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randomization study
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Sciences, Yunnan University, Kunming, Yunnan, China, 2Department of Neurosurgery, The Second
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Background: Several recent studies speculated that the gut microbiota is

associated with sensorineural hearing loss (SNHL) and proposed the concept of

the gut–inner ear axis. However, the causal e�ect of gut microbiota on SNHL is

still unknown. In this study, we performed a two-sample Mendelian randomization

(MR) analysis to estimate the causal e�ect of gut microbiota on SNHL.

Methods: Gut microbiota data were obtained from the largest available

genome-wide association study (n = 18,340) conducted by the MiBioGen

consortium. The summary statistics of SNHL were obtained from the FinnGen

consortiumR8 release data (28,310 cases and 302,750 controls). The causal e�ects

were estimated with inverse-variance weighted, MR-Egger, and weighted median.

Reverse Mendelian randomization analysis was performed on the bacteria that

were found to be associated with SNHL in forward Mendelian randomization

analysis. We then performed sensitivity analyses, including Cochran’s Q-test,

MR-Egger intercept test, MR-PRESSO, cML-MA-BIC, and leave-one-out analysis,

to detect heterogeneity and pleiotropy.

Results: The inverse-variance weighted results suggested that Lachnospiraceae

(UCG001) had a significant protective e�ect against SNHL (odds ratio = 0.85, 95%

confidence interval: 0.78–0.93, P= 6.99× 10−4). In addition, Intestinimonas (odds

ratio = 0.89, 95% confidence interval: 0.82–0.97, P = 8.53 × 10−3) presented a

suggestively protective e�ect on SNHL. Rikenellaceae (RC9gutgroup) (odds ratio=

1.08, 95% confidence interval: 1.02–1.15, P = 0.01) and Eubacterium (hallii group)

(odds ratio = 1.12, 95% confidence interval: 1.00–1.24, P = 0.048) suggestively

increase the risk of SNHL. The results of the reverse MR analysis showed that

there is no significant causal e�ect of SNHL on the gut microbiota. No significant

heterogeneity of instrumental variables or pleiotropy was detected.

Conclusion: The evidence that the four genera mentioned above are associated

with SNHL supports the hypothesis of a gut–inner ear axis. Our study provides

microbial markers for the prevention and treatment of SNHL, and further studies

are needed to explore the mechanisms of the gut microbiome–inner ear axis in

health and diseases.

KEYWORDS

sensorineural hearing loss, gut microbiota, gut–inner ear axis, Mendelian randomization

study, causal e�ect

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1230125
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1230125&domain=pdf&date_stamp=2023-10-17
mailto:zhulei_evan@126.com
https://doi.org/10.3389/fmicb.2023.1230125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1230125/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yin et al. 10.3389/fmicb.2023.1230125

Background

Hearing loss interferes with the quality of life. More than

1.5 billion people worldwide experience some degree of hearing

loss during their lifetime, and at least 430 million of them need

additional care. The World Health Organization (2021) estimates

that this number will increase to 2.5 billion by 2050. Sensorineural

hearing loss (SNHL) is the most common type and accounts

for the majority of all hearing loss, which is characterized by

irreversible damage to cochlear hair cells, auditory nerves, or the

central nervous system (Tanna et al., 2020). SNHL is also associated

with dementia, Alzheimer’s disease, and other cognitive disorders

(Hung et al., 2015; Fortunato et al., 2016; Shen et al., 2021).

Although the pathogenesis of SNHL is still not fully understood,

a variety of causes, including genetic factors, aging, chronic noise

exposure, ototoxic medications, and head injury, are believed to

be involved (Chau et al., 2010; Kuhn et al., 2011; Tarshish et al.,

2013). Moreover, obesity and a high-fat diet have also been linked

to hearing loss (Tang et al., 2019; Kociszewska et al., 2021).

