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Soil nutrient management 
influences diversity, community 
association and functional structure 
of rhizosphere bacteriome under 
vegetable crop production
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Introduction: Rhizosphere bacterial communities play a crucial role in promoting 
plant and soil ecosystem health and productivity. They also have great potential 
as key indicators of soil health in agroecosystems. Various environmental factors 
affect soil parameters, which have been demonstrated to influence soil microbial 
growth and activities. Thus, this study investigated how rhizosphere bacterial 
community structure and functions are affected by agronomic practices such as 
organic and conventional fertiliser application and plant species types.

Methods: Rhizosphere soil of vegetable crops cultivated under organic and 
conventional fertilisers in different farms was analysed using high-throughput 
sequencing of the 16S rRNA gene and co-occurrence network pattern among 
bacterial species. The functional structure was analysed with PICRUSt2 pipeline.

Results: Overall, rhizosphere bacterial communities varied in response to 
fertiliser type, with soil physicochemical parameters, including NH4, PO4, pH and 
moisture content largely driving the variations across the farms. Organic farms 
had a higher diversity richness and more unique amplicon sequence variants 
than conventional farms. Bacterial community structure in multivariate space 
was highly differentiated across the farms and between organic and conventional 
farms. Co-occurrence network patterns showed community segmentation for 
both farms, with keystone taxa more prevalent in organic than conventional 
farms.

Discussion: Module hub composition and identity varied, signifying differences 
in keystone taxa across the farms and positive correlations between changes in 
microbial composition and ecosystem functions. The organic farms comprised 
functionally versatile communities characterised by plant growth-promoting 
keystone genera, such as Agromyces, Bacillus and Nocardioides. The results 
revealed that organic fertilisers support high functional diversity and stronger 
interactions within the rhizosphere bacterial community. This study provided 
useful information about the overall changes in soil microbial dynamics and 
how the changes influence ecosystem functioning under different soil nutrient 
management and agronomic practices.
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Introduction

Soil microbes participate in nutrient cycling, organic matter 
decomposition and energy flow, which are key in sustaining soil 
ecosystem functions (Ling et  al., 2022). However, soil nutrient 
management, soil properties and climatic conditions, which vary 
across geographic locations alter how soil ecosystem function through 
a possible shift in microbial diversity and functions (Ge et al., 2008; 
Ahkami et  al., 2017; Yang et  al., 2021). Substantial responses to 
changes in land use and soil nutrient build-up have been reported for 
both plant and soil microbial communities, with potential 
consequences for ecosystem functioning (Nielsen et al., 2015). Soil 
microbial diversity is vast and its interactions with other ecosystem 
components (e.g., vegetation and soil parameters) are complex, which 
significantly impacts the correlation between soil microbial diversity 
and ecosystem functions in response to disturbances (Garnica et al., 
2020). Thus, insights into soil bacteriome structure and how it is 
affected by agronomic practices are key to making informed decisions 
that will promote agroecosystem sustainability.

Currently, organic and conventional fertilizers are the main agro-
inputs for improving soil nutrient content (Musyoka et al., 2017). 
Improved soil nutrient content enhances overall plant health by 
altering the soil parameters and predisposing the selection of certain 
rhizosphere bacterial communities with unique ecosystem functions. 
Consequently, the plant and microbes interactions in the soil, along 
with the above-ground productivity, are affected by the type of 
fertilizer applied (Ahkami et al., 2017). Using phospholipid fatty acids, 
a study has reported that organically managed soil enhanced bacterial 
and fungal biomass, with an increase in total microbial metabolic 
activity and soil organic matter. Thus, soil nutrient management types 
could drastically impact soil ecosystem functioning, through the 
imbalances caused by fertilizer application and nutrient deposition 
(Martínez-García et al., 2018).

