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Background: Previous observations have demonstrated that the response to 
neoadjuvant chemoradiotherapy (nCRT) is highly variable in patients with locally 
advanced rectal cancer (LARC). Recent studies focusing on the intratumoral 
microbiota of colorectal cancer have revealed its role in oncogenesis and 
tumor progression. However, limited research has focused on the influence of 
intratumoral microbiota on the nCRT of LARC.

Methods: We explored the microbial profiles in the tumor microenvironment of LARC 
using RNA-seq data from a published European cohort. Microbial signatures were 
characterized in pathological complete response (pCR) and non-pCR groups. Multi-
omics analysis was performed between intratumor microbiomes and transcriptomes.

Results: Microbial α and β diversity were significantly different in pCR and non-
pCR groups. Twelve differential microbes were discovered between the pCR and 
non-pCR groups, six of which were related to subclusters of cancer-associated 
fibroblasts (CAFs) associated with extracellular matrix formation. A microbial 
risk score based on the relative abundance of seven differential microbes had 
predictive value for the nCRT response (AUC  =  0.820, p  <  0.001).

Conclusion: Our study presents intratumoral microbes as potential independent 
predictive markers for the response of nCRT to LARC and demonstrates the 
underlying mechanism by which the interaction between intratumoral microbes 
and CAFs mediates the response to nCRT.
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Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and 
second in females (Bray et al., 2018). Approximately two-thirds of CRC arise in the rectum. 
At least 25% of cases are at an advanced stage at initial diagnosis (Aklilu and Eng, 2011; 
Glynne-Jones et al., 2017). Neoadjuvant chemoradiotherapy (nCRT) has been established as 
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a standard treatment for patients with locally advanced rectal 
cancer (LARC) to achieve higher sphincter preservation rates and 
lower locoregional recurrence rates (Sauer et  al., 2004). Good 
responses to nCRT improve local control and can shift clinical 
strategies from radical surgery to “watch and wait.” However, 
observations from many clinical studies have demonstrated that the 
response to nCRT is highly variable in LARC (Loos et al., 2013; 
Petrelli et al., 2020). Approximately 20–30% of patients with rectal 
cancer achieve a complete response to conventional nCRT (Cercek 
et al., 2018; Buckley et al., 2020; van der Sluis et al., 2020). Since 
nCRT could also cause treatment-associated toxicities (Pucciarelli 
et al., 2011; West et al., 2014), and a good response to nCRT may 
lead to “watch and wait” instead of surgery, it is essential to 
determine whether patients can potentially benefit from nCRT 
based on pre-treatment biomarkers.

Recent studies have detected the presence of microbiota in 
tumor tissues (Nejman et al., 2020; Poore et al., 2020). Most cancer 
microbes are present in cells. The cancer microbiota can influence 
biological behavior by modulating tumorigenesis and chemotherapy 
resistance. Previous studies focusing on the intratumoral microbes 
of CRC have revealed the role of the intratumoral microbiota in 
oncogenesis and tumor progression (Dejea et al., 2018; Rubinstein 
et al., 2019; Liu et al., 2021). Intratumoral bacteria can affect the 
therapeutic response by metabolizing drugs into inactive forms and 
influencing antitumor immunity (Da Cunha et  al., 2022; Wang 
et  al., 2022). Therefore, it is rational to speculate that the 
intratumoral microbiome may affect nCRT responses. Recent 
studies have investigated the predictive value of the gut microbiome 
in response to nCRT in patients with LARC (Jang et al., 2020; Shi 
et  al., 2020; Yi et  al., 2021). However, Zhang et  al. (2021) 
demonstrated different patterns of intratumoral microbial profiles 
from either the gut microbiome or the mucosal microbiome. To our 
knowledge, no research has focused on the influence of intratumoral 
microbial profiles on chemoradiation therapy.