The diversity and composition of the gut microbiota have

been observed to change significantly after chronic noise exposure

(Cui et al., 2018). SNHL has also been reported to be the

most common inner ear disorder that positively correlates with

gastrointestinal (GI) conditions such as inflammatory bowel

diseases (IBDs) and celiac disease (CD) (Karmody et al., 2009;

Kalyoncu et al., 2010; Wengrower et al., 2016; Fousekis et al., 2018).

In addition, histological studies have elucidated the analogous

structures and functions between the blood–labyrinth barrier

(BLB), a key regulator in inner ear endolymph and perilymph

ionic concentration, and the blood–brain barrier (BBB), which

represents an important interface in mediating the gut–brain axis

(Banks, 2006; Hirose et al., 2014; Kociszewska et al., 2021; Song

et al., 2021). All information provided by these studies implied

the existence of the gut–inner ear axis; however, no studies found

a causality between gut microbiota and SNHL. Owing to the

inherent defects of conventional designs, previous observational

studies are unable to entirely exclude the possibility of reverse

causality and confounding factors, which could potentially result

in biased associations and conclusions (Sekula et al., 2016).

Moreover, microbiota-related observational studies are susceptible

to confounding factors such as age, environment, dietary patterns,

and lifestyle (Rinninella et al., 2019). These conditions limit the

reliability of causality between gut microbiota and SNHL to

some extent.

Mendelian randomization (MR) is increasingly applied to

infer credible causal relationships between risk factors and disease

Abbreviations: BBB, Blood–brain barrier; BLB, Blood–labyrinth barrier;

CD, Celiac disease; CI, Confidence interval; cML-MA-BIC, A constrained

maximum likelihood and model averaging-based MR method; FDR, False

discovery rate; GWAS, Genome-wide association study; IBD, Inflammatory

bowel diseases; IV, Instrumental variable; IVW, Inverse-variance weighted;

LD, Linkage disequilibrium; mbQTL, Microbiota quantitative trait loci; MR,

Mendelian randomization; MR-PRESSO, MR pleiotropy residual sum and

outlier; OR, Odds ratio; SCFA, Short-chain fatty acid; SNHL, Sensorineural

hearing loss; SNP, Single-nucleotide polymorphism; T1DM, Type 1 diabetes

mellitus; HDL, High-density lipoprotein; LDL, Low-density lipoprotein.

outcomes (Richmond and George Davey Smith, 2022). Based on

the random assortment of genetic variants duringmeiosis, MR used

environmental exposure-related genetic variations as instrumental

variables (IVs) to assess the association between exposures and

outcomes (Burgess and Thompson, 2015). Since genetic variants

are randomly assigned at conception before disease onset, the

results of MR analysis are not affected by confounding factors

(Davey Smith, 2014). MR has been widely used to explore the

causality between gut microbiota and diseases, e.g., optic neuritis

(Liu et al., 2022), preeclampsia-eclampsia (Li et al., 2022), delirium

(Yu et al., 2023), smoking (Fan et al., 2023), metabolic diseases

(Sanna et al., 2019), and autoimmune diseases (Xu et al., 2022).

In this study, we applied theMR design to evaluate the potential

causal effect of gut microbiota on SNHL. Our study is the first to

demonstrate the existence of the gut–inner ear axis in a causal way

and will provide valuable suggestions for preventive intervention

strategies for SNHL.

Methods

Study design

To explore the causal relationships of gut microbiota on SNHL,

a two-sample MR was performed using instrumental variables

(IVs) extracted from the largest investigation of the genetics of

the gut microbiome (Kurilshikov et al., 2021). To avoid sample

overlap, GWAS summary data of SNHL were obtained from the

FinnGen Project (Kurki et al., 2022). The MR design is based

on three assumptions: (1) genetic variants are robustly associated

with exposure data; (2) genetic variants are not associated with

potential confounders; and (3) genetic variants affect the outcome

only through the exposure of interest (Boef et al., 2015). In this

study, multiple methods were used for MR and sensitivity analyses

to confirm the robustness of our results. The conceptual MR

framework is presented in Figure 1. We reported the MR study

following the recommendations of the STROBE-MR Guidelines

(Supplementary STROBE-MR Checklist).

