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Temporal variability in the 
growth-enhancing effects of 
different bacteria within the 
microbiome of the diatom 
Actinocyclus sp.
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Jean-Baptiste Raina 1 and Justin R. Seymour 1*
1 Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia, 2 School of Life 
Sciences, University of Technology Sydney, Ultimo, NSW, Australia

Reciprocal metabolite exchanges between diatoms and bacteria can enhance the 
growth of both partners and therefore fundamentally influence aquatic ecosystem 
productivity. Here, we examined the growth-promoting capabilities of 15 different 
bacterial isolates from the bacterial community associated with the marine 
diatom Actinocyclus sp. and investigated the magnitude and timing of their effect 
on the growth of this diatom. In the presence of its microbiome, Actinocyclus 
sp. growth was significantly enhanced relative to axenic cultures. Co-culture 
with each of the 15 bacterial isolates examined here (seven Rhodobacteraceae, 
four Vibrionaceae, two Pseudoalteromonadaceae, one Oceanospirillaceae and 
one Alteromonadaceae) increased the growth of the diatom host, with four 
isolates inducing rates of growth that were similar to those delivered by the 
diatom’s full microbiome. However, the timing and duration of this effect differed 
between the different bacteria tested. Indeed, one Rhodobacteraceae and one 
Alteromonadaceae enhanced Actinocyclus sp. cell numbers between days 0–6 
after co-incubation, five other Rhodobacteraceae promoted diatom cell numbers 
the most between days 8–12, whilst four Vibrionaceae, one Oceanospirillaceae 
and one Rhodobacteraceae enhanced Actinocyclus sp. cell abundance between 
days 14–16. These results are indicative of a succession of the growth-enhancing 
effects delivered by diverse bacteria throughout the Actinocyclus sp. life cycle, 
which will likely deliver sustained growth benefits to the diatom when its full 
microbiome is present.
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Introduction

Interactions between diatoms and bacteria shape microbial community dynamics and have 
important ecological implications as they influence both biological and chemical processes that 
structure the marine food web and govern biogeochemical cycling (Falkowski et al., 1998; Field 
et al., 1998; Liu et al., 2019; Le Reun et al., 2022). Diatoms exude dissolved organic carbon 
(DOC) that fuels the growth of heterotrophic bacteria, which subsequently remineralise these 
organic compounds and thereby potentially promote primary production (Azam and Malfatti, 
2007; Falkowski et al., 2008; Worden et al., 2015). However, recent work has revealed that more 
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complex interactions can occur between these marine microbes, with 
a diverse suite of sophisticated reciprocal chemical exchanges and 
signalling uncovered (Amin et al., 2015; Durham et al., 2015; Seymour 
et al., 2017; Cirri and Pohnert, 2019; Shibl et al., 2020; Barak-gavish 
et al., 2022). These interactions can involve the bacterial provision of 
various molecules, such as vitamins (i.e., B12, B1, B3) (Croft et al., 2005; 
Durham et al., 2015; Cooper et al., 2019), bio-available iron (Amin 
et  al., 2009), growth-promoting hormones (Amin et  al., 2015), 
antimicrobial compounds (Seyedsayamdost et al., 2011a; Bramucci 
et al., 2018), or other advantageous molecules (Sison-Mangus et al., 
2014; Harvey et al., 2016).

Recent studies have also demonstrated that diatom-bacteria 
associations can be dynamic and very specific (Sapp et al., 2007; 
Needham and Fuhrman, 2016; Crenn et al., 2018). For example, 
Phaeobacter gallaeciensis can modify its behaviour to become an 
opportunistic pathogen depending on the growth stage of its algal 
host (Seyedsayamdost et al., 2011b). As the host diatom ages, it 
releases p-coumaric acid, which induces the production of algicidal 
compounds by the bacteria, rapidly killing the algae 
(Seyedsayamdost et al., 2011b). Several studies also highlighted that 
diatom-bacteria associations are highly specific, as bacteria foreign 
to a specific diatom are often detrimental or parasitic whilst being 
beneficial to their native host (Grossart et al., 2005; Sison-Mangus 
et al., 2014; Crenn et al., 2018; Stock et al., 2019).

In addition to the behavioural changes amongst 
phytoplankton-associated bacteria, bacterial community changes 
can occur over short time periods (Moejes et  al., 2017). For 
instance, the microbiome of the diatom Phaeodactylum 
experienced a major shift in dominant bacterial taxa over 36 days, 
with a higher proportion of Rhodobacteraceae during its early 
growth stages, followed by an increase in Flavobacteriaceae and 
Pseudoalteromonadaceae (Moejes et al., 2017). These dynamic 
interactions have also been reported in the field during diatom 
blooms, with Rhodobacteraceae dominating during early phases 
of blooms, followed by Flavobacteriaceae dominating the later 
bloom phase (Luria et al., 2016; Needham and Fuhrman, 2016; 
Sison-Mangus et al., 2016). These studies highlight the complex 
ecological dynamics of diatom-bacterial interactions and suggest 
that temporal shifts in each partners metabolism and physiology 
may underpin highly complex associations.

Whilst laboratory studies have provided important insights 
into the chemical exchanges and metabolic dependencies between 
diatoms and bacteria, they have either examined the effect of the 
full microbial consortia on algal growth through a reseeding 
experimental design, or the effect of individual bacteria on 
phytoplankton in co-culture experiments (Cirri and Pohnert, 
2019; Shibl et al., 2020). Additionally, few studies have examined 
the individual effects of more than three different bacterial 
isolates on the same algal species (Gärdes et  al., 2012; Sison-
Mangus et  al., 2014; Behringer et  al., 2018; Johansson et  al., 
2019). As a consequence, we still do not know what proportion 
of a diatom’s microbiome imparts benefits to its growth, and how 
the effect of these different bacteria changes over time.

Here we  focussed on Actinocyclus sp., a globally distributed 
marine diatom that is abundant in planktonic communities 
(Malviya et al., 2016; Lafond et al., 2020). We single-cell isolated 
Actinocyclus sp. from an oceanic site near Sydney in Australia and 

examined how bacteria isolated from the same water influenced the 
diatom’s growth. We then examined shifts in these diatom-bacteria 
relationships over short time-periods.