In this study, we analyzed the intratumoral microbiota of rectal 
cancer and the correlation between microbes and the tumor 
microenvironment (TME) based on RNA-seq data of a large LARC 
cohort. We  profiled the microbiome composition in LARC 
according to nCRT response and demonstrated significantly 
different microbial signatures in the pathologically complete 
response (pCR) and non-pCR groups. We  also established an 
intratumoral microbiome signature to identify patients likely to 
benefit from preoperative nCRT for clinical application. Interactions 
between intratumoral microbes and cancer-associated fibroblasts 
were also detected, revealing the potential mechanisms underlying 
the relationship between microbiota and therapeutic responses.

Materials and methods

Patients and datasets

The pre-treatment raw RNA sequences, gene expression data, 
and clinicopathologic data of a published cohort (n = 105 rectal 
cancer patients) were obtained from the Gene Expression Omnibus 
(GEO) repository (GSE 190826) (Nicolas et  al., 2022). In this 
cohort, patients with histologically confirmed rectal carcinoma with 
an inferior margin of no more than 12 cm above the anal verge with 

perirectal fat infiltration (cT3–4) or lymph node involvement (cN+) 
were treated with standard nCRT followed by surgical resection 
(Lee et al., 2020).

Transcriptomic analysis

Differential gene expression analysis was conducted using the 
R package limma, with significant differences required to fulfill the 
criteria |log2 Fold Change| > 1 and false discovery rate (FDR) < 0.05. 
cancer-associated fibroblasts (CAFs) derived from a single-cell 
analysis of rectal cancer tissue (GSE132465) were clustered into 18 
subpopulations using the Leiden algorithm (Traag et  al., 2019). 
CIBERSORTx calculated and estimated the immune infiltration of 
22 types of common immune cells and 18 subpopulations of CAFs 
(Newman et  al., 2019). Spearman’s correlation coefficient was 
calculated to measure the connections between the microbial and 
cellular abundance of immune cells and CAFs. Weighted gene 
co-expression network analysis (WGCNA) was used to generate a 
co-occurrence network based on the relative abundances of each 
core genera performed by ImageGP with default parameters (Chen 
et al., 2022). Pathway and process enrichment analysis of hub genes 
derived from WGCNA and the marker genes of each subpopulation 
of CAFs were performed using the Metascape tool (Han et  al., 
2018). The protein–protein interaction network of the signature 
genes of each subpopulation of CAFs was constructed based on 
protein–protein physical interactions according to the database of 
BioGrid and STRING (physical score > 0.132) performed by 
Metascape. The Molecular Complex Detection (MCODE) algorithm 
(Bader and Hogue, 2003) has been applied to identify densely 
connected network components and the enrichment analysis of 
transcription factors using the transcriptional regulatory network 
(TRRUST) module of Metascape.

Microbial data processing and analysis

Raw RNA sequencing data from preoperative endoscopic biopsies 
underwent quality control with FastQC and then were trimmed to 
remove adapter sequences using the Cutadapt tool (version 4.1). 
Subsequently, the reads underwent taxonomic identification and were 
assigned to humans, bacteria, archaea, viruses, protozoa, and fungi by 
Kracken2 based on the Standard Kraken2 reference database plus 
protozoa and fungi (Wood et al., 2019). Reestimation of reads was 
performed by Bayesian Reestimation of Abundance with Kraken 
(Bracken) to compute a highly accurate genus-level abundance (Lu 
et al., 2017). Only the sequences assigned to bacteria were preserved, 
with sequences assigned to humans, archaea, viruses, and fungi 
removed. Raw abundance data for bacteria were decontaminated 
using the decontam algorithm and rarefied (Davis et al., 2018).