Data source

The summary statistics of gut microbiota were obtained from

the MiBioGen consortium (Kurilshikov et al., 2021). This is

currently the largest genome-wide meta-analysis of the human

microbiome, containing a total of 18,340 samples of 16S rRNA

gene sequencing data from 24 population cohorts. Most of them

are of European descent (n = 13,266). The microbial composition

was profiled by targeting three distinct variable regions of the 16S

rRNA gene: V4, V3–V4, and V1–V2, and conducting taxonomic

classification using direct taxonomic binning. The microbiota

quantitative trait loci (mbQTL) mapping analysis was performed to

identify host genetic variants that are associated with the abundance

of gut bacterial taxa (Kurilshikov et al., 2021). The genus had

the lowest taxonomic level in this study. In addition to the 12

unknown genera, 119 genus-level taxa were included in the current

study for MR analysis. GWAS summary statistics for SNHL were

obtained from the FinnGen consortium R8 release data. This
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FIGURE 1

Conceptual framework for the Mendelian randomization analysis of causal e�ects of gut microbiota on the risk of SNHL. Assumption 1, genetic

variants are robustly associated with exposure; assumption 2, genetic variants are not associated with potential confounders; and assumption 3,

genetic variants a�ect outcomes only through the exposure of interest.

GWAS contained 28,310 cases and 302,750 controls. The first 10

principal components and genotyping batch were corrected during

the analysis (Kurki et al., 2022).

To investigate the potential mechanisms by which genetically

proxied genera affect the risk of SNHL, a two-step MR

was performed to calculate the mediating effect. Mediating

factors include BMI, triglycerides, total cholesterol, low-density

lipoprotein (LDL), high-density lipoprotein (HDL), type 1 diabetes,

and type 2 diabetes. To avoid overlapping with the exposures and

outcomes, the summary-level results of these potential mediators

were retrieved from the UK Biobank.

Selection criteria of instrumental variables

As per the three assumptions stated in the design of this study,

quality control was performed on single-nucleotide polymorphisms

(SNPs) to make our results robust. Similar to most current MR

studies, the genome-wide significance threshold (P < 5 × 10−8)

was selected to screen SNPs. Because of the limited number of

SNPs meeting genome-wide significance, we used SNPs with a

more relaxed threshold (P < 5 × 10−6) as potential IVs of each

genus. To ensure independence among IVs, we applied linkage

disequilibrium clumping with a clumping window of 10MB and

R2 < 0.001 based on European ancestry reference data from the

1,000 Genomes Project. Meanwhile, to avoid bias owing to the

employment of weak instruments, F-statistics were calculated for

each SNP to measure the statistical strength, and only strong

IVs (F-statistics > 10) for each of our exposures of interest

remained. Ambiguous and palindromic SNPs of which the effect

cannot be corrected in the harmonizing process were excluded.

Since MR frequently generates false positives in the presence of

genetic correlation between traits (O’Connor and Price, 2018; Reay

et al., 2022), the SNPs associated with the outcome (SNHL) were

removed. In reverse MR analysis, the genome-wide significance

threshold of exposure data (SNHL) was set to P < 5 × 10−8; the

remaining criteria and parameters are consistent with forward MR.

We also scanned with the PhenoScanner V2

(www.phenoscanner.medschl.cam.ac.uk), a database of human

genotype–phenotype associations, to detect whether these IVs

were associated with the potential risk factors, including obesity

and diabetes (Tanna et al., 2020), and remove SNPs associated with

any of these potential confounders.