Methods

Diatom isolation and culture conditions

Fresh diatom cultures were established from water samples 
(surface water plankton tow) collected from the Port Hacking 
oceanographic station, which is located on the south-eastern 
Australian coast near Sydney (34° 05.00 S, 151° 15.00 E). Port 
Hacking is a long-running time-series site within the Integrated 
Marine Observing System (IMOS) National Reference Station 
(NRS) network (Brown et al., 2018). Diatoms were isolated using 
drawn out Pasteur pipettes (micropipettes) under light microscopy 
(maximum magnification 200X). Extracted cells were initially 
grown in 24 well plates containing sterile seawater diluted 50:50 
with f/2 medium (Andersen et  al., 2005). Once cultures were 
established, they were transferred into 50 mL culture flasks (Falcon) 
and maintained in a constant temperature incubator at 21°C, with 
a light intensity of 60–70 μE m−2 s−1 and a 12:12 light/dark cycle. In 
addition to its global distribution in planktonic communities, we 
chose this diatom species due to its relatively large size (~50 μm) 
and because it was non-chain-forming, making it suitable for 
accurate flow cytometry enumeration.

Diatom identification: 18S rRNA gene 
sequence and TEM microscopy

For taxonomic identification, diatom cells were grown for 
7 days, centrifuged at 2000 g for 5 min. DNA was extracted from 
the resultant pellet using a DNeasy PowerWater Kit following the 
manufacturer’s instructions (Qiagen). The full 18S rRNA gene 
was then amplified using the 18SmoonF and 18SmoonR primer 
set (Supplementary Table S1), with the following PCR cycle 
conditions: 94°C for 10 min; 30 cycles of: 94°C for 1 min, 55°C 
for 2 min, and 72°C for 3 min; followed by a final extension at 
72°C for 10 min and cooling at 4°C. PCR were performed using 
a Thermal Cycler (Veriti 96-well Fast thermal Cycler, Applied 
Biosystems) and the product sequenced using Sanger sequencing 
(Australian Genome Research Facility; AGRF). The resulting 
sequence was compared to the National Centre for 
Biotechnologies Information (NCBI) database using the online 
BLASTn tool.

Transmission Electron Microscopy (TEM) was also used to 
unequivocally identify the diatom to the genus level based on 
distinct morphological features (pseudonodulus, central annulus, 
labiate processes, and areolation pattern). For TEM examination, 
cultures were preserved in Lugol’s iodine prior to cleaning using 
the method of Hasle and Fryxell (1970). Once cleaned, 3 μL of 
culture were placed on formvar-coated copper grids and loaded 
into a FEI Tecnai T20 TEM (LaB6), operated at a high tension of 
120 kV and equipped with a Gatan 894 CCD 2 k × 2 k camera. 
Frustule characteristics and morphometrics were quantified using 
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Image J11 and guided by Schmidt (1878) and Hasle and 
Syvertsen (1996).

Bacterial isolation and identification

A total of ~150 bacteria strains were isolated from the microbiome 
of Actinocyclus sp. and other diatom strains (all isolated from the 
environment at the same time from the same plankton tow sample) 
20 days after the establishment of the cultures (Supplementary Table S2). 
Each bacterial strain was isolated and grown to purity by repeated 
plating on 1 and 10% Marine Agar (Difco) incubated at 21°C in 
the dark.

For identification, each bacterial isolate was grown for 24 h in 
100% Marine Broth (Difco Marine Broth 2,216) at 21°C, under 
160 rpm shaking. DNA was then extracted and the 16S rRNA gene 
amplified by PCR using the 27F and 1492R primer set (~1,500 bp, 
Supplementary Table S1), which was performed using the following 
PCR cycle conditions: 95°C for 10 min; 30 cycles of: (i) 95°C for 30 s, 
(ii) 50°C for 30 s, and (iii) 72°C for 90 s; followed by a final extension 
at 72°C for 10 min. Samples were then Sanger sequenced (Australian 
Genomic Research Facility). Sequences were quality trimmed using 
Geneious software (v2022.1.1) and aligned using the MUSCLE 
alignment method. Bacteria were identified to the species level if their 
sequences shared >99% similarity with an entry in BLASTn database, 
and otherwise identified to the genus level. For comparison with the 
microbiome data, bacterial DNA was also sent to AGRF for Illumina 
sequencing on a MiSeq platform targeting the V1-V3 region of the 16S 
rRNA gene (~ 490 bp, Supplementary Table S1). Sequences were 
processed as per the microbiome analysis below with the BLAST tool 
used to match the bacterial isolates ASVs against the Actinocyclus 
microbiome with a > 97% percent identity threshold.

Microbiome analysis

To characterise the bacterial component of the Actinocyclus sp. 
associated bacterial assemblages (free-living and attached bacteria), 
16S rRNA amplicon sequencing was used. A 7-day old Actinocyclus 
sp. culture was inoculated at a starting concentration of 5,000 cells 
mL−1 and sampled at days 2, 4, 6, 8 and 12. At each time point, four 
replicates of 50 mL were filtered through 0.22 μm pore-size 
polycarbonate membrane filter (Millipore). DNA was subsequently 
extracted from filters using the Dneasy Power Water Kit (Qiagen) 
and quantified with a Nanodrop spectrophotometer (Thermo 
Scientific). Samples were then sequenced using the Illumina MiSeq 
platform targeting the V1-V3 region of the 16S rRNA gene 
(Supplementary Table S1). A negative control (DNA extraction with 
no sample) was also sequenced.

All sequences were processed through the DADA2 pipeline 
[https://github.com/martinostrowski/marinemicrobes/tree/master/
dada2 (accessed on 31 May 2021)]. Briefly, the DADA2 R package was 
used to remove primers, filter and trim quality terminal error (16S 
rRNA trunc lengths R1 = 270, R2 = 250), denoise, merge, and remove 

1 https://imagej.net/ImageJ1

chimeras from the dataset (Callahan et al., 2019). ASVs were assigned 
using a naïve Bayes classifier based on SILVA 138.1 and a bootstrap 
cut-off >50% (Wang et al., 2007; Yilmaz et al., 2014). ASV abundance 
tables were then normalised using the cumulative sum scaling 
approach implemented in the metagenomeSeq R package which 
account for uneven sequencing depths (Paulson et al., 2013).

