
Researchers can profit from the advantages of each approach while 
overcoming their limits by combining them. The blend of fluorescence 
and electron microscopy is one illustration of a frequently employed 

set of methods (Li et al., 2017). Researchers may visualize the location 
of individual molecules within a biological setting and examine their 
structural arrangement by combining various approaches. Another 
example is the use of Raman microscopy in conjunction with confocal 
microscopy, offering high spatial resolution imaging of the sample’s 
morphology and chemical composition (Gomes da Costa et al., 2019).

Hybrid Confocal Raman Fluorescence Microscopy (van Manen 
and Otto, 2007), super-resolution microscopy coupled with electron 
microscopy (Andrian et al., 2021), X-ray microscopy coupled with 

FIGURE 1

Workflow for single-cell analysis. The left column explains different methods used for sample preparation (gray). The two squares in the middle are 
showing optical (orange) and electrical (blue) methods to observe (green line on the left), manipulate and isolate (purple line) and identify (orange line) 
the single cells.
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fluorescence microscopy (XRFM) (Yin and Marshall, 2012) and 
XRFM with atomic force microscopy (Penner-Hahn, 2013) are further 
method combinations. These approaches have a wide range of 
applications, including materials science, biology, and medicine. 
Overall, the combination of several microscopic methods can be a 
valuable tool for investigating intricate samples and expanding our 
knowledge of numerous microscopic processes.

As morphological properties of a culture contain lots of 
information on cell physiology, in situ microscopy devices have been 
developed to monitor microbial bioprocesses. This enables to monitor 
single-cell size distribution, which is coupled to automated image 
analysis based on an artificial neural networks model. Although 
successfully applied for monitoring yeast, algae and fungi, smaller cells 
such as bacteria still face practical limitations of resolution (Marbà-
Ardébol, 2018; Marbà-Ardébol et al., 2019).

While microscopic analysis of microbial ecology can give excellent 
resolution, there are significant limitations connected with this 
method. Assessing the diversity and heterogeneity of natural microbial 
communities is one of the most difficult tasks (Widder et al., 2016). 
Another issue is the scarcity of acceptable sample preparation 
technologies. Environmental samples frequently contain a high 
concentration of organic and inorganic materials, which might 
obstruct microscope findings. To overcome this obstacle, researchers 
must carefully choose and improve sample preparation procedures in 
order to collect high-quality pictures and correct data on microbial 
cells. Furthermore, many microscopy techniques need the use of 
expensive and specialized equipment, as well as substantial knowledge 
to execute and interpret the results. This can restrict their use and 
accessibility in particular research contexts. Finally, interpreting 
microscopy data can be  difficult since microbial cells in natural 
habitats might have a broad variety of morphologies, sizes, and 
metabolic activities (Widder et  al., 2016). Microscopy data must 
be  thoroughly analyzed and interpreted in order to identify and 
quantify single cells, and this is typically done in conjunction with 
other analytical techniques. Overall, while microscopy methods give 
useful information on environmental microbes, their effective 
application necessitates careful planning of sample preparation, 
apparatus, and data processing.

In the context of statistical analysis and quick characterization of 
microbial ecology, proper image processing is crucial. There are 
several image processing software tools available that allow researchers 
to extract quantitative data from microscope pictures. This approach 
has been used to monitor filamentous bacteria present in wastewater 
treatment plants’ activated sludge (Ang et al., 2019; Campbell et al., 
2019). A classification engine for environmental microorganisms has 
been developed, which uses automated analysis of microscopic images 
through the application of Deep Convolutional Neural Networks and 
Conditional Random Fields (Kosov et al., 2018). In a similar vein, a 
new Low-Cost U-Net (LCU-Net) has recently been proposed for the 
segmentation of Environmental Microorganism (EM) images. This 
tool helps microbiologists to detect and identify EMs more effectively 
(Zhang et al., 2021). In a different study, in order to map the spatial 
interaction networks within single-cell communities and to evaluate 
metabolic interactions among them, mathematical modeling was 
combined with the growth rate measurements of individual cells (Co 
et al., 2020).

Furthermore, to overcome the difficulties of microbial ecology 
analysis, microscopic methods can be  used with microfluidics. 

Improved imaging and analysis are facilitated by the use of 
microfluidic devices, which may be created to provide single cells a 
controlled microenvironment (de Jonge and Ross, 2011). High-
throughput imaging with microfluidic devices enables quick 
examination of huge numbers of cells. Microfluidics and microscopic 
methods can work together to manipulate single cells, aiding 
downstream analysis by allowing cell manipulations like sorting and 
trapping (Yin and Marshall, 2012). Additionally, cells may 
be stimulated chemically or physically using microfluidic devices, 
making it possible to examine how cells react in various environments. 
Overall, the combination of microscopic methods with microfluidics 
provides a potent method for the high-resolution imaging and analysis 
of environmental microbes while resolving some of the difficulties 
brought on by the complicated and diverse ecology.

In conclusion, despite many advantages, microscopy techniques 
have certain drawbacks, such as the requirement for sample 
preparation, the risk of photobleaching and phototoxicity, and the 
difficulty to examine living cells for lengthy periods of time. Hence, 
other optical instruments that may overcome these restrictions and 
give more extensive information about microbial ecology analysis 
are required.

3. Flow cytometry

Flow cytometry (FCM) is a technique used for detecting and 
counting particles or discriminating particles with specific 
characteristics (Box 1). Applications of microbial flow cytometry have 
been around since the late 1970s (Paau et al., 1977), and have mostly 
been used to assess microbial quantities (Wang et al., 2010; Frossard 
et al., 2016; Chodkowski and Shade, 2017; Van Nevel et al., 2017; Gryp 
et al., 2021). However, phenotypic attributes of cells, including size, 
intracellular complexity, macromolecular composition, viability, 
vitality, and other properties based on scattered light or fluorescent 
signals of single cells in a heterogeneous population can be measured 
in high-throughput as well (Sieracki et al., 1999; Müller and Nebe-
Von-Caron, 2010; Hatzenpichler et  al., 2020; Singh and Barnard, 
2021). It is important to note that certain properties can be obtained 
directly without further staining, while others require staining 
procedures. For example, forward scatter (FSC) can be directly related 
to cell size (Robertson and Button, 1989; Koch et al., 1996), whereas 
respiratory activity can only be determined through the use of a stain 
[e.g., 5-cyano-2,3-ditolyl tetrazolium chloride (CTC)] (Sieracki 
et al., 1999).

Cells are typically visualized in single parameter histograms or 
dual-parameter dot plots where cells with similar characteristics will 
be located closer to each other. Depending on the instrument and 
chosen staining procedure, up to 64 features per cell can be measured 
(Büscher, 2019). Moreover, the obtained data for the different 
parameters of cells in the sample can be used to construct a cytometric 
fingerprint of the microbial community (Figure 2) (De Roy et al., 
2012; Koch et al., 2013a,b; Props et al., 2016). It involves dividing the 
cytometric space into regions (i.e., bins) in which cell densities are 
recorded. This results in multivariate distributions of the microbial 
community that can be  used for statistical analysis including the 
determination of ecological parameters and predictive modeling 
(Rubbens and Props, 2021). Thus, the fingerprint represents the 
phenotypic microbial community state and can be  used to study 

https://doi.org/10.3389/fmicb.2023.1233705
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Mermans et al. 10.3389/fmicb.2023.1233705

Frontiers in Microbiology 05 frontiersin.org

phenotypic heterogeneity in microbial populations (Props et  al., 
2016). The use of adaptive binning approaches, such as PhenoGMM 
(clustering algorithm based on Gaussian Mixture Models), shows 
potential to improve the discriminative power of the cytometric 
fingerprint and further its possible applications (e.g., as a diagnostic 
tool) (Amir et al., 2013; Sgier et al., 2016; Liu et al., 2019; Rubbens 
et al., 2021).