Α diversity was calculated using the R package “vegan” and was 
displayed as the Shannon index. β-diversity was analyzed using 
principal coordinate analysis (PCoA) based on Jaccard’s distance and 
partial least squares discrimination analysis (PLS-DA). Linear 
discriminant analysis effect size (LEfSe) was used to evaluate 
differential taxa between the pCR and non-pCR groups (Segata et al., 
2011). Differences in relative abundance at the genus level were also 
analyzed and visualized using STAMP software (Welch’s t-test with 
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Benjamini–Hochberg FDR < 0.05) (Parks et  al., 2014). Microbial 
network analysis was conducted using the R package “ggClusterNet” 
(Wen et al., 2022). The microbial and CAF network was generated by 
Spearman’s correlation with a threshold of correlation coefficient > 0.3 
and p < 0.05. Receiver operating characteristic (ROC) curves were 
plotted, and the area under ROC curves (AUC) was calculated to 
evaluate the ability of intratumoral microbes to predict the therapeutic 
effect of nCRT, which was also analyzed using logistic 
regression analysis.

Results

Population characteristics

The clinical characteristics of the patients are summarized in 
Table  1. A total of 105 patients who met the inclusion/exclusion 
criteria were included in the study. Among them, 68.8% were male 
and 31.2% were female. The median age of the cohort was 65 (range 
34–86). LARC was graded as grade 0 in two patients (1.9%), grade 2 in 
95 patients (92.2%), and grade 3 in six patients (5.8%) by biopsy. The 
number of patients with cTNM stages I, II, III, and IV was 2 (2.0%), 
12 (11.8%), 87 (85.3%), and 1 (1.0%), respectively. Seventy-six patients 
(72.4%) received treatment of 50.4 Gy + 5-FU, 26 patients (24.8%) 
received 50.4 Gy + 5-FU/Ox, and three patients (2.8%) received 
50.4 Gy + Capecitabine. After subsequent surgery, 26 patients (24.8%) 
achieved pCR, and 79 (75.2%) did not. The median disease-free 
survival (DFS) of the cohort was 50 (range 2–132) months.

Different microbial profiles in patients with 
distinct therapeutic responses

After taxonomic classification and the removal of human reads, 
we assessed the landscape of the intratumoral microbiome abundance 
profiles in all available pre-treatment samples in patients with rectal 
cancer. Figure 1A shows the evolutionary structure of the microbial 
profiles in the cohort. Proteobacteria, Firmicutes, Bacteroidetes, 
Actinobacteria, and Fusobacteria were the top five abundant microbes 
at the phylum level (Figure 1B). Further analysis at the genus level also 
revealed the most abundant microbes (Figure 1C). There were 18 
genera and 103 genera specific to the pCR group and the non-pCR 
group, respectively, with 293 genera shared by both groups 
(Supplementary Figure S1A). The top 10 abundant genera along with 
their taxonomic information at different levels, were summarized in 
Supplementary Figure S1B.

We observed higher α diversity in the non-pCR group than in the 
pCR group (Shannon index, p = 0.033) (Figure 1D). PCoA analysis by 
Jaccard’s distance also revealed significant differences in β diversity 
between the two groups (p = 0.042) (Figure 1E). PLS-DA also indicated 
significant differences between the microbial communities in pCR and 
non-pCR (Figure 1F). We also observed different network patterns in 
the intratumoral microbes of the pCR and non-pCR groups 
(Figure  1G). Multiple correlations between Firmicutes and 
Proteobacteria were observed in the non-pCR group, which differed 
from the pCR group.

LEfSe analysis was conducted to assess the differences in 
microbial signatures between the pCR and non-pCR groups. 
Fourteen differential taxa were observed between pCR and 
non-pCR groups, including genera Faecalibacterium, Alistipes, and 
Akkermansia, etc. (Figure 1H). Further analysis using the STAMP 
software presented the presence of differential microbes at the 
genus level (Figure  1I). We  observed that the abundances of 
Christensenella, Ruminococcus, Collinsella, Faecalibacterium, 
Akkermansia, Faecalitalea, Alistipes, Anaerostipes, 
Anaerobutyricum, Pavimonas, Blautia, and Bifidobacterium were 
significantly enriched in the non-pCR group. When summarizing 
the abundance of these 12 microbes, we observed distinct microbial 
patterns between the non-pCR and pCR groups, as shown in the 
heatmap (Figure 1J).