Axenic protocol

Axenic cultures of Actinocyclus sp. (Figure 1B) were generated 
(n = 3) using the protocol described by Shishlyannikov et al. (2011) 
with minor modifications. Approximately 50 mL of each mid-late 
exponential phase Actinocyclus sp. culture was gravity-filtered through 
a 5 μm pore-size polycarbonate membrane filter (Millipore). The filter 
was then transferred into sterile seawater and the cells were gently 
resuspended by inverting, before the addition of 20 μg mL−1 Triton 
X-100 (Sigma Aldrich). After 1 min of Triton X-100 exposure, the 
suspension was filtered through a new 5 μm filter and rinsed with 
sterile seawater before being transferred to fresh f/2 media containing 
a cocktail of antibiotics, including: ciprofloxacin (Sigma Aldrich; final 
concentration 20 μg mL−1), ampicillin (Sigma Aldrich; final 
concentration 100 μg mL−1), gentamycin (Sigma Aldrich; final 
concentration 67 μg mL−1) and streptomycin (Amresco; final 
concentration 50 μg mL−1). Cells were then incubated under regular 
growth conditions for 7 days. After that time, 1 mL of culture was 
transferred into fresh f/2 media. To verify that the cultures were 
axenic, we followed the procedure of Larsson et al. (2022), whereby 
treated cultures were considered axenic only after: (1) no bacterial 
growth was identified when 1 mL of algal culture was inoculated into 
100% Marine Broth for 7 days; (2) drop-plating of algal culture onto 
100% Marine agar plates resulted in no bacterial growth; and (3) no 
bacterial population was present in algal cultures stained with SYBR 
Green (Sigma-Aldrich S9430) and enumerated with flow cytometry. 
Finally, DNA from these cultures (n = 3) was also extracted using 
Dneasy Power Water Kit (Qiagen), the V1-V3 region of the 16S rRNA 
gene was amplified and sequenced on a MiSeq platform (2 × 300 bp) 
(Illumina) at AGRF. All reads were identified as chloroplast, 
confirming the Actinocyclus sp. cultures were indeed axenic.

To ensure that differences in growth observed between cultures of 
Actinocyclus with its whole microbiome and axenic cultures were not 
due to the stress induced by the axenic protocol (cf. Figure 1C), cultures 
were acclimated for ~12 transfers (i.e., ~6 months) before starting the 
co-culture experiments. Furthermore, we also performed a “reseeding” 
experiment, whereby we added the initial microbial consortia back into 
the axenic cultures (Supplementary Figure S1). After growing axenic 
cultures, and cultures with the whole microbiome side by side for 7 days, 
the cultures with the whole microbiome were pooled together and 
100 mL filtered through a 5 μm pore-size polycarbonate membrane filter 
(Millipore); the filtrate, containing the bacteria, was collected in a sterile 
bottle for use in subsequent steps. The remaining cultures with the 
whole microbiome (not filtered) were enumerated using flow cytometry 
and diatom cells inoculated to 5,000 cells mL−1 into fresh f/2 media 
(n = 4). Filtrate was diluted to 1 × 106 cells mL−1 in axenic cultures 
inoculated to 5,000 cells mL−1 into fresh f/2 media (‘reseeded’ diatom) 
to match the density of bacteria present in the culture with the whole 
microbiome at day 0 (n = 4). The remainder of axenic cultures were 
diluted into fresh media to 5,000 cells mL−1, which served as controls 
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(n = 4). Each culture was subsampled every two days, whereby 200 μL 
aliquots were fixed with glutaraldehyde (2% final concentration, G6257 
Sigma-Aldrich) and both diatom and bacterial cells were quantified 
using flow cytometry as described below. The axenic cultures were 
checked for contamination throughout the course of the study by (1) 
drop-plating on 100% Marine agar plates and (2) flow cytometry 
(following staining with SYBR green).

Quantification of diatom and bacterial cells

A 200 μL aliquot was sampled every 2 days and cells were 
enumerated using a flow cytometer (CytoFLEX LX, Beckman 
Coulter). The samples were analysed at a flow rate of 30 μL min−1 for 
diatom and 25 μL min−1 for bacteria. For diatom enumeration, 
samples were fixed with glutaraldehyde (2% final concentration) 
and incubated at 4°C for ~20 min. For bacterial enumeration, 
samples were first fixed with glutaraldehyde and after 20 min 
stained with SYBR Green I  at 4°C for 15 min in the dark (final 
concentration 1:10,000, Life Technologies). Fluorescence was 
detected with blue laser (488 nm) excitation and a combination of 
690–50 and a 525–40 nm bandpass filter. Diatom populations were 
identified and quantified according to chlorophyll-a (B690-50-A) 

vs forward scatter area (FSC-A), and SYBR Green fluorescence vs 
side-scatter area (SSC-A) for bacteria (CytExpert v2.4 software). To 
ensure accuracy of the gating settings and volume of samples 
processed between sampling time-points, fluorescent QC beads 
were used (B53230, CytoFLEX Daily QC Fluorospheres) and the 
flow cytometer regularly calibrated following the 
manufacturer’s instruction.

Co-culture establishment and bacterial 
isolates selection

Out of the 150 bacteria isolated, we pre-selected 30 candidates for 
further examination based on their taxonomy and their likelihood to 
interact with diatoms. We subsequently performed a pre-screening 
experiment of their effect on Actinocyclus growth using co-culture plate 
assays. Each of the 30 co-culture was established in 1 mL volume in 48 
well-plates (for details on co-culture preparation refer to the paragraph 
below). Plates were incubated as described above and algal growth 
monitored every 2 days for 16 days. Algal growth was estimated based 
on chlorophyll-a fluorescence (455 nm excitation, 680 nm emission) 
measured on an infinite M1000 pro plates reader (Tecan). Fluorescence 
was acquired from the bottom of the plate with 16 reads per well, a 
flash frequency of 400 Hz, 20 μs integration time, no lag time and 10 ms 
settling time. This process allowed us to narrow down the number of 
bacterial candidates to 15 (Supplementary Table S3), and to preselect 
strains which have a high likelihood to enhance the growth of 
Actinocyclus sp. for further experiments.