Props et al. showed that estimates of microbial diversity dynamics 
can be made using these fingerprints, and that obtained alpha diversity 
profiles strongly correlate with alpha diversity profiles based on 16S 
rRNA gene amplicon sequencing (Props et al., 2016). Additionally, 
microbial flow cytometry has been used to detect disturbances in 
microbial ecosystems (Hammes et al., 2012; Besmer and Hammes, 
2016; Van Nevel et  al., 2017; Props et  al., 2018). Besmer et  al. 
constructed instrumentation for the automation of microbial flow 
cytometry, referred to as real-time or online flow cytometry (Besmer 
and Hammes, 2016). They illustrated that real-time flow cytometry 
was able to detect disturbances in microbial ecology for both 
engineered and environmental ecosystems. These disturbances would 
probably be  missed when relying on more infrequent sampling 
(Thyssen et al., 2014). Since then, real-time flow cytometry has been 
applied to tackle numerous problems, such as follow-up of a full-scale 
water treatment plant (Sadler et al., 2020), monitoring of quantitative 
and diversity population dynamics of microalgae (Haberkorn et al., 
2021), automated detection of changes in microbial communities 
(Thyssen et al., 2014), and detection of microbial instability in the 
drinking water network (Favere et al., 2020).

Over the last few years, the cytometric fingerprint has been used 
for classification purposes in a wide range of applications as well. 
Examples include the discrimination of different brands of natural 
mineral water (De Roy et al., 2012), microbial strain differentiation of 
Lactobacilli (Buysschaert et al., 2018), and the prediction of Crohn’s 
disease (Rubbens et al., 2020) using fecal samples. In general, the 
classification includes the use of algorithms, such as random forest 
classifiers or artificial neural networks (Rubbens et al., 2020; van de 
Velde et al., 2022).

However, challenges remain if the use of microbial flow cytometry 
is to expand. First, microbial cells need to be in a planktonic state to 
be analyzed on a flow cytometer. This means that bacteria growing in 
a sessile manner (e.g., biofilms) need to be disrupted and brought in 
suspension to be effectively measured, which often causes extensive 
sampling and sample preparation protocols (Kerstens et al., 2015; 
Sgier et al., 2018; Brown et al., 2019; Chatzigiannidou et al., 2020).

Second, most applications of flow cytometry are dedicated to the 
study of mammalian cells (Quixabeira et al., 2009; Cossarizza et al., 
2021). This leads to progress regarding instruments and research 
being driven by these applications. In immunophenotyping large 
panels of antibodies are regularly used to assess different cell 
characteristics (Mair and Prlic, 2018; Post et  al., 2018). However, 
microbial cells display different characteristics and need alternative 
sample manipulation methods. Most microbial cells are much smaller, 
and the size range is much larger, ranging from 0.2 μm to 500 μm 
(Levin and Angert, 2015). This may result in parts of, or whole 
measurements, being close to the detection limit of the instrument 
and implies the need for effective staining procedures. Additionally, 
microbial communities often display large heterogeneity within a 
sample as a consequence of complex taxonomic and phenotypic 
community structure (Müller and Nebe-Von-Caron, 2010). Therefore, 
the use of multicolor panels involving antibodies is less suited for the 
study of microbial ecosystems. More suited and widely applied are 
single or dual staining methods that mark general phenotypic 
properties (e.g., SYBr® Green I  (SG) for nucleic acid content, 
propidium iodide (PI) for membrane integrity) (Buysschaert et al., 
2016; Koch and Müller, 2018). Advances in new cell staining protocols 
for microbiota have been hampered by differing staining efficiencies 
between microbial taxa, as well as issues with fluorescence stability 
(Buysschaert et  al., 2016). The result is lower dimensional data 
compared to data obtained from mammalian cells.

Another bottleneck in current microbial flow cytometry is sample 
preservation up until flow cytometric measurement. Samples are 
sometimes fixed to analyze later on, and these fixatives often induce 
morphological and functional changes (Troussellier et al., 1995; Rocha 

FIGURE 2

Schematic overview of microbial cytometric fingerprinting and its most common uses. Raw flow cytometry data are obtained from the measurement 
of the sample (left), and are often displayed in two-dimensional density plots. For each cell, scatter and fluorescence can be measured, leading to 
multi-parameter data for each individual cell. Following, the cytometric space is divided in bins (middle) and the density of cells in each bin is 
determined. In this schematic, equal size binning in two dimensions is displayed, but alternative binning approaches in multiple dimensions can 
be considered. Obtained discretized data (data in bins) can be used for further statistical analysis (right). Distribution parameters such as richness, 
evenness, and diversity can be calculated as well as between diversity [for example non-metric multidimensional scaling (NMDS) or Principal 
Coordinate Analysis (PCoA)]. Data can also be used to train classification algorithms and regression models.
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et al., 2018; Zhu et al., 2021). Especially protocols involving markers 
for membrane integrity are affected by this phenomenon (Falcioni 
et al., 2008; Habtewold et al., 2016). This highlights the need for the 
development of adequate sample preservation protocols and some 
advancements have been made already. For example, Cichocki et al. 
showed that PFA/ethanol fixation is suitable for the preservation of a 
microbial community when using DNA stains DAPI or SG I  for 
analysis (Cichocki et  al., 2020). Additionally, staining procedures 
involving incubation times may pose a challenge as bacterial cells 
grow, multiply and can change in metabolism very fast (Gibson 
et al., 2018).

When flow cytometry is combined with Fluorescent In Situ 
Hybridisation (FISH), abbreviated as flowFISH, it is possible to 
taxonomically discriminate groups of bacteria or target specific 
genera, based on fluorescent labels (Figure 4) (Rigottier-Gois et al., 
2003; Rochet et al., 2004). The FISH technique is based on pioneering 
hybridization experiments by Gall and Pardue (1969), and has 
developed into a widely used technique that utilizes fluorescent DNA 
probes to bind specific RNA sequences (O’Connor, 2008). This 
method has applications for microbial ecology studies wherein the 
growth dynamics of a specific species or genus can be followed in a 
microbial community. However, also on higher taxonomic levels it can 
be useful to follow which classes or orders of bacteria dominate when 
they are exposed to different types of stress. Moreover, as the probes 
are hybridized on RNA, even estimations of transcriptional activity 
can be  made. To increase the fluorescent signal in cells with low 
metabolic activity, FISH can be combined with catalyzed reporter 
deposition (CARD-FISH), that amplifies the fluorescent signal 

Box 1

A flow cytometer consists of three major systems: a fluidic system, an optical system, 

and an electronics system (Figure 3). The fluidic system allows particles to pass by a 

laser one by one using hydrodynamic focusing. Particles in suspension are injected 

into a pressurized stream of sheath fluid. This results in a flow of particles with a 

relatively large separation compared to their diameter. Next, the stream containing 

the separated particles passes through a laser where light is scattered and possible 

present fluorophores are excited. The point where the laser interacts with the particle 

is referred to as the interrogation point. Scattered light in the forward and sideward 

direction and fluorescent light are directed to one of several photomultiplier tubes 