Furthermore, plant species or genotypes influence the synthesis 
of unique exudates and extracellular enzymes, which impact 
microscale spatial patterns in soil bacterial communities and 
differentially stimulate the growth of specific microbial groups under 
different ecosystems across geographic locations (Hoch et al., 2019; 
Yan et al., 2021). Usually, plants exert a selective influence on their 
rhizo-microbiome to acquire key beneficial traits (Jaramillo et al., 
2016), indicating rhizosphere microbial communities are a reflection 
of plant species and plant-beneficial genetic functions. For example, 
legumes harbor bacteria with nitrogenases that enhance their N-fixing 
ability (Lugtenberg, 2015). Similarly, plant-associated microbes, which 
perform functions such as nitrate reduction, denitrification, nutrient 
solubilization, and production of phytohormones such as indole acetic 
acid, ethylene and siderophore are a reflection of the host plant’s needs 
(Raimi et  al., 2017). These microbial functions influence plant 
productivity and health, which in turn drive soil bacterial diversity 
and ecosystem functions (Mendes et al., 2013).

Soil parameters vary by geographic location and primarily provide 
similar conditions that affect the activities of plants and their associated 
microbiome to soil microbes (Mendes et al., 2013). Studies have shown 
that factors such as soil pH, carbon, organic matter and nutrient content 
drive spatial patterns of soil microbial diversity within an ecosystem 
(Bardgett and Caruso, 2020; Nan et al., 2020). Spatial patterns of soil 
microbial community due to plant species and fertilizer types and how 
it relates to bacterial taxonomic and functional profiles remain largely 

underexplored. Increase in land-use intensification is reported to alter 
soil microbial composition (Felipe-Lucia et al., 2020) and keystone taxa, 
which are crucial for microbial community structure and ecosystem 
functioning (Banerjee et al., 2018). Due to the importance and unique 
role of keystone taxa, their interactions or loss can trigger a shift in 
microbiome structure (Yang et  al., 2021). Interactions between 
microbial community members have been widely assessed using 
microbial co-occurrence network analysis (Li et al., 2018; Xu et al., 
2022). Thus, co-occurrence patterns and microbial networks are key to 
understanding how bacterial community interactions and keystone 
taxa distribution and functions change under different agronomic 
practices (Huang et al., 2019; Hernandez D. J. et al., 2021).

Consequently, this study assessed the effects of fertilizer type 
(organic vs. conventional) and plant species type on the microbial 
dynamics (including keystone taxa) and ecosystem functions of 
vegetable rhizosphere soil across different farms. It is hypothesized that 
fertilizer type in each of the farming systems predisposes the selection 
of certain rhizobacterial communities, which possess diverse but 
unique functional gene repertoire of agronomic importance. Results 
from this study could provide baseline information useful in predictive 
modeling for manipulating soil bacterial communities to improve 
agroecosystems. Similarly, the approach used in this study could 
unravel keystone taxa with unique biomarker potential for monitoring 
soil health and productivity in a given nutrient management system.