Interaction between intratumoral microbes 
and tumor

We performed further multi-omics analysis, combining 
microbiota, gene expression, and immune and stromal cell 
infiltration, to better understand the interaction between 
intratumoral microbes and the tumor. Based on WGCNA, 
Faecalitalea and Clollinsella were significantly correlated with 
co-expression modules associated with adaptive immune response, 
phagocytosis, recognition, and inflammatory response 
(Figures 2A–C). Correlation analysis revealed several significant but 
not robust associations between intratumoral bacteria and previously 
reported resistant gene expression (Figure 2D; Li et al., 2022). It also 
indicated a significant association between specific intratumoral 
microbiomes and eosinophils, neutrophils, macrophages M2 and 
naïve B cell infiltration (Supplementary Figure S2). These findings 

TABLE 1 Clinical characteristics of patients with LARC.

Patients n  =  105

Sex

Male

Female

64 (68.8%)

41 (31.2%)

Age (years) 65 (34–86)

Grading n = 103

0 2 (1.9%)

2 95 (92.2%)

3 6 (5.8%)

cTNM n = 102

I 2 (2.0%)

II 12 (11.8%)

III 87 (85.3%)

IV 1 (1.0%)

Treatment

50.4 Gy + 5-FU 76 (72.4%)

50.4 Gy + 5-FU/Ox 26 (24.8%)

50.4 Gy + Capecetabine 3 (2.8%)

Therapeutic response

non-pCR 79 (75.2%)

pCR 26 (24.8%)

DFS (months) 50 (2–132)
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FIGURE 1

Characterization of the microbiome in the pCR and non-pCR groups. (A) Phylogenetic tree of the intratumoral microbiome in rectal adenocarcinoma. 
Each node represents a specific taxon. Different colors denote different phyla. The size of the nodes is related to the abundance of each taxon. 
(B) Stack plots of microbial composition at the phylum level. (C) Stack plots of microbial composition at the genus level. (D) The α diversity of samples 
belonging to the pCR and non-pCR groups. (E) Principal coordinates analysis (PCoA) based on the Jaccard distance of the pCR and non-pCR groups. 
(F) Partial least squares discriminant analysis (PLS-DA) of the pCR and non-pCR groups. (G) Microbial networks in the pCR and non-pCR groups. Each 
dot represents one genus. Only 150 genera with top abundance are shown. The size of each dot represents the igraph degree, which reflects the 
number of significant correlations between the corresponding genus with the others. The orange and blue lines indicate positive and negative 
correlations, respectively. (H) Histogram of linear discriminant analysis (LDA) scores computed from features differentially abundant between the pCR 
and non-pCR groups. Features with LDA score (log10)  >  3.0 and p  <  0.05 are shown. (I) Bar plot of relative abundance of genera with significant 
differences between pCR and non-pCR groups. Comparison is conducted via Welch’s t-test, and only genera with Benjamini–Hochberg false 
discovery rate  <  0.05 are shown. (J) Heatmap indicates the correlation between the therapeutic response and microbial profiles.
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indicated that interactions may occur between the intratumoral 
microbiome and TME through multifaceted mechanisms.

After the CAFs of rectal cancer were clustered into 18 
subpopulations (Figure 3A), we assessed the relationship between the 
abundance of 12 characteristic microbes and the infiltrating CAF 
clusters within our cohort. We observed clusters 7, 10, 13, 14, and 16 
correlated with six genera in the network (Figure 3B). Enrichment 
Analysis demonstrated that CAF clusters 7 and 10 were associated 
with collagen biosynthesis, modification, and ECM organization and 
modulation (Figures 4A,B and Supplementary Figure S3). Moreover, 
the presumed upstream regulatory factors of both clusters 7 and 10 
include NF-κB (Figure 4C).