(PMT) by a series of filters and mirrors. These filters determine the wavelength of the 

light that reaches the PMT. In turn, the PMTs convert the optical signal to an 

electronic signal, which is then amplified and sent to a computer. The computer 

provides software for data analysis of collected data. The PMTs and the computer 

make up the electronic system of the machine (Shapiro, 2005). The speed at which 

flow cytometers can measure particles keeps increasing as the technology advances 

and speeds of 10,000 particles/s and higher are now common (Bendall et al., 2012; 

Delmonte and Fleisher, 2019). Detection limit in terms of particle density is 

dominated by errors in experimental procedure and not by the sensitivity of the 

instrument itself. This is the result of the instrument measuring signals for each 

individual particle (Roederer, 2008). Reports show detection limits of ca. 200 

microbial cells/mL for drinking water, and between 1 and 1,000 CFU/mL for bacteria 

in culture medium (McHugh and Tucker, 2007; Hammes et al., 2008; Karo et al., 

2008). Considering particle size, the limit of detection is dependent on the 

instrument as well as on the fluorescent properties of the (labeled) particle and 

usually ranges about 100–200 nm (Steen, 2004; Hu et al., 2018; Botha et al., 2021).

FIGURE 3

Schematic representation of a flow cytometer. The fluidic system compromises the sample line with sheath fluid. The laser, dichroic mirrors, and filters 
make up the optical system, the PMT detectors (FCS, SSC, FL1, FL2, and FL3), and the computer make up the electronic system. Figure adapted from 
Rubbens and Props (2021).
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(Kubota, 2013), and be  measured with flow cytometry. Although 
CARD-FISH requires a solid support, an optimized detachment 
protocol ensured 85.7% of cells were successfully measured (Manti 
et al., 2011).

Recently, the combination of taxonomic (FISH) and phenotypic 
(FCM) information was used to obtain an integrated community 
fingerprint (Figure  5). As these data contain multiple additional 
fluorescence parameters, next to the conventional cell parameters, the 
information in the fingerprint increases, which can enhance the 
statistical diversity analysis. Furthermore, it is hypothesized that the 
diversity analysis of a microbial community containing FISH labeled 
cells correlates better to the diversity analysis obtained from 16S rRNA 
gene sequencing data than general DNA stained cells. The use of 
multiple lasers and differently tagged probes have the potential to 
increase the resolution of the fingerprint. This method can be  a 
valuable alternative to current techniques such as qPCR to answer 
some ecological questions concerning the presence or the abundance 
of a certain, or multiple species. Next to taxonomic tagging within a 
microbial community, also translational tagging can be done. For 
example, bio-orthogonal non-canonical amino acid tagging 
(BONCAT) allows to label only the active protein-producing cells 
(Lindivat et al., 2020). This was for example applied to explore vitality 

of single cells after UV irradiation and heat treatment (Lindivat 
et al., 2021).

To increase the spatial resolution of flow cytometry and extract 
the exact cell size, Image Flow Cytometry can be used. It combines 
high-throughput flow cytometry with single-cell imaging by 
microscopy. The images help to distinguish differences between cells, 
debris, and aggregated cells and thus and facilitate gating decisions. 
The main limitation of image flow cytometry is that large amounts of 
data are generated in minimal amounts of time and the cell images 
produced by image flow cytometry are much more complex to 
analyze. Successful applications of this technique can be found in the 
field of virology and more specific in the study towards virus-host 
interactions (Han et al., 2016; McClelland et al., 2021). Sorting real-
time deformability cytometry is a microfluidics technique that uses 
brightfield images to sort out cells with clear morphological 
differences. The images are analyzed by a deep neural net to make the 
sorting decisions (Herbig et al., 2022).

To facilitate multicolor applications with fluorophores with similar 
emission peaks but off-peak signatures, spectral flow cytometry can 
be used. It is a technique in which full spectral measurements are 
made across all lasers, instead of only identifying the peak emission 
by conventional flow cytometry, by the use of a larger number of 

FIGURE 4

Conceptual figure on FlowFISH. The main difference between regular staining and FlowFISH is that in the latter case, cells are differently fluorescently 
labeled according to their taxonomy and thus contain taxonomic information in their fluorescent scattering.
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detectors with narrow band-pass filters (Nolan and Condello, 2013; 
Ferrer-Font et  al., 2020). However, for successful application 
fluorescent labels should be stable and have fixed emission spectra 
(Liu et al., 2022). Examples of successful application of this technique 
can be  found in immunotherapy research (Bonilla et  al., 2021), 
immunophenotyping assays (Ferrer-Font et  al., 2020), or in vivo 
cellular movement (Futamura et al., 2015). The technique has not been 
applied to microbial samples yet, although it may be useful when 
working with complex panels of fluorescent labels or with auto 
fluorescent cells. With spectral unmixing approaches, an intrinsic cell 
auto fluorescence signal can be separated from extrinsic fluorescence 
labels, and in complex combinations these extrinsic labels can 
be  separated from each other as well. For other applications, it is 
however important to consider whether the spectral information 
provides significant advantages to conventional flow cytometry 
(Nolan and Condello, 2013).

4. Fluorescence activated cell sorting

Phenotypic or taxonomic (RNA-labeled) subpopulations 
identified through flow cytometry can be sorted out with fluorescence 
activated cell sorting (FACS). The cell suspension is put in a narrow 
stream wherein the cells are separated cell by cell after which a 
vibration mechanism breaks up the stream in individual droplets with 
a high probability of one cell per droplet. Through electrical charging 
of the droplets, they can be broken off from the stream and sorted in 
separate recipients (Naeem et al., 2017).

By specific cell-staining, like intact/damaged staining, activity-
based staining or FISH, populations can be sorted out based on this 
specific attribute (i.e., intact, damaged, active, non-active, belonging to 

a specific taxon) (Figure 6). For example, nucleic acid viability staining 
methods like SYBr® Green I (SG) combined with propidium iodide (PI) 
allow to differentiate between cells in a different state (intact/damaged) 
and consequently sort out the specific populations (SG+, PI+, SGPI+, 
SGPI-) and use this to identify only the intact bacteria participating in 
the functioning of the microbiome (Bellali et al., 2021). Bacteria in the 
human microbiome are remarkably physiologically heterogeneous 
when comparing damaged versus intact populations (Ben-Amor et al., 
2005). This could have serious implications in medical applications, 
where the viable microbial population is the most relevant population 
when looking into managing the microbiome. FACS based on 
translationally active fluorescently labeled cells like bio-orthogonal 
non-canonical amino acid tagging (BONCAT) (Couradeau et al., 2019) 
allows to investigate which bacterial species are performing a certain 
specific ecological task and when they are performing it through time, 
without interrupting their native ecosystem (Du and Behrens, 2021). 
Finally, FACS can also be performed after FISH probing, investigating 
fine-scale differences of a gene homolog in a genus/family (Kim et al., 
2010). Recently, efforts on live bacterial cell sorting have significantly 
improved the success rate of cultivation of not (yet) culturable bacteria 
(like certain soil bacteria) by first sorting out viable cells (Espina, 2020). 
Moreover, Batani et al. proved that it was possible to cultivate bacteria 
after labeling them with fluorescent RNA probes and sorting them out 
(Batani et al., 2019).