Each subsequent co-culture was established in a 70 mL tissue 
culture flask (Falcon) with a final volume of 50 mL (n = 4). For all 
experiments, bacteria were freshly plated from glycerol stock onto 100% 
Marine Agar plates 3–4 days prior to the start of the experiment and 
were grown from single colonies in Marine Broth. After 6 h, 100 μL of 
bacterial culture was transferred into fresh 100% Marine Broth and 
grown overnight (12 h). Bacteria were centrifuged at 1400 rpm for 6 min 
using an Eppendorf centrifuge 5424R. The bacterial pellet was then 
washed with sterile f/2 media twice, centrifuged (1,400 g for 6 min) and 
reconstituted in 1 mL of media. Bacteria were then diluted 1:10 in sterile 
media and a 200 μL aliquot was fixed with glutaraldehyde and stained 
with SYBR Green for enumeration via flow cytometry as described 
above. Diatoms were inoculated from 7-day old cultures into fresh 
media (n = 4) to a density of ~5,000 cells mL−1 and bacterial isolates were 
added to the axenic diatom cultures at a standardized cell density of 
1,000 cells mL−1 (based on flow cytometry cell counts) to achieve a final 
ratio of 1:5 bacteria:diatom. Diatom and bacteria co-cultures were then 
incubated at 21°C, at 60–70 μE m−2 s−1 light intensity and gently shaken 
daily for 16 days. Axenic and non-axenic (culture with the whole 
microbiome) diatom cultures as well as bacteria in f/2 media incubated 
under the same conditions acted as controls (n = 4 for each). Over the 
course of the co-culture, 200 μL aliquots were sampled and fixed with 
glutaraldehyde (2% final concentration) every two days and both 
diatom and bacterial cells were quantified using flow cytometry as 
described above. The axenic culture controls were also checked for 
contamination throughout the course of the co-culture by (1) drop-
plating on 100% Marine agar plates and (2) flow cytometry (following 
staining with SYBR green). The 15 co-cultures were run in three 
different batches, each with its own set of axenic and whole microbiome 
controls (n = 4).
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FIGURE 1

Actinocyclus sp. morphology and growth. (A): Transmission 
electron microscopy image with a: large pseudonodulus close to 
the valve mantle, b: marginal ring of large labiate processes, c: 
central annulus irregular in shape and d: valve face with areolation 
radial and fasciculate and rows slightly curved. (B): Light 
microscopy image (200X) of Actinocyclus sp. (C): Growth curves of 
axenic and non-axenic (with their full microbiome) Actinocyclus sp. 
cultures, as measured by cells mL−1 counts performed using flow 
cytometry (gates based on chlorophyll-a). Filled circle refer to time 
points that were significantly different from the axenic controls 
(Simple Main Effect test, p < 0.05, Supplementary Table S4), whilst 
empty circles were not statistically different. Error bars represent 
the standard error of the mean (n = 4).
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Statistical analyses

Statistical analyses were performed using R (v4.1.3), Excel and 
SPSS (v26, Armonk, NY: IBM Corp). In order to test if the diatom 
associated bacterial assemblages differed between time points, a Bray-
Curtis matrix was built and a permutational multivariate analysis of 
variance (PERMANOVA) was performed using the adonis function 
from the ‘vegan’ R package (Bonferroni-Hochberg adjusted p < 0.05).

For the co-culture experiments, data were assessed for normality 
and homogeneity of variance using Shapiro and Levene’s tests before 
repeated-measure ANOVAs were performed. Differences in cell 
numbers between the co-culture and the axenic control at each time 
point were assessed using a Simple Main Effect test (Quinn and 
Keough, 2002).

To evaluate the growth-promoting effect of each bacterial strain 
on the diatom, specific growth rates (μ) were calculated from cell 
counts (cells mL−1) during the exponential phase (corresponding to 
the steepest part of the natural log-transformed cell abundance 
curves) of each co-culture and standard deviation of μ was calculated 
for the biological replicates (n = 4 unless otherwise indicated):

 
µ =

( ) − ( )
−

ln lnx x
t t
1 2

2 1

where x1 and x2 are the cell concentrations at time 1 (t1) and 
time 2 (t2).

A growth enhancement percentage from μ was also determined as: 
(μco-culture / μaxenic)/μco-culture. Shapiro and Levene’s tests were used to assess 
the specific growth rate normality and homogeneity of variance and a 
one-way ANOVA followed by a Dunnett’s test (glht function from the 
‘multicomp’ R package) were used to compare μ of every co-culture to 
their respective axenic controls. Additionally, we also quantified the 
total diatom cell concentration and the growth-promoting effect of 
each bacterial strain over time. To do this, we  subdivided the 
co-cultures into three time-periods: days 0–6, days 8–12 and days 
14–16 and a cell density index (CD) was then calculated for each 
bacterium for each of the three time-periods. Within each period, the 
CD index was determined by calculating the area under the curve 
(AUC; using the AUC() function from the DescTools R package) of 
each co-culture and dividing by the AUC of the axenic culture:

 
CD

AUC co culture
mean AUC axenic

=
−( )
( )( )

Results

Actinocyclus identification

The 1900 bp 18S rRNA gene sequence from the targeted diatom 
(Figure  1B) showed a 99.8% similarity to Actinocyclus sp. strain 
CNS00114 (Accession No. MW750345) and a 99.2% similarity to 
Actinocyclus curvatulus strain AWI 85 (Accession No. X85401). Whilst 
neither of these referenced strains provided suitable morphological 
evidence to confirm their species identification, the genus identity of 
the targeted strain was also confirmed by TEM to be Actinocyclus. 

Cells were cylindrical in valve view (~20–25 μm diameter), having 
both pseudonodulus and central annulus present, a marginal ring of 
labiate processes and striae that were aligned to the central stria 
between the fascicle edges (Figure 1A).