Establishment of a predictive classifier for 
response to nCRT

To translate our findings into clinical applications, we established 
a predictive classifier for response to nCRT. Thus, we conducted ROC 
analysis and calculated the area under ROC curves (AUC) of the 12 
differential microbes, among which, Collinsella (AUC = 0.629, 
p = 0.049), Alistipes (AUC = 0.685, p = 0.005), Christensenella 
(AUC = 0.672, p = 0.009), Faecalibacterium (AUC = 0.647, p = 0.025), 
Ruminococcus (AUC = 0.645, p = 0.027), Pavimonas (AUC = 0.682, 
p = 0.005), and Akkermansia (AUC = 0.693, p = 0.003) appeared 
significantly predictive of the therapeutic response (Figure 5A and 

FIGURE 2

Correlation between intratumoral microbes and tumor microenvironment. (A) Heatmap indicates the correlation between identified modules and 
differential microbes. (B) Bar graph of enriched pathways of the brown module in (A). (C) Bar graph of enriched pathways of the green module in (A). 
(D) Correlations between the expression profile of treatment-resistant gene and differential microbes. The correlation coefficient is displayed if 
p  <  0.05.
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Supplementary Table S1). Then, patients were classified into the high-
level group or low-level group according to the relative abundance of 
these seven microbes. The optimal cutoff value for each of these seven 
microbes was set at the maximum Youden index. After the patients 
being stratified by the corresponding cutoff values, Collinsella 
(AUC = 0.652, p = 0.021), Alistipes (AUC = 0.702, p = 0.002), 
Christensenella (AUC = 0.702, p = 0.002), Faecalibacterium 
(AUC = 0.658, p = 0.016), Ruminococcus (AUC = 0.652, p = 0.021), 
Pavimonas (AUC = 0.669, p = 0.010), and Akkermansia (AUC = 0.689, 

p = 0.004) were still significantly associated with the responses to 
nCRT (Supplementary Figure S4 and Supplementary Table S2). 
We assigned a score of 0 to the low-level group and a score of 1 to the 
high-level group. Then, the microbial risk score of each individual was 
defined by the sum value of the scores based on these seven predictive 
microbes. The microbial risk score was significantly linked to the 
therapeutic outcomes, with the AUC of the microbial risk score for 
predicting non-pCR being 0.820 (p < 0.001) (Figure 5B). As shown in 
Table  2, multiple logistic regression analysis revealed that the 

FIGURE 3

Correlation between intratumoral microbes and cancer-associated fibroblasts (CAFs). (A) Heatmap for marker genes of 18 CAF clusters in the tumor 
microenvironment (TME). (B) Network patterns between the 18 clusters of CAFs and the 12 differential microbes. The strings represent a correlation 
coefficient  >  0.3 with p  <  0.05.
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FIGURE 4

Characterization of the cancer-associated fibroblasts (CAFs) that are related to intratumoral microbiomes. (A) Heatmap indicates the pathways/
processes enriched in each cluster of CAFs. (B) Protein–protein physical interactions and GO enrichment analysis of MCODE network components of 
the marker genes of CAF cluster 10. (C) Heatmap indicates the upstream regulatory factors for each cluster of CAFs.
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microbial risk score was an independent predictive factor for 
therapeutic response to nCRT (HR = 2.253, 95% CI: 1.483–3.422, 
p < 0.001). For each one score increase in the microbial risk score, the 
risk of non-pCR was more than doubled.

Discussion

Our study is the first to compare the intratumoral microbiome 
between pCR and non-pCR patients receiving nCRT. We observed 
significant differences in α and β diversities between the two groups. 
In addition, we identified the relative differences in the abundance of 
specific taxa between the pCR and non-pCR groups. The results 
revealed that the microbial profiles of non-pCR were characterized by 
higher α diversity. Further examination identified 12 significantly 
differential genera between the pCR and non-pCR groups: 
Christensenella, Ruminococcus, Collinsella, Faecalibacterium, 
Akkermansia, Faecalitalea, Alistipes, Anaerostipes, Anaerobutyricum, 
Pavimonas, Blautia, and Bifidobacterium. These 12 microbes were 
enriched in the non-pCR group, suggesting a negative correlation with 
the therapeutic response.