Mendelian randomization analyses

Three differentmethods ofMR, random-effect inverse-variance

weighted (IVW),MR-Egger, and weightedmedian, were performed

to estimate the causal effect of gut microbiota on SNHL. IVW

estimates were used as themain analysis, which combined theWald

ratio of each SNP on the outcome and obtained a pooled causal

estimate. If horizontal pleiotropy was not present, the IVW results

would be unbiased (Burgess et al., 2016).Meanwhile,MR-Egger and
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weighted median were used to improve the IVW estimates as they

could provide more robust estimates in a broader set of scenarios,

despite being less efficient (wider confidence interval). MR-Egger

allows all genetic variants to have a pleiotropic effect but requires

that the pleiotropic effects be independent of the variant-exposure

association (Bowden et al., 2015). The weighted median method

allows for the correct estimation of causal association when up to

50% of instrumental variables are invalid (Hartwig et al., 2017).

Sensitivity analysis

Sensitivity analysis has been performed to detect the underlying

pleiotropy and heterogeneity because they can seriously affect MR

estimates. Cochran’sQ-test was applied to detect heterogeneity (Del

Greco et al., 2015). There was no heterogeneity detected if the p-

value of Cochran’s Q-test was >0.05. The pleiotropic analysis was

preliminarily judged by the intercept of the MR-Egger regression

(P < 0.05 was considered possible pleiotropy in IVs) (Burgess

and Thompson, 2017). MR-Pleiotropy Residual Sum and Outlier

Methods (MR-PRESSO) were also used to assess and correct

horizontal pleiotropy (Ong and MacGregor, 2019). Meanwhile,

a leave-one-out analysis was performed to evaluate whether the

MR estimate was driven or biased by an SNP. We also used a

constrained maximum likelihood and model averaging-based MR

method, called cML-MA, to control correlated and uncorrelated

pleiotropic effects in this study (Xue et al., 2021).

Statistical analysis

F-statistic was used to calculate the strength of IVs using the

formula F =
R2×(N−1−K)

(1−R2)×K
, where R2 represents the proportion

of variance in the exposure explained by the genetic variants,

N represents the sample size, and K represents the number of

IVs (Staiger and Stock, 1994). In addition, the website (http://

cnsgenomics.com/shiny/mRnd/) was used to calculate the power

(Brion et al., 2013).

To account for multiple testing in our primary analyses, false

discovery rate (FDR) correction was performed by applying the q-

value procedure, with a false discovery rate of q-value < 0.1 (Storey

and Tibshirani, 2003). The genera of gut microbiota and SNHL

were considered to have a suggestive association when P < 0.05 but

q ≥ 0.1.

All the analyses were performed by the two-sampleMR package

(version 0.5.6) (Hemani et al., 2017), MRcML package (Xue et al.,

2021), and qvalue package (version 2.15.0) (Storey and Tibshirani,

2003) of the R program (version 4.2.1).

Results

According to the selection criteria for IVs, a total of 661 SNPs

were used as IVs for 119 bacterial genera (Supplementary Table 1).

As shown in Table 1, Supplementary Table 2, and Figure 2, four

bacterial genera were found to be associated with SNHL by IVW

results. Lachnospiraceae (UCG001) had a significant protective

effect against SNHL (IVW: OR = 0.85, 95% CI: 0.78–0.93, P =

6.99 × 10−4, q = 0.08) with sufficient power (0.91). Meanwhile,

similar estimates were obtained using the MR-Egger regression

(OR = 0.71, 95% CI = 0.48–1.04, p = 0.14, q = 1.00) and

weighted median approaches (OR = 0.85, 95% CI = 0.75–0.97,

p = 0.016, q = 1.00), though the association was not statistically

significant. In addition, Intestinimonas presented a suggestively

protective effect on SNHL (IVW: OR = 0.89, 95% CI: 0.82–

0.97, P = 8.53 × 10−3). In addition to the protective effect,

Rikenellaceae (RC9gutgroup) (IVW: OR = 1.08, 95% CI: 1.02–

1.15, P = 0.01) and Eubacterium (hallii group) (IVW: OR =

1.12, 95% CI: 1.00–1.24, P = 0.048) suggestively increase the risk

of SNHL.