Experimental procedures

Description of the study sites and 
rhizosphere soil sampling

Rhizosphere soils were collected from four vegetable farms 
located in the North West (farms B and S) and Gauteng (farms J and 
T) provinces of South Africa. Farm B (26°42′55.0″S 27°04′59.6″E) and 
farm S (26°47′43.5″S 27°02′18.3″E) are situated in JB marks 
municipality, while farm J (26°11′40.1″S 28°03′58.3″E) and farm T 
(26°03′16.0″S 27°40′13.3″E) are in Johannesburg and West Rand 
District municipalities, respectively. The North West province is 
characterized as a semi-arid climate while the Gauteng province is 
classified as a mild climate that is neither humid nor too hot (www.
sa-venues.com/weather/). Average annual temperature and rainfall are 
22.36°C and 36.6 mm for North West province and 20.64°C and 
56.11 mm for Gauteng province. The average annual relative humidity 
for North West and Gauteng provinces are 37.8 and 50.22%, 
respectively (Weather and Climate, 2023). Vegetable farming is a 
major agricultural production in the two provinces, with higher 
production in the North West compared with the Gauteng province 
(Macaskill, 2016). The farms have been cultivating various vegetables, 
including cabbage, lettuce, onions, and spinach for over 2 years on the 
same plot. The Gauteng province farms (farm J and T) practice 
conventional farming, using chemical fertilizers, pesticides and 
fungicides, whereas the farms in the North West province (farm B and 
S) practice mainly organic farming, utilizing plant and animal waste. 
The organic farms use compost, green waste, and animal manure 
(poultry, sheep, goat, and cow), while the conventional farms use 
chemical fertilizers including NPK fertilizers, urea, ammonium 
nitrate, diammonium phosphate, and pesticides such as carbamates, 
organophosphates and pyrethroid (Personal communication).
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Sampling was conducted in the summer (October–February) of 
2021. Based on visual inspection, rhizosphere soils of healthy vegetables 
of the same age and size including, Allium cepa (onion), Brassica 
oleracea (cabbage), Lactuca sativa (lettuce), and Spinacia oleracea 
(spinach), were sampled from each farm as described by Barillot et al. 
(2013), with some modifications. Briefly, vegetables were uprooted and 
shaken vigorously to remove bulk soil from the roots. Thereafter, the 
rhizosphere soil was collected by hand-shaking several undamaged 
roots to release the adhering soil into a sterile beaker. Five replicate 
samples were collected for each plant per farm and an equal quantity 
(50 g each) of the soils from the same vegetable for each farm were 
pooled to obtain a composite sample. An additional sample of the 
rhizosphere soil was collected from each farm; a different vegetable 
type was sampled at each farm, bringing the total number of study 
samples to 20. Samples were immediately placed in sterile zip-lock 
bags, transported to the laboratory on ice and stored for further analysis.

Physicochemical parameters and enzyme 
analyzes of rhizosphere soil

The soil pH was measured from a 1:2.5 soil-water suspension 
using a pre-calibrated pH meter (HQ40d Hach, United States), while 
the electrical conductivity (EC) was determined with an EC meter. 
The amounts of macronutrients (N, P, K, and Ca), micronutrients 
(Mn, Fe, Zn, and Cu), heavy metals (Pb, Cd, Cr, Hg, and As) and 
exchangeable cations (Ca2+, Mg2+, K+, and Na+) in the soil were 
determined using the inductively coupled plasma mass spectrometry 
(ICP-MS), following standard procedure (Bulska and Wagner, 2016). 
Other physicochemical properties, such as soil texture (sand, silt, and 
clay proportion), cation exchange capacity (CEC), moisture and 
organic matter (OM) content, and the soil enzyme activities, 
including acid and alkaline phosphatases, β-glucosidase, urease and 
dehydrogenase activity were analyzed at the Eco-Analytical, North-
West University, South  Africa, following standardized methods 
described by the Soil Science Society of South Africa (SSSSA, 1990).

High-throughput sequencing of 16S rRNA 
gene

Soil community DNA was extracted using Power Soil DNA 
extraction kits (Qiagen, Hilden, Germany) following the 
manufacturer’s instructions. The DNA concentration was measured 
with a Qubit fluorometer (Invitrogen, Carlsbad, CA, United States) 
and the integrity was checked using gel electrophoresis with a 1% 
agarose gel. Extracted DNA was normalized to equimolar 
concentrations (5 ng/μl) using 0.1 M Tris-HCl (pH 8.5) and the 
partial 16S rRNA gene (V3-V4 region), a universal barcode for the 
characterization of bacteria, was amplified in a polymerase chain 
reaction (PCR) using Illumina-barcoded 341F and 805R primers 
(Klindworth et al., 2013). The 16S rRNA gene library was prepared 
as described by van Wyk et  al. (2017). Paired-end (2 × 300 bp) 
sequencing of the gene libraries was performed on the Illumina 
MiSeq sequencer using the Nextera v3 kit (Illumina Inc., San Diego, 
CA, United States). Sequencing was performed at the sequencing 
facility of the Unit for Environmental Sciences and Management, 
North-West University, Potchefstroom, South Africa.