The Actinocyclus associated bacterial 
community enhances diatom cell density

The presence of the Actinocyclus sp. microbiome increased the 
maximum cell concentration of the diatom by 2-fold by day 12 of the 
experiment, relative to the axenic control (Simple Main Effect test, 
p < 0.05, Figure  1C; Supplementary Table S4). However, the cell 
abundance significantly increased above the control on day 8, and 
remained significantly higher until the end of the experiment (day 16, 
Figure 1C).

The composition of the bacterial community associated with the 
Actinocyclus sp. strain, as determined by 16S rRNA gene amplicon 
sequencing, significantly changed over the course of the experiment 
(PERMANOVA and all pair-wise comparison, p < 0.05, Figure  2; 
Supplementary Table S5). A total of 638 ASVs belonging to two phyla, 
Bacteroidetes and Proteobacteria, were identified across all sampling 
times. Proteobacteria was the most abundant phylum (~55%) during 
the early time-points (day 2, 4 and 6), whilst the later time points 
(day 8 and 12) were dominated by Bacteroidetes (~75%) 
(Supplementary Table S6). Amongst the Proteobacteria, the relative 
abundance of Alphaproteobacteria (primarily Rhodobacterales) was 
relatively stable (~15%) throughout the diatom growth cycle, with the 
exception of day 6, when their relative abundance decreased (~4%). 
Conversely, the relative abundance of Gammaproteobacteria (i.e., 
Pseudomonadales and Enterobacterales) was higher during the early 
time points (~43%) and decreased in later time points (~11%) 
(Supplementary Figure S2; Supplementary Table S7). On the other 
hand, the Bacteroidetes (i.e., Flavobacteriales) relative abundance 
increased from ~42% within the first three time points to ~74% in the 
later ones (Supplementary Figure S2; Supplementary Table S7).

The 15 bacterial isolates chosen for co-culture experiments 
belonged  to Alpha- and Gammaproteobacteria, including the 
families Rhodobacteraceae (three Shimia, one Pseudophaeobacter and 
three Thalassobius), Pseudoalteromonadaceae (two Pseudoalteromonas), 
Alteromonadaceae (one Alteromonas), Oceanospirillaceae (one  
Marinomonas) and Vibrionaceae (four Vibrio; Supplementary Table S3). 
Within the Actinocyclus sp. microbiome, six ASVs, that exactly matched 
the 16S rRNA gene sequences of our selected bacterial isolates, 
represented up to 13.7% of the communities at day 2 with an average of 
8.7% across all time points (Supplementary Table S8).

Bacterial isolates impact Actinocyclus 
specific growth rate and exponential phase

The exponential phase of the axenic Actinocyclus cultures lasted  
for 4 days, between day 2 and 6. This length and timing were identical 
when Actinocyclus was in co-culture with 11 of the 15 bacterial  
strains tested (including all members of the Rhodobacteraceae, 
Pseudoalteromonadaceae, Alteromonadaceae and Oceanospirillaceae). 
However, the presence of all Vibrio sp. isolates delayed the onset of the 
exponential phase by 2 days (starting at day 4), and Vibrio sp. strain b31 
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extended the length of the phase by a further 2 days (total of 6 days) 
(Figure 3; Table 1).

The addition of the bacterial isolates significantly affected the 
specific growth rate of Actinocyclus sp. (One-way ANOVA, 
F15,55 = 14.72, p < 0.001; Figure 4; Table 1; Supplementary Table S9) 
with 80% of the bacterial isolates enhancing the growth rate of 
Actinocyclus relative to the axenic control in the exponential 
phase. Overall isolates belonging to the Rhodobacteraceae 
enhanced the specific growth rate of Actinocyclus the most, with 
growth rates increasing by 25–56% in the presence of these 
bacteria, with the presence of Thalassobius sp. strains having the 
greatest effect (~ 53%). Bacterial isolates within the Vibrionaceae 
had less effect on Actinocyclus sp. specific growth rate (~16% 
increase) with Vibrio sp. strain b9 having no significant effect 
(Figure  4; Table  1). Interestingly, whilst the addition of most 
isolates resulted in a smaller growth rate compared to the cultures 
with the whole microbiome, the presence of three of the 
Rhodobacteraceae isolates (Shimia thalassica b25, Shimia sp. b15 
and Thalassobius sp. b30), Pseudoalteromonas phenolica strain 
b20 and Vibrio sp. strain b11 resulted in a similar specific growth 
rate of Actinocyclus sp. to that observed in the whole microbiome 
cultures (Figure 4; Table 1).

Although some bacteria induced an Actinocyclus sp. growth 
rate that was similar to the cultures with their entire microbiome, 
this proxy alone does not adequately describe the Actinocyclus 
growth dynamics in the cultures. Indeed, Actinocyclus numbers in 
the cultures with the whole microbiome reached levels that were 
on average 2 times higher than the Thalassobius sp. b30 and V. fortis 
b11 co-cultures, and these growth enhancements were maintained 
for longer (Supplementary Figure S4). This observation also applies 
to the co-cultures, for example Pseudophaeobacter sp. strain b23 
did not alter the diatom’s growth rate, but significantly increased 
cell abundance compared to the axenic control (Figures  3, 4; 

Table 1; Supplementary Table S4). Thus, the specific growth rate of 
Actinocyclus sp. in the presence of the different bacterial isolates 
was not always reflective of changes in the diatom cell abundance 
and does not necessarily capture the differences in 
growth dynamics.

Bacteria enhance the abundance of 
Actinocyclus sp., but their effect varies 
based on their taxonomy

To capture the multifaceted growth dynamics induced by 
specific bacteria in co-culture with Actinocyclus, we quantified 
differences in diatom cell abundance through time between each 
co-culture and the axenic controls. Each of the 15 bacterial 
isolates tested enhanced the abundance of Actinocyclus sp. 
during at least one time point in the co-culture experiments 
(Simple Main Effect test, p < 0.05, Supplementary Table S4). 
However, the magnitude and duration of these effects were 
highly variable between the different bacteria tested 
(Supplementary Figures S4, S5). Members of the 
Rhodobacteraceae family elicited the largest increase in diatom 
abundance, with 58% more cells than the control on day 8. 
Within the Rhodobacteraceae, Thalassobius sp. b37 triggered the 
largest increase in cell abundance, with its presence resulting in 
a 2-fold increase in Actinocyclus sp. cell numbers (Figure 5A). 
The increase in cell numbers caused by the Rhodobacteraceae 
isolates were generally sustained, with significant effects observed 
on average for 10 days (Simple Main Effect test, p < 0.05, 
Supplementary Table S4). In comparison, the presence of 
Pseudoalteromonadaceae and Alteromonadaceae had a more 
modest effect on Actinocyclus sp. growth, with only a 21% 
increase in diatom cell numbers observed on average (Figure 5B).
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FIGURE 2