Since all IVs used in the four causal associations have

F-statistics > 10, there is no bias for weak IVs in our

results (Supplementary Table 1). The results of Cochran’s IVW

Q-test showed no significant heterogeneity of these IVs (P

> 0.05, Supplementary Table 3). In addition, there was no

significant directional horizontal pleiotropy according to the

results of the MR-Egger regression intercept analysis (P > 0.05,

Supplementary Table 4).

There were potential outliers of the IVs of Eubacterium

(hallii group) that were present on visual inspection in leave-

one-out plots (Figure 3). However, further MR-PRESSO analysis

did not detect any significant outlier SNPs (global test P > 0.05,

Supplementary Table 5). Therefore, there was insufficient evidence

for horizontal pleiotropy in the association between these bacteria

and SNHL.

To further control correlated and uncorrelated pleiotropic

effects in this study, the cML-MA-BIC method was used to

recalculate theMR results of the four bacterial genera. The results of

cML-MA-BIC were consistent with IVW (Supplementary Table 6),

which suggested our results were robust after considering the

associated pleiotropy.

According to the results of reverse MR analysis,

there was a suggestive association between SNHL and

Rikenellaceae (RC9gutgroup) (IVW: OR = 1.26, 95% CI:

1.02–1.55, P = 0.029); however, such association became

insignificant after correction for FDR (q = 0.12). No

significant causal association was found between SNHL and

the other three bacterial genera (Supplementary Tables 7,

8). Results of Cochran’s IVW Q-test showed that

there was no significant heterogeneity in IVs of SNHL

(Supplementary Table 9). MR-Egger regression intercepted

item analysis (Supplementary Table 10), and MR-PRESSO

analysis also did not detect significant horizontal pleiotropy

(Supplementary Table 11).

To investigate the mediators of the effect of the above

four bacteria genera on SNHL risk, a two-step MR was

conducted to calculate the mediating effect. BMI, triglycerides,

total cholesterol, LDL, HDL, type 1 diabetes, and type 2

diabetes were included as mediating factors. However, we

identify no mediator that is influenced by the four bacteria

genera and has a causal effect on SNHL risk at the same

time (Supplementary Tables 12, 13), suggesting that the four

bacteria genera may not affect SNHL through the above

mediating factors.
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TABLE 1 MR estimates for the association between gut microbiota and SNHL.

Bacterial taxa
(exposure)

MR method No. of SNP OR 95%CI p-value q-value Power

Lachnospiraceae

(UCG001)

IVW 7 0.85 0.78–0.93 6.99E-04 0.08 0.91

MR-Egger 7 0.71 0.48–1.04 0.140 1.00

Weighted median 7 0.85 0.75–0.97 0.016 1.00

Intestinimonas IVW 11 0.89 0.82–0.97 8.53E-03 0.49 0.85

MR-Egger 11 0.81 0.64–1.02 0.105 1.00

Weighted median 11 0.88 0.78–0.98 0.024 1.00

Rikenellaceae

(RC9gutgroup)

IVW 6 1.08 1.02–1.15 0.013 0.49 0.74

MR-Egger 6 0.91 0.62–1.32 0.633 1.00

Weighted median 6 1.06 0.97–1.15 0.188 1.00

Eubacterium (hallii

group)

IVW 7 1.12 1.00–1.24 0.048 0.99 0.79

MR-Egger 7 1.35 1.11–1.64 0.030 1.00

Weighted median 7 1.10 0.95–1.26 0.201 1.00

MR, Mendelian randomization; SNHL, sensorineural hearing loss; SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted. Power was

calculated by OR of IVW at the website http://cnsgenomics.com/shiny/mRnd/.

FIGURE 2

Scatter plots for the causal association between gut microbiota and SNHL.
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FIGURE 3

Leave-one-out plots for the causal association between gut microbiota and SNHL.