The DNA of sorted bacterial subpopulations can subsequently 
be  extracted and used for 16S rRNA gene amplicon sequencing 
(Reichart et  al., 2020; Heyse et  al., 2021) or even whole-genome 
sequencing (Rinke et al., 2014) and (targeted) metagenomic sequencing 
(Grieb et al., 2020). This allows to potentially couple back phenotypic 
traits determined by flow cytometry with specific taxonomic groups, 
as was performed by Heyse et al., where the authors were able to sort 
out specific phenotypic groups of shrimp cultivation water microbial 
communities and link it to specific bacterial taxonomic groups (Heyse 
et al., 2021). When this data is used for predictive modeling, it allows 
to capture taxonomic information within the phenotypic data obtained 
through flow cytometry.

Similar to FCM, FACS was originally developed for mammalian 
cell handling and the cytometer part of the FACS suffers of the same 
limitations. Moreover, FACS results in very low abundance samples 
which can make subsequent molecular analysis difficult, sensitive to 
bias and sensitive to potential (cross-)contamination (Brandt and 
Albertsen, 2018).

5. Raman spectroscopy

Most ecological studies rely on marker gene expression, 
metagenomics or transcriptomics to describe the functionality of 
microbial populations. Raman spectroscopy presents an opportunity 
to describe single-cell diversity with or without labels, and describe 
phenotypic changes and metabolic information in a (semi) 
quantitative way. Raman spectroscopy records spectra that result from 
the inelastic scattering of photons from a molecule. The result is a 
spectrum with several peaks that correspond to a particular chemical 
bond and their vibrations. Raman spectra can be used as a fingerprint 
to identify bacteria (Goodacre et al., 1998; Willemse-Erix et al., 2009; 
Kusić et al., 2014) or to obtain semi-quantitative information about 
the components of the cell (Butler et al., 2016), that can be quantitative 

FIGURE 5

The pipeline followed when performing FISH-flow cytometry 
fingerprinting of microbial communities.
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if a standard for the molecule(s) of interest is made (Figure 7) (Lowery 
et al., 2017).

Conventional Raman spectroscopes are based on Stokes Raman 
scattering, which is relatively weak as only 1  in 106–108 photons 
undergo inelastic Raman scattering (Chisanga et al., 2018). This makes 
obtaining the Raman spectra of a single-cell time consuming 
compared to other techniques (about 30 s per cell). To reduce the 
analysis time, metallic nanoparticles can be used. When the laser 
excites these nanoparticles, an enhanced light field is created, and the 
Raman signal of the molecules close to this field is enhanced (Pilot 
et al., 2019). These metals can be used in suspension, on a surface 
[surface-enhanced Raman spectroscopy (SERS)), or the tip of the 
scanning probe (tip-enhanced Raman spectroscopy (TERS)]. These 
techniques increase the Raman signal by 106–1014 (Lombardi and 
Birke, 2009), allowing to scan cells in 1–3 s (Liu et al., 2016). Another 
way to enhance the Raman signal is to measure coherent anti-Stokes 
Raman spectroscopy (CARS). This technique uses two laser beams to 
enhance the Raman signal, increases the signal-to-noise ratio, and 
allows to use Raman spectroscopy at the sub-micron scale (Song 
et al., 2016).

Several excitation wavelengths can be  used in Raman 
spectroscopy. Since the Raman scattering intensity is inversely 
proportional to the fourth power of the excitation wavelength, the 
higher the excitation frequency, the higher the Raman signal (Tuschel, 
2016). UV has a high frequency and thus gives a high Raman signal; 
however, its radiation can damage the sample. Also, fluorescence 
occurs mostly when exciting with visible light, therefore choosing a 
laser in the near infrared can suppress this effect providing a good 
signal-to-noise ratio (De Gelder, 2008).

Raman spectroscopy is non-destructive, and can be coupled with 
a sorting system to sort out single cells for cultivation or molecular 
analysis [Raman-activated cell sorting (RACS)]. The cell isolation can 
happen in a solution using optical tweezers to trap the individual 
bacteria (Raman tweezers), with a microfluidic chip (microfluidic 

based RACS) or on a surface (Raman-activated cell ejection or RACE) 
(Song et al., 2016). Raman tweezers can be used in combination with 
a microfluidic system to move the bacteria of interest into a special 
reservoir for further evaluation. Lee et al. used this technique in cells 
labeled with isotopes, and sorted 3–8 cells per min (Lee et al., 2019). 
Microfluidic RACS is a faster alternative that can sort between 5 and 
100 cells per sec. The sample needs to be in an aqueous solution, and 
the cells will pass through a laser one at a time. This technique is 
analog to FACS, or fluorescence-activated activated sorting, although 
FACS can measure thousands of cells per second (Song et al., 2016). 
RACE allows to sort in a non-aqueous sample, such as a biofilm, a 
tissue sample or a solid surface. In this method, laser pulses pass 
through a transparent substrate onto a light-absorbing layer (such as 
water) to disintegrate the layer (evaporate the water) and generate 
energy to eject the cell. The process takes about 1 s per cell (Wang 
et al., 2013).

The information of the Raman spectra can be used to observe the 
physiological state of a cell, and determine the production of a certain 
biomolecule in a (semi)quantitative way. This can be done in unlabeled 
bacteria (Teng et al., 2016), or using isotope probing (Wang et al., 
2016). For instance, it is common to study the production of unlabeled 
compounds that have a strong Raman signal, such as chlorophylls, 
carotenoids and other pigments (Jehlička et al., 2014). Also, labeled 
molecules such as 13C, 15N or deuterium can be  used to study, 
respectively, the carbon or nitrogen metabolism or the metabolic rate 
in natural or synthetic communities (Berry et al., 2015; Muhamadali 
et al., 2015). Isotope probing can be coupled to cell sorting to further 
characterize cells that have a certain metabolism or produce a specific 
molecule. For example, Jing et al. sorted a natural community from 
the ocean based on the CO2 fixation capacity of single cells, and then 
sequenced these subpopulations. This experiment resulted in the 
finding of new CO2 fixation pathways (Jing et al., 2018).

The Raman fingerprint of cells is often used to identify what strain 
they belong to. In the public-health field, this is useful to detect 

FIGURE 6

Conceptual figure of a suggested FACS workflow, showing how it can allow to use phenotypic data as a basis for taxonomic data extraction.
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pathogenic bacteria. For example, Kearns et al. have developed an 
assay to trap and identify multiple bacteria using SERS to detect food 
poisoning (Kearns et al., 2017), and van de Vossenberg et al. have used 
it in drinking water to discriminate between Legionella strains and 
between E. coli and coliform strains (van de Vossenberg et al., 2013). 
Strain identification is also useful in armed forces operations, to 
identify potential bioweapons (Pearman and Fountain, 2006), or in 
space missions. This tool is a good candidate as samples do not need 
to be treated or labeled, and the device does not need to contact the 
studied rock, diminishing the risk of contamination. Additionally, 
Raman spectroscopy can be  used on suspended cells or to 
study biofilms.