Composition of the Actinocyclus sp. associated bacterial communities during different diatom growth stages. Bacteria are coloured based on 
taxonomy and asterisks correspond to genera amongst which we have isolated bacteria used in the experiments.
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In contrast to the sustained positive effects observed amongst 
Rhodobacteraceae, Pseudoalteromonadaceae, and Alteromonadaceae, 
isolates from the Vibrionaceae and Oceanospirillaceae families only had 
a positive effect on the number of Actinocyclus cells during later time 
points of the experiment (Figure 5C). More specifically, their most 
pronounced effects were observed on days 14 and 16 of the experiment 
(28% increase in cell numbers on average), but this enhancement only 
lasted 3 days on average. Notably, 5 isolates belonging to the Vibrio and 
Marinomonas genera initially impaired diatom growth (Figure 5C). It is 
also worth noting that whilst some of our isolates had identical (100% 
match) 16S rRNA gene sequences (Thalassobius sp. isolates b30-b35-b37 
and Pseudoalteromonas phenolica isolates b18-b20), they did not all 
induce the same growth dynamics in co-culture with Actinocyclus 
(Figure 5).

The growth enhancement observed in Actinocyclus sp. was part of 
a reciprocal interaction, because all bacterial strains tested reached 
significantly greater cell numbers when co-cultured with Actinocyclus 

relative to controls (Supplementary Figure S6). The only exception was 
A. mediterranea, which decreased through time when in co-culture 
(Supplementary Figure S6).

Temporal variability of Actinocyclus cell 
numbers in co-cultures

Given temporal differences in the growth enhancement effect of 
each bacterial isolate tested, we quantified the difference in Actinocyclus 
cell numbers between each co-culture and the axenic controls during 
three distinct time-period windows (day 0–6, day 8–12, and day 14–16) 
and calculated the growth rate and maximal cell abundance for each 
period (Supplementary Table S11). Our results confirmed that although 
all tested bacteria significantly increased the cell abundance of 
Actinocyclus in at least one of the three time periods (Simple Main Effect 
test, p < 0.05. Supplementary Table S12), their maximal effects did not 
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FIGURE 3

Actinocyclus sp. co-culture growth curves (±SEM) displaying algae log-transformed cells mL−1 with axenic controls. (A-D) and (G): co-cultures with the 
axenic control (a); (E,H): co-cultures with the axenic control (c); (F,I): co-cultures with the axenic control (b). Filled circle refer to time points that were 
significantly different from the axenic controls (Simple Main Effect test, p  <  0.05, Supplementary Table S4), whilst empty circles were not statistically 
different. Error bars represent the standard error of the mean (n  =  4) and numbers in parenthesis in the legend correspond to bacteria strain codes. 
Growth curve displaying the algae log-transformed cells mL−1 with the whole microbiome are represented in Supplementary Figure S3 and raw data 
are available in Supplementary Table S10 and displayed in Supplementary Figures S4, S5.
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occur in the same period (Supplementary Figure S7; 
Supplementary Table S13). Most Rhodobacteraceae and 
Pseudoalteromonadaceae isolates increased the diatom abundance the 
most between days 8–12, with a maximum cell density index of 1.6 in 
co-culture with Thalassobius sp. (b35 and b37), whilst members of the 
Vibrionaceae mostly increased algal cell numbers between days 14–16 
(Figure 6; Supplementary Tables S13, S14).

Out of the 15 isolates tested, 6 had a 100% identity match to 
ASVs within the microbiome of Actinocyclus sp. including Shimia 
(isolates b14 and b15), Pseudophaeobacter (isolate b23), 
Pseudoalteromonas (isolates b18 and b20) and Alteromonas (isolate 
b34). However, although those specific ASVs were found in the 
Actinocyclus microbiome, there was no link between the timing of 
the growth benefit on Actinocyclus and the relative abundance of 

these bacterial isolates within the microbiome 
(Supplementary Figure S8).

Discussion

A wide diversity of bacterial taxa are commonly associated with 
diatoms both in culture conditions (Amin et al., 2012; Ajani et al., 
2018; Crenn et al., 2018; Mönnich et al., 2020) and in natural aquatic 
environments (Teeling et al., 2012; Arandia-Gorostidi et al., 2022). 
However, whilst the ecological and metabolic interactions involved in 
a handful of diatom-bacteria model systems have been characterised 
(Amin et al., 2015; Durham et al., 2015, 2017; Ferrer-González et al., 
2021; Olofsson et al., 2022), the impacts of diatom-associated bacteria 

TABLE 1 Specific growth rate and maximum cell abundance.

sample ID Growth Rate 
(± SD)

GE (%) p value (1) p value (2) days batch Max Cell 
Abundance (cells 

mL−1  ±  SD)

Axenic 0.18 ± 0.03 / / < 0.001 d2 - d6 a 32,592 ± 1,439

Whole microbiome 0.36 ± 0.02 / < 0.001 / d2 - d8 a 79,025 ± 8,336

Vibrio sp. strain b9 0.17 ± 0.06 -6 1.00 < 0.001 d4 - d8 a 39,142 ± 3,080

Pseudoalteromonas 

phenolica strain b18 0.21 ± 0.01 14 0.043
< 0.001

d2 - d6 a 47,792 ± 1777

Pseudophaeobacter sp. 