Bioinformatics

The 16S rRNA gene sequence reads were demultiplexed and 
trimmed of barcodes using MiSeq Reporter software (Illumina Inc., 
San Diego, CA, United States) and then quality checked with FastQC 
(v. 0.11.5) (Babraham Bioinformatics, UK). Low-quality reads were 
trimmed with trimmomatic software (v. 0.38) (Bolger et al., 2014) and 
reads with mean nucleotide base quality score of less than 20 (Phred 
Q score) were removed. Reads were analyzed using the Quantitative 
Insight into Microbial Ecology v2 platform (QIIME 2, Release 
2020.11; Bolyen et al., 2019). Quality-filtered reads were denoised and 
clustered into amplicon sequence variants (ASVs) using DADA2 
denoiser (Callahan et al., 2016) with a pre-trained classifier of the 
SILVAngs rRNA gene reference (release 138) (Quast et al., 2013). After 
singleton removal, the ASV table was rarefied to an even depth before 
the taxonomic assignment and diversity analyzes in QIIME 2. Alpha 
diversity indices such as the Shannon-Wiener index, inverse Simpson 
index, Chao1 richness estimator and phylogenetic diversity were 
analyzed in R v 4.1.1 (R Development Core Team, 2018).

Predicted functional metagenomic profile 
of rhizosphere bacterial communities

The functional metagenomic profile of the absolute abundance of 
microbial genera was predicted using the Tax4Fun2 package (Wemheuer 
et al., 2020) in R (R Development Core Team, 2018). Firstly, the ASVs 
were searched against the 16S rRNA gene reference sequences using the 
basic local alignment search tool (BLAST) via the runRefBlast function. 
Thereafter, the functional prediction was evaluated using the 
makeFunctionalPrediction, where the ASVs were summarized based on 
the results of the next neighbor search (Wemheuer et  al., 2018). 
Predicted profiles were annotated based on the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) orthology (KO) pathways (Kanehisa et al., 
2012). KO terms and metabolic pathways were generated for the ASVs 
and the relative abundance of the functional genes was calculated. To 
gain insights into the influence of agronomic practices on bacterial 
community functional genes, only a few of the KO terms contributing 
to major ecosystem functions (e.g., organic matter decomposition and 
biogeocycling), plant growth and nutrient metabolism were investigated.

Co-occurrence network

Bacterial community co-occurrence patterns were analyzed by 
constructing ecological networks using the Random matrix theory 
(RMT)-based method in the molecular ecological network analysis 
(MENA) pipeline1 (Faust and Raes, 2016). To assess the impact of 
fertilizer type on soil bacterial structure, organic and conventional 
farm networks were constructed. Network complexity was reduced 
by using only ASVs present in at least 40% of the samples across the 
organic and conventional farms and the Pearson correlation 
coefficient was employed for data transformation. Using a multilevel 
modularity optimization algorithm, bacterial community groups 

1 http://ieg4.rccc.ou.edu/mena
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were identified by clustering networks into modules (Blondel et al., 
2008). Node connectivity was established based on among-module 
connectivity (Pi) and within-module connectivity (Zi); creating four 
sub-categories of nodes (a) peripheral (Zi < 2.5; Pi < 0.62), (b) 
connectors (Zi < 2.5; Pi > 0.62), (c) module hubs (Zi > 2.5; Pi < 0.62) 
and (d) network hubs (Zi > 2.5; Pi > 0.62) (Guimera and Amaral, 
2005). The networks were visualized in Gephi v 0.9.2.