Raman spectroscopy can be  used to identify the microbial 
phenotypes of single cells using clustering algorithms that allow 
discriminating cells from the same population that have been treated 
with different stressors such as alcohol, metals, antibiotics and 
starvation (Zu et al., 2014; Teng et al., 2016; García-Timermans et al., 
2020; Tanniche et al., 2020) or that have been cocultured with other 
bacteria (Heyse et al., 2019). For instance, this is a powerful tool to 
predict the functional class of an unknown antibiotic, identify 

individual antibiotics that elicit similar phenotypic responses 
(Athamneh et al., 2014) and determine the antibiotic susceptibility of 
bacteria (Novelli-Rousseau et  al., 2018). On the other hand, 
phenotypic differences between single cells can be  calculated by 
applying the Hill diversity framework to the Raman spectra. This 
method was developed by Garcia-Timermans et al., that compared 
S. cerevisiae subpopulations with a high or low expression of a stress 
reporter (García-Timermans et al., 2020). Using Hill numbers, it was 
found that the stressed subpopulation had a higher single-cell 
phenotypic diversity than the non-stressed.

The use of Raman spectroscopy presents several challenges. First, 
there can be  small shifts from one instrument to another when 
measuring the same spectra. For instance, the 1,009 cm−1 region from 
phenylalanine has been reported by De Gelder et al. in 1004 cm−1 (De 
Gelder et al., 2007) and by Zhu et al. in 1005 cm−1 (Zhu et al., 2011). It 
is important to take this into account in the experimental setup, 
analyzing a reference spectrum, and aligning the spectra if necessary 
in the data processing. Secondly, microbes are complex systems and it 
is sometimes difficult to disentangle the Raman spectra and define 
what compound(s) peaks correspond to. Thirdly, some compounds 

FIGURE 7

Raw data preprocessing of Raman spectra & data analysis. Left: First, the spectra are baseline corrected and normalized. Smoothing and alignment 
steps can be included. However, smoothing can erase potentially relevant information and should be carefully considered. Similarly, alignment can 
produce faulty spectra by displacing the signal and thus needs to be used with care. Right: Information that can be obtained with single-cell Raman 
spectra of cells: (A) The spectrum of individual cells can be plotted using clustering and/or dimensionality reduction techniques. (B) The peaks of the 
Raman spectra correspond to a different metabolite or a combination of metabolites, called here components (x). The intensity of the signal of each 
component can be normalized by the sum of all intensities, and this information can be then used in the Hill equation. The order of diversity (q) can 
be 0, 1 or 2, meaning that the richness, evenness or both richness and evenness are taken into consideration in the metric. (C) The information from 
the spectral peaks correspond to one or multiple molecules, and can be used (semi)quantitatively.
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have a greater Raman intensity and are over-represented in the spectra 
(for example aromatic rings), while others do not show up. Therefore, 
although Raman spectroscopy is quantitative, this capacity can only 
be  used to compare the same peak(s) amongst samples. Finally, 
multiple databases describe different Raman wavelengths to identify 
the same molecules.

6. Electrical techniques

Electrical and electrochemical techniques utilize a set of electrodes 
in contact with the cell medium to measure and apply electric signals. 
Cells in the medium influence the electric signals and alter the 
response to electric stimulation. These changes in the signal can 
be measured and related to cell properties such as size, viability, cell 
activity, etc. (Xu et al., 2016). The use of electrical analysis techniques 
has three main advantages over optical methods. Firstly, the devices 
can be miniaturized and mass-produced, as the history of CMOS 
(Complementary Metal-Oxide-Semiconductor) scaling has proven 
(Bohr and Young, 2017). Secondly, these techniques do not require 
large and expensive components such as lenses or other optical 
equipment (Hosseini et  al., 2023); thirdly, they are label-free, 
facilitating real-time measurements for continuous analysis. For these 
reasons, electrical single-cell analysis devices have the potential to 
become cheaper and smaller than current existing commercial devices 
and even have the potential to be used as portable single-cell analysis 
tools. Despite these advantages, electrical techniques usually suffer 
from a lower sensitivity compared to more established optical methods 
(Gökçe et al., 2021). Furthermore, many electrical techniques are still 
in an early stage of development, with only a limited number of in situ 
applications in a bioprocess reported in the literature. Two of the most 
promising techniques for electrical single-cell analysis devices are 
discussed here: Impedance Flow Cytometry (IFC) and CMOS Micro 
Electrode Arrays. Other electrical techniques have been successfully 
used for microbial single-cell analysis such as dielectrophoresis (DEP) 
and electrorotation (ROT) but are not further discussed here. Reviews 
of these techniques can be found in prior work (Li and Anand, 2018; 
Henslee, 2020; Duncan and Davalos, 2021).

Like other FCM devices, IFC devices are comprised of a 
microfluidic channel where cells are focused in one line. Instead of 
optically measuring cells, they use micro-sized electrodes along the 
microfluidic channel to measure the electrical properties of cells in the 
channel. The principle of IFC is based on the Coulter machines, 
frequently used for cell counting (Gawad et al., 2001). These machines 
measure changes in electrical resistance between two electrodes using 
a Direct Current (DC) signal. On the other hand, IFC systems use 
Alternating Current (AC) signals to measure the electrical impedance 
of cells at one or more excitation frequencies and use a more complex 
arrangement of the electrodes. A differential arrangement of four 
electrodes is commonly used (Figure 8A). Two electrode pairs, each 
consisting of one top and one bottom electrode, are placed along the 
microfluidic channel. A voltage signal is applied to each pair’s top 
electrode resulting in currents I1 and I2 flowing from the top to the 
bottom electrodes. The currents I1 and I2 are subtracted from each 
other, and the differential signal ΔI is measured. An empty channel 
results in zero differential current. A current is measured only when 
a cell passes between one of the electrode pairs (Figure 8B). AC signals 
provide more information about the cell than using a DC measurement 

since different cell structures dominate the electrical impedance 
depending on the frequency. At low frequencies, generally below 
1 MHz, the cell membrane forms an insulating layer around the cell 
cytoplasm and blocks the electric current from passing through its 
inner volume. The measured signal in this frequency range is therefore 
related to the volume of the cell. At higher frequencies, generally 
above 1 MHz, the polarization of the membrane dominates the 
impedance. At even higher frequencies, above 20 MHz, the membrane 
seizes to polarize and the electric current passes through the inner cell 
volume and cell cytoplasm properties dominate the measurement 
(Honrado et al., 2021; Hosseini et al., 2023). Typically two frequencies, 
a high and low one, are applied at the same time. From ΔI the cell 
impedance at these two frequencies Z(fhigh), Z(flow) is extracted for 
each cell and this data is then shown in a scatterplot (Figure 8C). The 
impedance technically consists of two parts, a magnitude and a phase 
component. Either of them can be used as the axis for the scatterplot.