Based on RNA-seq data acquired from rectal cancer biopsy, our 
study first identified the presence of intratumoral microbiota in 
patients with LARC. In 2021, Liu et al. demonstrated an intratumoral 

microbial signature and revealed enriched microbiota, including 
Acidocacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, 
Actinobacteria, Chloroflexi, Firmicutes, and Fusobacteria (Liu et al., 
2021). Consistent with previous findings, the most abundant 
microbiomes detected at the phylum level in our work were 
Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and 
Fusobacteria. In addition, Liu et al. pointed out the heterogeneity 
between the intratumoral microbiome and the microbiome extracted 
from adjacent tissues, revealing distinct patterns between the 
intratumoral microbiome and gut microbiota. These results support 
the necessity of microbial identification from the tumor samples in 
our study and emphasize the importance of intratumoral microbiotas 
inside LARC. Previous studies focusing on the intratumoral microbes 
of LARC have revealed the role of microbiota in oncogenesis and 
tumor progression. However, limited investigations into the 
relationship between intratumoral microbiota and response to nCRT 
could not directly elucidate the causal clinical value of host-
related microbes.

Since intratumoral microbiomes have potential differences 
from gut microbiomes, the predictive value of intratumoral 
microbiomes should be  examined separately. Despite this, our 
intratumoral microbiota results were partially consistent with prior 
gut microbiome studies analyzing responses to nCRT. In a gut 
microbiome study (Yi et al., 2021), the family Coriobacteriaceae 

FIGURE 5

Predictive value of differential microbes for nCRT response. (A) Receiver operator characteristic (ROC) analysis of 12 differential microbes between the 
pCR and non-pCR groups predicting the nCRT response. (B) ROC analysis of the microbial risk score predicting the nCRT response.

TABLE 2 Multiple logistic regression of clinical characteristics for predicting responses to neoadjuvant chemoradiotherapy.

Risk factors OR (95% CI) Value of p

Gender 0.777 (0.253–2.386) 0.660

Age 1.755 (0.606–5.084) 0.300

Grading 4.265 (0.5–36.345) 0.185

cT 1.014 (0.329–3.119) 0.981

cN 0.585 (0.205–1.671) 0.317

Microbial risk score 2.253 (1.483–3.422) <0.001

The bold value indicates statistical significance.
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emerged as a crucial biomarker for non-responders. In our research, 
Coriobacteriaceae, composed predominantly of the genus 
Collinesella, likewise functioned as a biomarker for 
non-pCR. Another gut microbiome study noted the family 
Rikenellaceae and genus Bacteroides as the most abundant order in 
non-responders’ feces (Jang et al., 2020). Similarly, as the only genus 
from the family Rikenellacea uncovered within the intratumoral 
microbiome in our research, Alistipes had significant enrichment 
within the non-pCR group, and Bacteroides were also enriched in 
the non-pCR group but not significantly. Another study (Shi et al., 
2020) reported the order Clostridiales, the genus Faecalibacterium, 
and the genus Rumminococcus as significantly enriched in 
non-responders, which is consistent with the results in our work. 
It’s important to highlight that among the 12 differential genera in 
our research, six belonged to the order Clostridiales.

Evidence has indicated that Blautia is more abundant in the 
shorter progression-free survival group of CRC (Martini et  al., 
2022). A study has also suggested that Blautia promotes the 
oncogenesis of LARC, possibly through its interaction with 
cholesteryl ester (Bisht et al., 2021). Similar to Blautia, Parvimonas 
has also been found to be  involved in tumorigenesis (Liu et al., 
2021). However, previous findings have suggested that 
Faecalibacterium (Dikeocha et al., 2022), Akkermansia (Fan et al., 
2021), Alistipes (Dai et al., 2018), Anaerostipes (Yuan et al., 2021), 
and Bifidobacterium (Lin et al., 2019) have anti-tumor patterns. 
These microbes are defined as beneficial commensal bacteria and 
are used as probiotic supplements in clinical practice. However, 
limited studies have revealed Faecalibacterium as a signature 
microbiota in CRC. In addition, network analysis revealed a 
positive relationship between anti-tumor microbes (including 
Firmicutes and Verrucomicrobia) and tumor-promoting microbes 
(Fusobacteria) in the non-pCR group (Figure 1F). These findings 
suggest that these “beneficial” microbes in the microbial dysbiosis 
mode of non-pCR patients could enhance the enrichment of tumor-
promoting microbiotas and cause a general suppressor influence on 
the nCRT outcome. In conclusion, our study revealed that these 
‘beneficial’ microbiotas might play an “evil role” for nCRT.