Statistical analyzes

All statistical analyzes were performed in R software (v.4.1.1) unless 
otherwise stated. The significance for all tests was set at p < 0.05 and the 
data was tested across fixed factors: farms, fertilizer types (organic vs. 
conventional farms) and vegetable species. Data normality was tested 
using the Shapiro–Wilk test and non-normal data was transformed 
with log10, square root or sine to fit a normal distribution. Normal or 
non-normal data were analyzed using parametric or non-parametric 
tests, respectively. Correlation between soil physicochemical and 
enzyme activity data was tested using Pearson or Spearman rank 
correlation for normalized or non-normal datasets. The community 
structure across the farms, and between organic and conventional farm 
soil was visualized with a nonmetric multidimensional scaling (NMDS) 
plot and a cluster dendrogram using vegan and dendextend (v. 1.12.0) 
(Galili, 2015) packages in R studio. Differences in multivariate space 
across the fixed factors were performed with Bray-Curtis dissimilarity 
using permutational multivariate analysis of variance (PERMANOVA) 
and Permutational test for homogeneity of multivariate dispersion 
(PERMDISP). Linear Discriminant Analysis (LDA) Effect size (LEfSe) 
(Segata et al., 2011) was performed to detect differentially abundant 
genera (Mann–Whitney U test or Kruskal-Wallis test, p-value < 0.05; 
LDA score > 2) between the farms, organic and conventional farms and 
plant species using microeco package in R software (Liu et al., 2021). 
Subsequently, the LEfSe results were visualized as bar plots. An 
indicator species functional analysis was performed for predicted KO 
terms to detect the most discriminatory KOs between the fixed factors. 
KO terms with false discovery rate (FDR)-adjusted p < 0.05 and an 
indicator value of > 0.1 were taken to be discriminant for the fixed 
factors. Redundancy analysis (RDA) was performed in R software to 
show the physicochemical parameters that best explain the variations 
in the microbial community composition.

Data availability statement

The 16S rRNA gene sequence data for this study are available in 
the sequence read archives (SRA) of the National Centre for 
Biotechnological Information under a BioProject with SRA accession 
no PRJNA904574 (https://www.ncbi.nlm.nih.gov/bioproject/904574).

Results

Rhizosphere soil physicochemical 
properties

The soil physicochemical parameters varied across the fixed 
factors with no particular trend. A near-neutral pH range was 

observed across the farms, with the conventional farms having a 
higher pH than the organic farms (Table 1). The moisture and OM 
content ranged from 1.06–1.42% and 4.98–5.89%, respectively. 
Organic farms largely had a higher CEC and OM content than 
conventional farms. Farms mostly had low quantities of microelements 
and heavy metals, except for Pb and As in farm J (Table 1). Soil texture 
was mainly classified as sandy-clay-loam for organic farms and sandy-
loam for conventional farms. Some of the soil physicochemical 
properties significantly (Kruskal-Wallis test, p < 0.05) differed across 
the farms (Table 1), while only the differences in OM, clay proportion, 
CEC, NH4, P, and Cu were statistically significant (Mann–Whitney or 
t-test, p < 0.05) across the fertilizer types.

Soil enzyme activities

The soil enzyme activities were significantly (Kruskal-Wallis H test, 
p < 0.05) different across the farms and fertilizer type, except for alkaline 
phosphatase, which was not influenced by the fertilizer type. Mostly, the 
enzyme activities were higher for organic farms compared to 
conventional farms (Table 2). The alkaline and acid phosphatases had a 
very low range of activities across the farms. Comparing among farms, 
farm B had the highest dehydrogenase and β-glucosidase activities, while 
farm S had the highest activity for urease. Farm J had the lowest urease 
activity, which is approximately five, 12 and 23 folds lower compared to 
farms B, T, and S, respectively (Table 2). The main effect of crop type and 
the interactions between the fixed factors on soil enzyme activities were 
not statistically significant (Kruskal-Wallis H test, p > 0.05).

Diversity and community structure of 
bacterial amplicon sequence variants

A total of 1,933,349 16S rRNA gene reads was obtained from all 
samples, with a mean read count of 96,667 per sample. Quality-filtered 
reads were clustered into 28,604 ASVs after pruning low count and 
low variance features. The ASVs were rarefied to an equal depth of 
74,170 (rarefaction curve in Supplementary Figure S1) before 
examining the treatment effects. The distribution and richness of 
ASVs differed substantially across the farms, with farm S having the 
highest number of unique ASVs (Figure 1A). Observed ASVs were 
higher in organic compared to conventional farms and 276 ASVs were 
shared among all the farms (Figures 1A,B). Comparing the shared 
ASVs in the organic (Supplementary Figure S2A) with the 
conventional (Supplementary Figure S2B) farms, 1,222 and 313 ASVs 
were exclusive to the organic and conventional farms, respectively 
(Figure 1B). Similarly, ASV richness differed across the rhizosphere of 
each vegetable species. Unique ASVs were higher in cabbage, followed 
by lettuce and onion rhizosphere, while spinach and lettuce 
rhizosphere share more ASVs (Supplementary Figure S3).