IFC was first utilized to detect larger eukaryotic cells (Ayliffe et al., 
1999), but recent advancements have improved the sensitivity and 
opened the way to detect bacteria. Early works reported differentiation 
between bacteria (E. coli) and 1 μm or 2 μm beads (Bernabini et al., 
2011; Haandbæk et al., 2014). More recent IFC systems were able to 
make a distinction between different bacterial strains. Using a 
measurement frequency of 8 MHz, where electrical properties of the 
membrane and cytoplasm influence the impedance, Gram-negative 
E. coli and Gram-positive S. aureus were successfully distinguished 
(Clausen et al., 2018). The same group later reported differentiation 
between live and dead E. coli cells (Bertelsen et al., 2020). They noted 
that their measurement allowed for differentiation between various 
methods of cell inactivation since heating, ethanol treatment, and 
autoclaving were observed to induce distinguishable alterations in the 
cell structure. IFC’s label-free attribute permits real-time monitoring 
of population dynamics. Spencer et al. demonstrated this by measuring 
the gradual change in impedance over time as a K. pneumonia 
population responding to an antibiotic (Spencer et al., 2020). Medical 
diagnostics can also benefit from the use of IFC. Moore et al. reported 
a device which was able to detect C. difficile spores, responsible for 
C. difficile infection (CDI) (Moore et  al., 2020). Their device 
significantly improved the detection time of the 0.5 μm spores 
compared to the typical method of measuring CFU. Recently, several 
start-up companies have released commercial IFC systems for use on 
bacteria. The system provided by Amphasys AG (© 2022 Amphasys 
AG) allows for live/dead differentiation of bacteria larger than 2 μm. 
SBT Instruments (SBT © 2022) sells a portable tool for 
bacteria enumeration.

IFC devices have a high throughput of (~103 cells/s) (Chen et al., 
2015), which is slower than but close to the throughput of a flow 
cytometry device (~104 cells/s) (Bendall et al., 2012; Delmonte and 
Fleisher, 2019). From a technological perspective, the challenge is the 
short time interval that cells are available to be measured, which limits 
accuracy and the number of frequencies that can be  probed. 
Additionally, correct calibration of the device remains challenging, but 
crucial to increase sensitivity and repeatability of measurements 
(Spencer and Morgan, 2020). Gökçe et al. recently compared IFC to 
flow cytometry (Gökçe et al., 2021). They highlighted that FCM has a 
higher specificity compared to IFC since the use of biomarkers allows a 
high-resolution differentiation between cells. In contrast, IFC is 
inherently a label-free technique, and its operation is fully electric. These 
two advantages provide the technique with considerable potential for 
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automation, making it better suited for experiments that require 
continuous, real-time analysis (Spencer et al., 2020; Gökçe et al., 2021).

CMOS microelectrode arrays (MEA) are emerging as a novel 
technology for electrical single-cell analysis. Conventional 
electrochemical sensor systems consist of three parts: (i) the 
electrochemical sensor itself, comprised of working, counter and 
reference electrodes to interface with the sample under test, (ii) a 
measurement tool that generates and measures electrical signals (e.g., 
potentiostat), and (iii) cables connecting the electrochemical sensor 
to the measurement tool. In CMOS MEA’s, the required functionality 
of the measurement tool is implemented into a CMOS microchip, 
usually not bigger than 1 cm2. Tiny microelectrodes are post-processed 
on top of the microchip in a 2D array to serve as electrochemical 
sensors. The biological sample is placed on top of the microchip such 
that the electrode array contacts it (Figure 9). Each electrode in the 
array is connected to the inner circuitry of the chip by a tiny vertical 
connection called a “Vertical Interconnect Access” (via) (Birkholz 
et al., 2016). In conventional systems, there is a limit to how many 
electrodes can be connected to the measurement tool. Potentiostats 
rarely have more than ten channels since the cost of the system scales 
linearly with the amount of channels and having too many cables is 
simply impractical (Molderez et al., 2021). Furthermore, long cables 
introduce parasitic effects on the electrical signals such as parasitic 
capacitance and inductance which limit the sensitivity and speed of 
the measurement. In contrast, the microelectrodes on top of the 
CMOS microchip can be spaced closely together in a grid since they 
do not require cables to be connected. The electrodes are less than a 
millimeter away from the internal circuitry, which facilitates high-
speed processing of the sensing signals. Additionally, the sensing 

circuitry can switch at high speed between the individually accessible 
electrodes to scan the array, thereby performing measurements almost 
in parallel. CMOS MEAs can therefore provide a high-resolution and 
real-time two-dimensional electrochemical image of the measured 
sample. The electrochemical measurement functionality integrated 
into the CMOS chip can differ enormously depending on the 
envisioned application. Examples of measurement functionality of 
CMOS MEAs include impedance spectroscopy, redox potential 
characterization, extracellular action potential recording, etc. Multiple 
functionalities are often integrated into the same chip providing a 
multifaceted analysis of the sample (Viswam et  al., 2018; Abbott 
et al., 2022).

CMOS MEA devices intended for microbial applications have been 
demonstrated in the literature, but their functionality is generally 
restricted to cell detection and enumeration (Couniot et  al., 2016; 
Gamo et al., 2017). The selectivity and specificity of the sensor can 
be  drastically increased by functionalizing the electrodes with 
bio-recognition elements such as proteins, DNA strands or anti-bodies 
for the detection of pathogens (Manickam et al., 2010; Hsu et al., 2018; 
Furst and Francis, 2019). Other functionalities have been successfully 
explored such as electrochemical measurements on microbial biofilms 
by Kumashi et al. (2021). Their device was used to characterize the 
current generating capacity of exoelectrogenic bacteria, but the pixel 
size (100 μm x 100 μm) did not provide single-cell resolution. Ogawa 
et  al. demonstrated an array of high frequency oscillators for 
monitoring the growth of E. coli (Ogawa et al., 2021). The small pixel 
area needed for single-cell bacteria measurements allows only limited 
space for in-pixel electronics necessary to amplify the small sensing 
currents (Niitsu et al., 2015). This makes it challenging to achieve an 

FIGURE 8

Schematic representation of IFC experiment and data acquisition. (A) An AC voltage is applied to the top electrodes in the microfluidic channel at a 
high and low frequency. The electric field around a cell between electrodes illustrates the frequency dependency. (B) A differential current is measured 
when a cell passes between the electrode pairs. (C) From this measurement, the impedance at the two measured frequencies Z(fhigh), Z(flow) of each cell 
is extracted and presented on a scatter plot where gating of cell populations is possible.
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adequate signal-to-noise ratio on the sensing currents for measuring 
cell properties. Reports in the literature on CMOS MEA systems for 
cell analysis have primarily focused on eukaryotic cells rather than 
bacteria since the former are more convenient to measure due to their 
larger size. To apply the enormous potential of CMOS MEAs to 
microbial ecology, further advancements in circuit design are needed 
to implement complex measurement functionalities in bacteria-sized 
pixels. Such high-density microarrays provide researchers with the 
capability to augment the detection of bacteria at the single-cell level. 
Moreover, these microarrays have the opportunity to revolutionize our 
comprehension of microbial biofilms since they can provide high-
resolution analysis of electrical properties, chemical processes, and 
growth dynamics. In the context of electrogenic bacteria, high-density 
microarrays present a unique platform for stimulating and 
characterizing their capacity for current generation.