Combining multiple microbial signatures may increase the 
prognostic value of microbial profiles when considering the 
potential network among microbiomes. Thus, we  defined a 
microbial risk score for LARC according to the abundance of the 
seven differential microbes at the genus level, namely Collinsella, 
Alistipes, Christensenella, Faecalibacterium, Ruminococcus, 
Pavimonas, and Akkermansia. The results revealed that the 
microbial risk score had an independent predictive value for nCRT 
response, indicating the clinical value of the intratumoral 
microbiome. To further understand the mechanism underlying the 
relationship between intratumoral microbiomes and the response 
to nCRT, we explored the correlation between microbiota and other 
essential factors in the TME, including tumor cells, infiltrating 
immune cells, and ECM. Previously, the correlation between CAFs 
and ECM was established in a study that observed the signature of 
CAF in the TME and defined the function of CAF based on gene 
expression and immunostaining (Lee et al., 2020). Moreover, ECM 
remodeling has also been linked to tumor treatment resistance in 
several studies (Drain et al., 2021; Pietilä et al., 2021; Fang et al., 
2022). In our work, we explored five clusters of CAF subpopulations 
that presented potential interactions with important microbes, in 

which clusters 7 and 10 were found to be  responsible for ECM 
formation, similar to another study reporting that microbiota inside 
CRC was co-localized with CAFs, activated the TLR2/NF-κB 
pathway in the CRC microenvironment (Xu et al., 2022). The above 
findings suggest a potential rationale that the intratumoral 
microbiota mediates the response to neoadjuvant therapy in LARC 
through interaction with CAFs, which play an essential role in 
ECM modulation.

It is essential to note some limitations of our study. Host genetic 
variation, ethnicity, geography, diet, lifestyle, and patterns of 
medications all play a role in the structure of the human microbiome 
(Yatsunenko et al., 2012; Goodrich et al., 2014; Brooks et al., 2018). 
Although our findings illustrated the microbial characteristics in the 
TME of LARC and the bacteria-associated signatures contributing to 
nCRT response prediction, the study is limited by its retrospective 
nature. It is currently constrained to a specific group of individuals 
from a developed country in Western Europe, given the currently 
limited RNA-seq data in patients with LARC who received 
nCRT. Besides, the predictive performance of the microbial risk score 
was not compared with that of the models or biomarkers proposed 
in previous studies (Kuo et al., 2012; Lim et al., 2015; Dayde et al., 
2017) due to a lack of sufficient clinical and molecular data. Therefore, 
further research is warranted to verify the predictive value of the 
intratumoral microbiome of LARC for the responses to nCRT, 
especially in populations with different geological and ethnic 
backgrounds and complex medical histories. In addition, the analysis 
and collection of tumor samples in a time series would show the 
dynamic interaction between TME and intratumoral bacteria during 
the long process of nCRT. Future laboratory examinations could also 
focus on validating our conclusions on the relationship between the 
intratumoral microbiota and CAFs. Exploration of the complex 
crosstalk among intratumoral microbiota, tumor cells, and TME of 
patients with LARC may lead to the discovery of novel prognostic 
biomarkers, nutritious practices, and probiotic agents to improve the 
treatment effect for nCRT.

In conclusion, with considerable sample size, we performed 
systematic and comprehensive research on the intratumoral 
microbiome to predict the response to nCRT. The underlying 
mechanism of this finding could be  related to the interactions 
between the intratumoral microbiota and CAFs. These results shed 
light on a new perspective of pre-treatment biomarkers for nCRT 
and could lead to better treatment strategies for LARC.
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