The alpha diversity indices measured were not significantly 
influenced by the main effect of fertilizer type and plant species, except 
for the inverse Simpson index, which was significant (ANOVA, 
F = 3.65, p = 0.035) across the farms, with the pairwise comparison 
(Tukey HSD, P-adjusted = 0.0218) showing differences between farms 
T and S. In addition, the combined effects of the fixed factors (fertilizer 
type and plant species) and their interactions had no significant effect 
(general linear model, p > 0.05) on the alpha diversity indices measured.
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Bacterial community structure was highly differentiated across 
the farms and between the organic and conventional farms in 
multivariate space. Although the bacterial community structure in the 

organic farms (farms B and S) are somewhat differentiated, they are 
jointly less similar to conventional farms (farms J and T) (Figure 2A); 
the community structural pattern is also supported by the hierarchical 

TABLE 1 Selected soil physicochemical properties across farms and fertilizer types.

Parameters Organic Conventional

Farm B Farm S Farm J Farm T

pH (H2O) 7.05 ± 0.15a 7.52 ± 0.13a 7.62 ± 0.6a 7.68 ± 1.1a

Moisture (%) 1.27 ± 0.2a 1.06 ± 0.12a 1.42 ± 0.4a 1.39 ± 0.2a

OM (%) 5.89 ± 0.12a 5.37 ± 0.11b 4.98 ± 0.19b 5.13 ± 0.19b

TOC 1.62 ± 0.21c 2.44 ± 0.02b 2.99 ± 0.48a 1.68 ± 0.11c

EC (mS cm−1) 0.44 ± 0.0b 0.44 ± 0.0b 0.22 ± 0.0c 0.70 ± 0.0a

CEC (cmol [+]) kg −1 11.68 ± 0.21b 29.29 ± 1.62a 8.42 ± 1.12c 10.24 ± 1.42bc

NO3 (mg l−1) 135.82 ± 1.72a 65.34 ± 1.53c 35.96 ± 3.52d 125.96 ± 4.39b

PO4 (mg l−1) 10.52 ± 0.44b 11.03 ± 1.25ab 10.45 ± 1.28b 14.19 ± 1.82a

NH4 (mg l−1) 1.04 ± 0.1b 1.12 ± 0.09b 1.53 ± 0.1b 4.28 ± 0.44a

SO4 (mg l−1) 35.54 ± 1.32c 70.13 ± 2.17a 15.37 ± 2.17d 53.79 ± 3.03b

HCO3 (mg l−1) 15.25 ± 0.48b 42.71 ± 1.41a 36.61 ± 3.13a 36.61 ± 3.94 a

P (mg kg −1) 42.5 ± 3.27b 14.3 ± 1.73c 72.2 ± 3.25a 40.2 ± 2.34b

K (mg l−1) 17.2 ± 0.97bc 19.55 ± 0.94ab 16.42 ± 1.81c 53.56 ± 1.81a

Na (mg l−1) 16.78 ± 0.68b 16.78 ± 0.87b 10.28 ± 1.56c 30.81 ± 2.53a

Ca (mg l−1) 32.86 ± 2.61b 33.26 ± 1.89b 13.63 ± 3.56c 51.7 ± 3.61a

Mg (mg l−1) 18.21 ± 1.02a 17.26 ± 0.89a 6.2 ± 1.24b 17.5 ± 2.20a

Cl (mg l−1) 42.19 ± 2.1b 30.14 ± 3.09c 12.76 ± 2.6d 99.62 ± 3.76a

Fe (mg l−1) 0.51 ± 0.02a 0.0 ± 0.00c 0.01 ± 0.0bc 0.03 ± 0.0b

Cu (mg l−1) 0.03 ± 0.00c 0.05 ± 0.00b 0.19 ± 0.00a 0.05 ± 0.00b

Zn (mg l−1) 0.0 ± 0.00c 0.0 ± 0.00c 0.14 ± 0.00a 0.01 ± 0.00b

Pb (mg/kg) 5.46 ± 0.18d 53.29 ± 0.91b 91.27 ± 0.24a 8.25 ± 0.10c

As (mg/kg) 2.68 ± 0.16c 3.69 ± 0.0b 12.35 ± 0.61a 3.47 ± 0.0b

Hg (mg/kg) 0.04 ± 0.0b 0.11 ± 0.0b 2.91 ± 0.18a 0.05 ± 0.0b