strain b23 0.24 ± 0.01 25 0.002
0.001

d2 - d6 a 49,844 ± 9,344

Marinomonas posidonica 

strain b1 0.26 ± 0.01 31 0.143
0.006

d2 - d6 a 42,800 ± 1,524

Shimia sp. strain b14 0.28 ± 0.01 36 < 0.001 0.036 d2 - d6 a 32,983 ± 2,121

Shimia sp. strain b15 0.30 ± 0.01 40 < 0.001 0.199 d2 - d6 a 37,333 ± 2,291

Pseudoalteromonas 

phenolica strain b20 0.33 ± 0.01 45 < 0.001
0.839

d2 - d6 a 38,442 ± 8,785

Shimia thalassica strain 

b25 0.33 ± 0.02 45 < 0.001
0.860

d2 - d6 a 34,883 ± 1990

Thalassobius sp. strain b30 

(n = 3) 0.35 ± 0.02 49 < 0.001
1.000

d2 - d6 a 33,458 ± 3,144

Vibrio fortis strain b11 0.36 ± 0.07 50 0.005 1.000 d4 - d8 a 48,175 ± 2,548

Axenic 0.24 ± 0.02 / / < 0.001 d2 - d6 b 32,850 ± 2,901

Whole microbiome 0.35 ± 0.02 / < 0.001 / d2 - d8 b 78,083 ± 434

Vibrio penaeicida strain 

b36 0.22 ± 0.02 -9 0.058
0.001

d4 - d8 b 29,850 ± 2,970

Alteromonas mediterranea 

strain b34 0.31 ± 0.01 23 < 0.001
0.026

d2 - d6 b 43,867 ± 1,144

Axenic 0.16 ± 0.01 / / < 0.001 d2 - d6 c 38,992 ± 6,014

Whole microbiome 0.41 ± 0.02 / < 0.001 / d2 - d8 c 121,966 ± 6,759

Vibrio sp. strain b31 0.23 ± 0.02 30 0.002 < 0.001 d4 - d10 c 40,150 ± 712

Thalassobius sp. strain b35 0.35 ± 0.01 54 < 0.001 0.004 d2 - d6 c 45,392 ± 2078

Thalassobius sp. strain b37 0.36 ± 0.01 56 < 0.001 0.024 d2 - d6 c 47,750 ± 3,271

Dunnett’s tests were carried out to compare the growth rates during the exponential phase between each co-culture and the corresponding axenic and whole microbiome controls 
(Supplementary Table S9). Days correspond to the exponential phase of each co-culture, and batch corresponds to the experiment in which each co-culture was carried. SD, standard deviation; 
value of p (1) correspond to the statistics comparing the co-cultures to the axenic controls whilst value of p (2) correspond to the statistics comparing the co-cultures to the whole microbiome 
controls; GE, Growth enhancement percentage compared to the axenic cultures.
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on host growth are still largely unknown. To gain deeper insights into 
the true extent of mutualistic interactions taking place within diatom 
microbiomes, the goal of this study was to deliver a broad-scale 
screening of a diatom’s associated bacteria to examine the extent and 
nature of beneficial partnerships across diverse bacterial associates. 
This analysis demonstrated that many members of the Actinocyclus sp. 
microbiome can indeed enhance the growth of the diatom host, but 
that their influence can vary substantially through time.

The structure of the bacterial community 
associated with Actinocyclus sp. changes 
between growth stages

The Actinocyclus sp. bacterial community was dominated by 
members of the Bacteroidetes (mainly Cryomorphaceae) as well 
as α- and γ-Proteobacteria, which is largely consistent with the 
microbiome composition of other diatom species (Grossart et al., 
2005; Buchan et al., 2014; Ajani et al., 2018; Stock et al., 2019; 
Koester et al., 2022). Our results also indicate that the Actinocyclus 
sp. bacterial community undergoes significant compositional 
changes throughout the diatom’s growth cycle, which is also 
consistent with observations in other diatom species (Moejes 
et al., 2017; Crenn et al., 2018). The early stages of the diatom’s 

growth cycle were characterised by a higher relative proportion of 
Proteobacteria (~55%), whilst Bacteroidetes relative abundance 
increased (40 to 75%) within the later time-points. Similar 
patterns have also been observed in various diatom species, both 
in culture conditions (Moejes et al., 2017), and during blooms in 
natural environments (Teeling et  al., 2012; Needham and 
Fuhrman, 2016). The identity of bacteria that dominate diatom 
microbiomes at a given time may be strongly influenced by the 
photosynthates exuded by the diatom, which are known to differ 
between growth stages (Barofsky et  al., 2009; Sarmento et  al., 
2013; Olofsson et  al., 2022). For example, cells in exponential 
phase and later stages tend to actively release a higher proportion 
of high molecular weight compounds (e.g., carbohydrates such as 
polysaccharides) (Myklestad, 1974; Biddanda and Benner, 1997; 
Granum et al., 2002), which Flavobacteria are known to effectively 
metabolise (Cottrell and Kirchman, 2000; Buchan et al., 2014). 
Members of Flavobacteriaceae effectively remineralise organic 
matter (Kirchman, 2002), which may explain why they accounted 
for a larger proportion of the bacterial community at later growth 
stages, when nutrients (N, Si, P) become limited. It is therefore 
likely that the shift from a dominance of Proteobacteria during the 
early growth phases of Actinocyclus, to Flavobacteria during later 
stages, is governed by a changing pool of chemicals released by 
the diatom.
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Actinocyclus sp. specific growth rate (± SEM) in co-culture with 15 different isolates. The six horizontal lines corresponds to the specific growth rate of 
the three Actinocyclus axenic (in green) and whole microbiome (in red) controls. Colours correspond to the different bacterial isolates. Standard error 
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Interestingly, peaks in the relative abundance of ASVs within the 
Actinocyclus microbiome that were identical to the tested isolates did 
not always align with the timing of the growth benefits observed in 
co-cultures (Supplementary Figure S8). Although these isolates 
demonstrated beneficial effects on Actinocyclus’s growth in co-culture, 
it is possible that interactions between multiple members of the 
microbiome may further influence the growth benefit observed in the 
whole microbiome cultures.