The state of the art of CMOS MEA devices designed for eukaryotic 
cells can indicate potential future applications on bacteria. One 
application for CMOS MEAs is the characterization and stimulation 
of electrogenic cells (e.g., neurons and cardiomyocytes). These systems 
can locally stimulate cells by applying current spikes and recording 
intracellular and extracellular action potentials. Their electrodes can 
also be  used to measure impedance and thereby generate a 
two-dimensional image of the cells on the electrodes. This image can 
be used to distinguish different cell layers of a brain slice (Viswam 
et al., 2018) or monitor cardiac cell contraction (Lopez et al., 2018). 
Another application for CMOS MEAs is monitoring the metabolic 
state of cancer cells in very high resolution. Recently, a device was 
reported for high-resolution measurements on a monolayer cell sheet 
of the extracellular redox potential, which allowed to differentiate 
between aerobic or anaerobic cell metabolism. These measurements 
were used to monitor the growth of a cell sheet in real-time and to 
study and compare the differences between normal and cancerous 
cells (Abbott et  al., 2022). CMOS MEAs can also be  used for 
comprehensive drug screening experiments. Chi et al. demonstrated 
their device by measuring the response of cardiac cells to the drug 
isoproterenol. They implemented multiple sensors in a single pixel to 
achieve the following four sensing modalities: voltage, impedance, 
optical and temperature measurements (Chi et  al., 2015). CMOS 
MEAs with a submicron electrode pitch have been reported (Laborde 
et al., 2015; Widdershoven et al., 2018) but were not used for microbial 

applications. Although this technology is still in the early stages of 
development, commercial suppliers of CMOS MEAs exist, such as 
MaxWell Biosystems (© 2020 MaxWell Biosystems AG, Switzerland), 
Multichannel Systems (© Multi Channel Systems MCS GmbH, 
Germany) and 3Brain (© 2022 3Brain AG, Switzerland). They offer 
high-density CMOS MEA’s for in vitro stimulation and recording of 
electrogenic cells.

7. Identifying new opportunities

Microbial cells can vary in their morphological, genetic, 
biochemical, physiological, or behavioral features, and recent advances 
in analytical techniques now enable microbiologists to uncover these 
differences with unprecedented precision. With methods capable of 
examining individual cells, researchers have gained important insights 
into microbial functions and their interactions with other microbes, 
higher organisms, and the environment.

As the field of microbiology keeps expanding, we  summarize 
different techniques that can be  used to derive information from 
samples and link them with current available bio-informatics tools in 
Table 1. Summarized techniques include flow cytometry, which can 
use unstained samples making use of auto fluorescence or scatter, or 
more advanced staining methods, such as BONCAT and FISH, as well 
as microscopy, Raman spectroscopy and the electrical techniques 
CMOS MEAs and impedance flow cytometry. FACS is not listed in the 
table as it can be seen as a derivative method of flow cytometry with 
similar data processing. The table discriminates between combinations 
that have been done and are reported in literature (checkmark), 
combinations that are practically impossible (cross), combinations 
worth to try (lightbulbs), and combinations that do not seem feasible 
at this time (question mark). It is important to note that binning 
approaches are not always directly applicable to the technique at hand. 
For example in image flow cytometry, deep learning approaches for 
image analysis can be  used which do not make use of binning 
(Kelleher, 2019). This special case is indicated by the asterisk in the 
advanced binning approaches. For certain techniques, it may 
be possible to achieve certain information retrieval, but the technique 
itself may not be  the most sensible to use for that purpose. For 
instance, one could perform spectral flow cytometry in combination 

FIGURE 9

Illustration of the principle of a CMOS MEA device. A purpose-designed Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuit (IC) is 
post-processed to encompass an array of microelectrodes (MEA) on its top surface. Each electrode is connected to the inner circuitry of the chip. The 
biological sample is placed on the electrode surface for fine-grained electrochemical characterization.
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TABLE 1 Overview of optical and electrical single-cell technologies for analysis of microorganisms and their data processing methods.

Bio-informatics Cell counts
Manual 
gating

Low nucleic 
acid (LNA)/High 

nucleic acid 
(HNA)

Real-time

Within-diversity Between-diversity

Standard 
binning

Advanced 
binning

Standard 
binning

Advanced 
binning

Techniques Microscopy
 Schlundt 

et al. (2020)
*

 Ellison et al. 

(2019)
*

* Dhindsa et al. 

(2020)
*

* Wimmer et al. 

(2023), Dhindsa et al. 

(2020)

FCM – Auto 

fluorescence
 Paau et al. 

(1978), Patel et al. 

(2019), Ning et al. 

(2021)

 Paau et al. 

(1978), Patel et al. 

(2019), Ning et al. 

(2021)

 Paau et al. 

(1978), Patel et al. 

(2019), Ning et al. 

(2021)

 Thyssen 

et al. (2014), Paau 

et al. (1978), Patel 

et al. (2019), Ning 

et al. (2021)

 Patel et al. 

(2019), Ning et al. 

(2021)

 Patel et al. 

(2019), Ning et al. 

(2021)

FCM – Scatter
 Ross (2021)  Ross (2021)  Thyssen 

et al. (2014)

 Props et al. 

(2016)

 Rubbens et al. 

(2021), Futamura et al. 

(2015)

 De Roy et al. 

(2012), Props et al. 

(2016), Buysschaert 

et al. (2018)

 Rubbens et al. 

(2021), Futamura et al. 

(2015)

FCM – DNA 

staining
 Brown 

et al. (2019), Ross 

(2021), Wang 

et al. (2009)

 Props et al. 

(2016), Brown 

et al. (2019), Ross 

(2021), Wang et al. 

(2009)

 Wang et al. 

(2009), Besmer and 

Hammes (2016)

 Sadler et al. 

(2020), Haberkorn 

et al. (2021), 

Buysschaert et al. 

(2018), Van Nevel 

et al. (2017)

 Props et al. 

(2016)

 Rubbens et al. 

(2021), Futamura et al. 

(2015)

 De Roy et al. 

(2012), Props et al. 

(2016), Buysschaert 

et al. (2018)

 Rubbens et al. 

(2021), Futamura et al. 

(2015)

FCM – Intact-

damaged staining
 Van Nevel 

et al. (2017)

 Van Nevel 

et al. (2017)

 Freire et al. 

(2015), Buzatu et al. 

(2014)

 Van Nevel et al. 

(2017)

 De Roy et al. 

(2012), Nevel et al. 

(2017)

 (manuscript in 

preparation)

FCM – FlowFISH
 Heeren and 

Julian (2021), 

Rigottier-Gois 

et al. (2003)

 Heeren and 

Julian (2021), 

Rigottier-Gois 

et al. (2003)

 (target = RNA) 

Heeren and Julian 

(2021), Rigottier-Gois 

et al. (2003)

 (manuscript in 

preparation)

 (manuscript in 

preparation)

 (manuscript in 

preparation)

FCM – Activity 

staining
 BONCAT: 

Lindivat et al. 

(2020, 2021)

 BONCAT: 

Lindivat et al. 

(2020, 2021)

 BONCAT: 

Lindivat et al. 

(2020)

(Continued)
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Bio-informatics Cell counts
Manual 
gating

Low nucleic 
acid (LNA)/High 

nucleic acid 
(HNA)

Real-time

Within-diversity Between-diversity

Standard 
binning

Advanced 
binning

Standard 
binning

Advanced 
binning

Raman
 García-

Timermans et al. 

(2020), Wang et al. 

(2020)

 García-

Timermans et al. 

(2020), Wang et al. 

(2020)

 García-

Timermans et al. 

(2020), Wang et al. 

(2020)

 García-

Timermans et al. 

(2020), Wang et al. 

(2020)

 García-

Timermans et al. 

(2020), Wang et al. 

(2020)

IFC
 Haandbæk 

et al. (2014)

 Clausen 

et al. (2018), 

Bertelsen et al. 

(2020)

 Spencer et al. 

(2020)

CMOS MEA
 Couniot 

et al. (2016)
/

 Kumashi 

et al. (2021)
* * * *

Image FCM
 Buzatu 

et al. (2014), Pan 

and Kaatz (2012), 

Wnuk and 

Lewinska (2021)

 Buzatu et al. 