Pd (mg/kg) 0.26 ± 0.02b 0.37 ± 0.0a 0.17 ± 0.0c 0.18 ± 0.0c

Cd (mg/kg) 0.03 ± 0.0c 0.085 ± 0.0b 0.16 ± 0.0a 0.02 ± 0.0c

Particle size (>2 mm) 3.8 ± 0.78c 29.9 ± 2.43a 5.2 ± 0.68b 0.4 ± 0.00d

Clay (%) 23.1 ± 0.75a 27.4 ± 2.56a 12.6 ± 0.86c 17.9 ± 1.76b

Sand (%) 65.4 ± 2.72b 64.0 ± 3.91b 76.3 ± 2.66a 65.8 ± 4.3b

Silt (%) 11.5 ± 0.86b 8.6 ± 1.84a 11.1 ± 1.72b 16.3 ± 1.8c

Values are mean ± SD (n = 4). EC, electrical conductivity; CEC, cation exchange capacity; OM, Organic matter; TOC, Total organic carbon. Values with different superscript letters for each 
farm (across rows) are significantly different based on the non-parametric Kruskal-Wallis H test or the parametric analysis of variance (ANOVA) test.

TABLE 2 Important rhizosphere soil enzyme activities across the farms.

Parameters Organic Conventional

Farm B Farm S Farm J Farm T

Dehydrogenase 249.4 ± 7.09a 156.28 ± 6.61c 171.17 ± 2.1b 89.39 ± 0.78d

β-glucosidase 140.98 ± 2.41a 124.53 ± 0.47b 108.09 ± 1.19c 83.28 ± 0.22d

Alkaline phosphatase 0.26 ± 0.01b 0.52 ± 0.04a 0.52 ± 0.02a 0.26 ± 0.02b

Acid phosphatase 0.51 ± 0.02a 0.52 ± 0.02a 0.52 ± 0.00a 0.26 ± 0.01b

Urease 10.83 ± 0.48c 49.81 ± 1.74a 2.17 ± 0.06 d 25.99 ± 0.24b

Values are mean ± SD (n = 4) followed by superscript letters across the rows. The superscripts are significant differences based on the non-parametric Kruskal-Wallis H test or parametric 
independent sample ANOVA test across the farms. The unit of measurement for the enzyme are INF μg g−1 2 h−1 (dehydrogenase), P-nitrophenol μg g−1 h−1 (β-glucosidase, acid and alkaline 
phosphatase) and NH4-N μg g−1 2 h−1 (urease).
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clustering (Figure  2B). Moreover, the bacterial community 
composition was significantly different between the farms 
(PERMANOVA, p = 0.001) and across organic and conventional farms 
(PERMANOVA, p = 0.009), contributing about 39.01 and 11.74% of 
the variations in the models and a PERMDISP of 0.073 and 0.269, 
respectively. Significant variation was observed between farms B and 
T, J and T, and S and T. However, the plant species had no significant 
(PERMAOVA, p = 0.568) effect on the bacterial community structure, 
which was not clearly differentiated (Supplementary Figure S4). The 
non-significant and low dispersion rate in the bacterial 
community across the farms (Supplementary Figure S5A) suggests the 
results depicted by the NMDS plot in Figure 2A are reliable. The stress 
plot run for the NMDS plot is below 0.2 (Supplementary Figure S5B). 
The effect of fertilizer type and plant species interaction on 
the bacterial community structure was not significant 
(Supplementary Table S1).