Discussion

In this study, we performed a two-sample MR analysis to

evaluate the causal association between gut microbiota and SNHL,

based on the summary statistics of gut microbiota from the largest

GWAS meta-analysis conducted by the MiBioGen consortium and

the summary statistics of SNHL from the FinnGen consortium

R8 release data. We found that Lachnospiraceae (UCG001) had

significant protective effects on SNHL, and three genera of gut

microbiota had suggestive protective effects (Intestinimonas) or

harmful effects [Rikenellaceae (RC9gutgroup) and Eubacterium

(hallii group)] against SNHL. Our study is the first to demonstrate

the existence of the gut–inner ear axis with causal evidence.

Previous studies proved that gut microbiota can affect the

permeability of the blood–brain barrier (BBB), which is pivotal

to brain development and function (Braniste et al., 2014).

Interestingly, there is a similar organization in the inner ear called

the blood–labyrinth barrier (BLB), which owns the analogous

structures and functions with BBB and plays an important role in

inner ear fluid homeostasis (Juhn et al., 2001). Changes in the gut

microbiota can lead to systemic inflammation affecting multiple

organ systems, including the brain and the inner ear (Kociszewska

and Vlajkovic, 2022a). This inflammatory response increases the

permeability of BLB (Ichimiya et al., 2000). Recent studies postulate

that the microbial metabolites and pathogens released from the

gut increase BLB permeability, which allows the spreading of

inflammatory processes to the inner ear, leading to hearing

dysfunctions (Denton et al., 2022; Kociszewska and Vlajkovic,

2022b). The microbes we found in this study, Lachnospiraceae

(UCG001), can produce acetic acid, one kind of short-chain fatty

acid (SCFA) (Guo and Li, 2019) that has anti-inflammatory and

immunomodulatory properties (Dalile et al., 2019). Intestinimonas

have been reported to play a crucial role in promoting the

metabolism of lysine to butyric acid, which also belongs to

SCFAs and has anti-inflammatory effects (Bui et al., 2016, 2020).

Previous studies found that Rikenellaceae (RC9gutgroup) displayed

a strong positive association with obesity and inflammation (Sun

et al., 2019; Ahmad et al., 2020; Ma et al., 2020). Therefore,

we assumed that proinflammatory cytokines generated from gut

microbiota, such as Rikenellaceae (RC9gutgroup), can lead to

cochlear damage via their impact on BLB permeability. On the

other hand, anti-inflammatory cytokines, such as SCFAs produced

by Lachnospiraceae (UCG001) and Intestinimonas, can protect the

cochlea from inflammation damage.

Puzzlingly, Eubacterium (hallii group), which had been

identified as a candidate for the next-generation probiotics category

with great potential to avert inflammatory disorders (Almeida et al.,

2020), has been identified as a suggestive risk factor for SNHL

in this study. A recent study reported that Eubacterium (hallii

group) was enriched in type 1 diabetes mellitus (T1DM) patients
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and displayed a positive correlation with fasting blood glucose (Liu

et al., 2021). Meanwhile, patients with T1DM have a significantly

greater prevalence of hearing loss compared to healthy controls

(Mujica-Mota et al., 2018). However, more mechanism studies

are needed to reveal the relationship between Eubacterium (hallii

group) and SNHL.

In this study, concordant directions and similar magnitudes

across various MR models confirmed the robustness of our MR

results. However, the MR estimates of MR-Egger and IVW were

inconsistent in Rikenellaceae (RC9gutgroup) (Figure 2). According

to previous studies, we could tighten the instrument p-value

threshold (Ong and MacGregor, 2019). However, the instruments’

p-value for Rikenellaceae (RC9gutgroup) was almost the same, so

we cannot tighten the p-value. Finally, we accepted the results of

IVW and identified Rikenellaceae (RC9gutgroup) as a risk factor

for SNHL according to the following reasons: First, our sensitivity

analysis showed no significant heterogeneity or pleiotropy was

detected; the inverse-variance weighted (IVW) method is the

most powerful method in this situation (Burgess et al., 2013;