Different bacteria have different growth 
promoting effect through time

Consistent with observations in other diatom species (Grossart 
et al., 2005; Sison-Mangus et al., 2014; Windler et al., 2014; Amin 
et al., 2015), we found that when in presence of its full bacterial 
consortium, the abundance of Actinocyclus sp. was double that of 
the axenic cultures, emphasising the strong positive influence that 

bacteria can have on diatom growth (Amin et al., 2012). This was 
reinforced by the observation that most of the bacterial isolates 
enhanced the specific growth rate of the diatom with several 
growing as fast as the cultures with the whole microbiome. 
However, although the overall growth response of Actinocyclus to 
the different bacterial isolates tested here was almost entirely 
positive, none of them reached the maximum cell abundance of the 
cultures containing the full microbiome, which emphasises the 
cumulative effect of the microbiome as a whole. Interestingly, even 
if the maximum cell numbers reached or the specific growth rate 
between the controls and the co-cultures were similar, the difference 
in cell abundance through the growth of the diatom significantly 
changed and was bacteria-specific. This is consistent with a recent 
study which demonstrated that within 256 diatom-bacteria dual 
co-cultures (in well-plates), multiple bacterial isolates had different 
effects on the growth of the 8 diatoms tested and this effect was 
variable depending on the growth stage of the algae (Deng 
et al., 2022).
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Co-cultures between Actinocyclus and bacteria grouped by growth dynamics. Difference between the number of cells in Actinocyclus sp. in co-
culture with bacteria (coloured lines) and the axenic controls (black horizontal line at 0). Results for bacterial isolates belonging to (A): 
Rhodobacteraceae; (B): Pseudoalteromonadaceae and Alteromonadaceae; (C): Vibrionaceae and Oceanospirillaceae. Because co-cultures were 
carried out in multiple batches, several axenic controls were recorded. To simplify the graphical representation here, we calculated the difference in 
cell counts between each co-culture and its respective axenic control (the untransformed growth curves are displayed as Figure 3 and  
Supplementary Figure S5). Filled circle refer to time points that were significantly different from the axenic controls (Simple Main Effect test, p  <  0.05, 
Supplementary Table S4), whilst empty circles were not statistically different. Error bars represent the standard error of the mean (n  =  4) and numbers in 
parenthesis in the legend correspond to bacteria strain codes. Black lines correspond to the axenic controls, note: all statistical tests were performed 
on the untransformed data.
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In general, strains belonging to the Rhodobacteraceae had the 
strongest positive impact on Actinocyclus sp. cell numbers (especially 
Thalassobius sp.), with greatest levels of growth promotion occurring 
between days 8 to 12. This concurs with various studies that have 
shown that members of the Rhodobacteraceae can enhance algal 
growth (Amin et al., 2015; Durham et al., 2015; Johansson et al., 
2019). For example, Sulfitobacter sp. increases cell division in the 
diatom Pseudo-nitzschia multiseries, through the production of the 
plant growth-promoting hormone indole-3-acetic acid (IAA) (Amin 
et  al., 2015), and Ruegeria pomeroyi enhances the growth of 
Thalassiosira pseudonana, through the provision of vitamin B12 
(Durham et  al., 2015). On the other hand, most of the strains 
belonging to Gammaproteobacteria, including members of the 
Alteromonas, Pseudoalteromonas, Vibrio and Marinomonas genera, 
had the greatest effect on Actinocyclus sp. cell numbers during days 
14 to 16. Whilst members of the Alteromonadaceae and 
Vibrionaceae family are often attracted to diatom metabolites 
(Sarmento et al., 2013; Taylor and Cunliffe, 2017; Raina et al., 2022), 
they have been demonstrated elsewhere to have negative or neutral 
effects on diatom growth (Kim et al., 1999; Aharonovich and Sher, 
2016; Wang et al., 2016). However, Alteromonas bacteria can have a 
positive effect on diatom growth and possess genes involved in 
vitamin synthesis (B1, B7 and B12) and degradation of hydrogen 
peroxide (catalase enzyme), which can reduce oxidative stress 
related to photosynthesis (Garcia et  al., 2017; Baker and Kemp, 
2020). Additionally, recent whole-genome analyses also reported 
that many Gammaproteobacteria (i.e., Alteromonas, 
Pseudoalteromonas and Marinomonas genera) possess genes 
involved in phytoplankton-bacterial interactions, such as the 
production of vitamin B1, plant growth promoting hormones or 
siderophores, suggesting that they may also promote diatom growth 
(Zoccarato et al., 2022).

The time-dependent effects reported here could indeed be explained 
by the provision of different molecules by bacterial associates. In culture 

during early growth phases, diatom cells are not likely to be limited in 
vitamins or trace metals, but they could benefit from the production of 
specific secondary metabolites such as growth-promoting hormones. 
Towards later growth-phases, bacterial provision of remineralized 
nutrients (e.g., phosphate, nitrogen), as well as trace metals and vitamins 
that would become limited in the culture medium (Christie-Oleza et al., 
2015, 2017), may contribute to enhanced diatom growth. In addition, 
diatoms may also benefit from bacteria through the removal of toxic 
compounds that build-up in later growth stages, such as hydrogen 
peroxide (H2O2) (Morris et al., 2011; Coe et al., 2016). Whilst further 
analyses, coupling chemical and biological measurements will 
be  required to tease-apart the suite of specific mechanisms likely 
responsible for the time-dependent impact of different bacteria on 
diatom growth, our results provide an intriguing new insight into the 
multifaceted influence of diatom associated bacterial communities on 
the growth of their hosts.

Conclusion

Whilst there is mounting evidence that diatoms develop important 
ecological associations with specific bacterial partners, the 
microbiome of diatoms is generally composed of a wide diversity of 
bacteria, making it difficult to identify the role played by individual 
bacterial species. Here, we examined the effect of 15 different bacteria 
associated with Actinocyclus sp. on the growth of this diatom. Whilst 
all 15 tested bacteria enhanced Actinocyclus sp. growth compared to 
the controls, their effects differed in magnitude, duration and timing. 
Our results not only demonstrate that diatom growth can be enhanced 
by multiple members of the host’s associated bacterial community, but 
that the beneficial impacts of different bacteria vary according to time. 
These observations provide further evidence for the important role of 
bacteria in defining the ecology and fitness of diatoms and the 
complex nature of these relationships.
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FIGURE 6

Cell density index of all bacterial isolates. Only cell density that were significant for each phase are displayed (Simple Main Effect ANOVA, value of  
p <0.05, Supplementary Table S12). Colours correspond to the different bacterial isolates. All data are available in Supplementary Table S14.
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