AUTHOR=Debnath Sandip , Elgorban Abdallah M. , Bahkali Ali H. , Eswaramoorthy Rajalakshmanan , Verma Meenakshi , Tiwari Pragya , Wang Shifa , Wong Ling Shing , Syed Asad TITLE=Exploring the efficacy of 1-amino-cyclopropane-1-carboxylic acid (ACCA) as a natural compound in strengthening maize resistance against biotic and abiotic stressors: an empirical computational study JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1232086 DOI=10.3389/fmicb.2023.1232086 ISSN=1664-302X ABSTRACT=Objective

This study aims to understand plant-bacteria interactions that enhance plant resistance to environmental stressors, with a focus on maize (Zea mays L.) and its vulnerability to various pathogenic organisms. We examine the potential of 1-amino-cyclopropane-1-carboxylic acid (ACCA) as a compound to boost maize’s resilience against stressors and pathogens.

Background

With the growing global population and increased food demand, the study of endophytes, comprising bacteria and fungi, becomes crucial. They reside within plant tissues, affecting their hosts either beneficially or detrimentally. Agrobacteria are of specific interest due to their potential to contribute to developing strategies for plant resistance enhancement.

Methods

We conducted exhaustive research on the defense-related proteins and mechanisms involved in maize-pathogen interactions. The efficacy of ACCA as a natural-compound that could enhance maize’s resistance was examined.

Results

Our research indicates that ACCA, having a binding energy of −9.98 kcal/mol, successfully strengthens maize resistance against pathogenic assaults and drought stress. It plays a crucial protective role in maize plants as they mature, outperforming other ligands in its effectiveness to improve productivity and increase yield.

Conclusion

Applying ACCA to maize plants has considerable potential in enhancing their resilience and tolerance to stress, proving to be an effective strategy to boost crop yield and productivity. This could help address the increasing global food demand. However, more research is needed to optimize ACCA application methods and to gain a comprehensive understanding of its long-term effects on maize cultivations and the environment.