(2014), Pan and 

Kaatz (2012), 

Wnuk and 

Lewinska (2021)

/ *
* Haridas et al. 

(2017), Luo et al. (2021)

Spectral FCM

Checkmarks indicate specific combinations have been done before, crosses indicate physically impossible processes, lightbulbs indicate possibilities that have not been tried before, and question marks indicate that the combination may be possible but do not seem 
feasible at this time. Asterisk indicate that the technique does not use binning approaches for data analysis, but rather another form of advanced data analysis (e.g., deep learning).

TABLE 1 (Continued)
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with DNA staining to obtain information on nucleic acid content of 
cells. However, using conventional flow cytometry with a DNA 
staining would be  sufficient for that purpose as well and be  less 
complicated in terms of data analysis. Additionally, it is worth 
mentioning that within flow cytometry, scatter and fluorescence are 
often combined. Especially when considering fingerprinting 
approaches (to obtain within- and between-diversity), it is theoretically 
possible to use only fluorescence or scatter. However, this would lead 
to a loss of information and discriminative power.

As can be derived from Table 1, there is still a lot of unexplored 
possibilities for microbial analysis. For some techniques, like CMOS 
MEA, the possibilities will expand when technological advancements, 
in this case, smaller scale, will make them more suitable for microbial 
cells. Technologies such as spectral flow cytometry will be  more 
important when complex combinations of color panels are used, for 
example when using antibodies for bacterial detection (Clarke and 
Pinder, 1998; Moor et al., 2016). At the same time, the availability of 
staining procedures for microbial cells is expanding, and therefore also 
are the applications of microbial flow cytometry. With the current 
available flow cytometric technology, there are still many possibilities 
to get more information out of data. For example advanced binning 
approaches will lead to better predictive capabilities of models, and 
these models could even develop into diagnostic tools. Additionally, 
integrative approaches to data analysis can be explored, combining 
different types of data on a sample level to increase predictive 
capabilities. This could be done by combining multiple fingerprints of 
a single sample, for example the cytometric fingerprint, the genotypic 
fingerprint and the physicochemical fingerprint.

Real-time applications on a single-cell level are becoming more 
important for proper control of microbial systems. To this end, the 
discussed technologies show excellent opportunities. This immediately 
leads to the question how real-time is real-time? For example, when 
using flow cytometry there may be a need to stain cells before analysis. 
This results in delays in time before the actual analysis on the machine. 
Taking into account that for example, E. coli can divide every 20 min 
in optimal laboratory conditions (Gibson et  al., 2018), the posed 
research question can be influenced by this measurement delay. As 
mentioned earlier, fixatives could be a means to preserve the state of 
your culture when longer sample preparation is necessary. 
Nevertheless, fixation can influence the sample too. If certain processes 
are to be assessed while perturbations are introduced, one could opt 
to stain the samples before the perturbations are applied. However, 
there is a need for the discretization of time which adds to the analysis 
time. It is important to mention that this may become less important 
given that the analysis speed of flow cytometers is becoming faster 
[e.g., the Invitrogen Attune NxT flow cytometer can acquire up to 
35,000 events/s (Invitrogen, 2021)]. Moreover, when talking about 
online monitoring of microbial systems, the time to analyze the data 
must be considered as well. For example, in drinking water quality 
monitoring, the so-called time-to-results can range from 10 min to 
2.5 h depending on the online microbial monitoring technique used 
(Favere et al., 2021). Even in an automated data analysis setting, there 
is still time used for actual computation because these datasets can 
be  big and fingerprinting calculations can take considerable 
computational power. On the other hand, computational power keeps 
increasing as computer technology is becoming better every day.

Label-free electrical techniques can open new opportunities in 
this regard. A cell label does not only increase the preparation time, 

but can also alter or inhibit certain cell functions. Monitoring the real-
time response of a cell population therefore requires the use of a label-
free technique to obtain reliable results. The electrical techniques 
described above can provide an important platform to characterize 
such dynamic changes in a population. More specifically, they can 
be used to increase our understanding of how microbial populations 
respond to different environments or drugs (Gökçe et al., 2021). IFC 
systems provide an excellent platform for such experiments on 
suspended cells (Spencer et al., 2020). CMOS MEAs on the other hand 
present the opportunity to characterize, with high-resolution, the real-
time response of adherent cells such as biofilms.

These electrical technologies also have the potential to be used as 
portable devices that will allow analysis of microbial systems in situ. 
Similar to real-time monitoring, in situ analysis reduces the possibility 
of changes occurring within samples, as these do not need to 
be transported to be analyzed. Aforementioned electrical techniques 
especially seem suitable for this purpose, because miniaturization of 
electronics is already advanced and they do not make use of 
consumables and sample preparation to the same extend that the 
optical techniques do. However, efforts are being made to miniaturize 
Raman spectroscopy and flow cytometry as well, with their main 
advantage being that their sensitivity is higher compared to the 
electrical techniques (Lapsley et  al., 2013; Persichetti et  al., 2017; 
Shrirao et al., 2018; Hao et al., 2020; Gökçe et al., 2021; Jin et al., 2021; 
Li et  al., 2023; Park et  al., 2023). Moreover, flow cytometers and 
Raman spectroscopes are becoming cheaper (Lam, 2004; Shapiro, 
2004; Picot et al., 2012; Emmanuel et al., 2021), paving the way for 
cheap and portable microbial analysis.

Cheap and fast microbial analysis of discussed optical and electrical 
techniques is the most prominent advantage over current sequencing 
technologies. Moreover, it is important to note that the type of 
information gained from optical and electrical techniques is different 
in nature. These techniques provide phenotypic and/or metabolic 
information, as opposed to genotypic or translational information 
from sequencing techniques. This means that changes in microbial 
communities can be  detected earlier on (Sabbe et  al., 2023). For 
example, the response sensitivity of E. coli of chemoreceptors Tar and 
Tsr can be modulated posttranslational and depends on environmental 
factors (Kamino et al., 2020). While it could be observed by single-cell 
FRET microscopy, sequencing technologies will not be able to pick up 
the change. Additionally, as indicated before, most of the optical and 
electrical techniques offer (semi-) quantitative information, while this 
cannot be achieved by conventional sequencing methods (Knight et al., 
2018). Last, the optical and electrical techniques result in information 
collected on a cell-per-cell basis, whereas sequencing provides 
information only on the bulk of the community. This leads to higher 
resolution when trying to understand the functioning of microbial 
communities. However, new developments in single-cell sequencing 
for microbial samples will also lead to information with resolution at a 
cell-per-cell level (Lloréns-Rico et al., 2022).

8. Conclusion

Optical and electrical single-cell technologies are increasingly 
applied for the study of microbial ecology. In this review, 
we highlighted the strengths of microscopy, flow cytometry and 
FACS, Raman spectroscopy, impedance flow cytometry and CMOS 
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MEA in order to assist the study, control and engineering of 
microbial populations. We  demonstrated that information 
obtained through these techniques holds great value and can 
be used for addressing different research questions. Simultaneously, 
the limitations and challenges of each technique are recognized 
and insight in optimization and future developments is provided. 
We identified interesting and novel opportunities for applications, 
both on the level of the technique and in its bio-informatics 
processing. Summarized, we  provided an overview to guide 
researchers towards the correct method for their microbial 
ecosystem applications and motivate scientists to expand 
knowledge on un(der)explored possibilities.
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