Lin et al., 2021). Second, the results of the weighted median

(Table 1), MR-PRESSO (Supplementary Table 5), and cML-MA-

BIC (Supplementary Table 6) were consistent with IVW. Third,

Rikenellaceae (RC9gutgroup) had been reported to display a strong

positive association with inflammation (Sun et al., 2019; Ahmad

et al., 2020; Ma et al., 2020), which could lead to increased BLB

permeability and even hearing loss. Even so, the causal effect of

Rikenellaceae (RC9gutgroup) on SNHL should be taken cautiously,

and further verification is required.

Similar to the gut–brain axis, recent studies have speculated that

there is bidirectional communication between the gut microbiome

and the inner ear (Denton et al., 2022). We then performed reverse

MR to estimate the causal association between SNHL and gut

microbiota. However, our results fail to support the hypothesis. The

reverse causal association could not be completely excluded since

the sample size of the gut microbiota is relatively small compared

to the outcome dataset. The accuracy of MR will be affected to

some extent.

Previous studies speculated that obesity and diabetes may relate

to SNHL. However, our four bacterial genera did not affect SNHL

through these mediators. Further studies are needed to explore

the mechanisms of the effect between the four bacterial genera

and SNHL. In addition, we found that triglycerides significantly

increase the risk of SNHL (IVW: OR = 1.08, 95% CI: 1.02–1.14,

P = 0.005), which deserves further research.

The strengths of our study are manifested in many ways.

First, MR analysis can simulate randomized controlled trials

in observational settings, which are widely accepted in causal

research. Compared to the observational study, using an MR

design, our study is largely free from reverse causation and residual

confounding. In addition, the GWAS summary data used in this

study were obtained from the largest scale of meta-studies to date,

ensuring the strength of the instruments in the MR analysis. Third,

variousmethods were used in sensitivity analysis, and no significant

heterogeneity of instrumental variables or pleiotropy was detected.

To make our MR results robust, non-overlapping exposure and

outcome summary-level data were used to avoid bias. To the best

of our knowledge, this is the first study that has performed an MR

analysis to address the causal relationship between gut microbiota

and SNHL. Our study supports the existence of the gut–inner

ear axis in a causal way and provides new biomarkers for the

prevention and treatment of SNHL.

However, several limitations should be noted in our study

while interpreting the results. First, there are different types

of SNHL, such as presbycusis, noise-induced hearing loss, and

others. Detailed subgroup analyses were unable to be performed

since summary statistics rather than raw data were used in

the analysis. Second, since the lowest taxonomic data in the

exposure dataset we can acquire is genus level, we cannot

estimate the causal association between species and strain level.

The MR results of a genus are contributed by all the species

and strains in the genus, which is probably the reason why

the OR value is relatively close to 1. Third, since the limited

number of SNPs reached genome-wide significance (P < 5 ×

10−8), we thus relaxed the P threshold. Following this adjustment,

we used the FDR correction to restrict the possibility of false

positives. The last aspect that should be discussed is that the

majority of the participants in this study are European. Although

population heterogeneity will be largely avoided, the results of

our study may not be entirely applicable to subjects from other

populations. In addition, experimental models are needed to

further verify the relationship between gut microbiota and hearing

loss in future.

Conclusion

In summary, our study suggested that gut microbiota influence

the risk of SNHL, providing the latest evidence about the existence

of the gut–inner ear axis.We found that Lachnospiraceae (UCG001)

was associated with SNHL. Further studies are needed to illustrate

the protective effect and mechanism of probiotics on SNHL. In

addition, although reverse MR estimates did not support the

causal association of SNHL with gut microbiota, it cannot be

ruled out the possibility that SNHL may affect the gut microbial

ecosystem. Further studies are needed to confirm these reverse

MR estimates.
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