Dominant and differentially abundant 
rhizosphere bacterial communities

Across all datasets, the relatively more abundant classifiable ASVs 
belonged to nine phyla and 19 major genera. Across the farms, the 
most relatively abundant (>5%) phyla were Actinobacteria (32.3%), 
Proteobacteria (25.4%), Acidobacteria (8.4%), Firmicutes (7.6%), 
Chloroflexi (7.6%), and Planctomyces (5.7%) (Figure  3A). The 
relatively more abundant (> 5%) genera across the farms are Bacillus, 
Rubrobacter, Gemmatimonas, Solirubrobacter, RB41, Nocardioides and 
Bryobacter (Figure 3B). Bacillus and Nocardioides were relatively more 
abundant in conventional farms, with their highest abundance found 
in farm J, while Rubrobacter and Solirubrobacter were more abundant 
in organic farms, mainly in farms B and S, respectively. Across the 
plant species, the bacterial community composition at the phylum and 
genus taxa levels were not particularly different; however, at the 

FIGURE 1

Comparison of unique and shared amplicon sequence variants (ASVs) richness. (A) ASV richness across the farms, (B) unique ASVs between organic 
and conventional farms.

FIGURE 2

Bray-Curtis dissimilarity between bacterial communities. (A) Comparison of observed ASVs between organic and conventional fertilization and across 
farms based on non-metric multidimensional scaling (NMDS). (B) Unweighted paired group mean arithmetic (UPGMA) hierarchical cluster dendrogram. 
The eclipses in the NMDS plot show 95% confidence intervals (standard error) in multivariate space within the group centroids, while the dotted lines 
indicate the distance of each sample to its group centroid in multivariate space. The stress plot (Supplementary Figure S5B) for the NMDS showed that 
the original dissimilarities are well preserved (stress  =  0.165047) in the reduced number of dimensions.
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phylum level, Chloroflexi, Planctomycetes and Gemmatimonadetes 
were relatively most abundant in cabbage, whereas Actinobacteria, 
Proteobacteria and Firmicutes were the most abundant phyla in onion 
(Supplementary Figure S6A) compared to other vegetables. Cabbage 
had the highest relative abundance of Bacillus and Rubrobacter, 
whereas onion had the highest relative abundance of Nocardioides, 
Streptomyces and Solirubrobacter (Supplementary Figure S6B).

Linear discriminant analysis (LDA) effect size (LEFSe) showed 
that a total of 205 features were discriminant across the farms 
(Kruskal-Wallis H rank-sum test, p < 0.05; LDA score > 2.0; 
Supplementary Table S2) while only 18 features were discriminant for 
organic farms vs. conventional farms (LDA score > 2.4; 
Supplementary Table S3). No taxa was discriminant across the plant 
species after multiplicity adjustment (Kruskal-Wallis rank-sum test; 
p > 0.05). The genera Rubrobacter and Microlunatus were highly 
discriminant in organic farms (Figure  4A), while Nocardioides, 
Ilumatobacter, Lysobacter, and Marmoricola, were significantly 
discriminant in conventional farms (Figure 4A). Some of the bacterial 
communities that were significant and differentially abundant 
(FDR-adjusted p < 0.05, LDA score > 2.0) at the genus taxa across the 
farms are shown in Figure  4B. Rubrobacter and uncultured 
Conexibacteraceae were more discriminant in farm B, while 
Pira4lineage and uncultured bacterial Clone C112 were discriminant 
in farm T. In farm S, Uncultured Actinomycetales, 
Thermoactinomyces, and Tumebacillus were found to be discriminant. 
The discriminant features in conventional farms, Marmoricola and 
Lysobacter, were mainly from farm J. Before multiplicity adjustment 
of the LEFSe results for plant species type, Pseudomonas, Paracoccus 
and Candidatus Udaeobacter were discriminant (p > 0.05, LDA 
score > 2.0) and abundant in cabbage, onion, and spinach, respectively 
(Figure 4C), while lettuce rhizosphere soil showed no discriminant  
feature.

Bacterial functional profile and 
differentially abundant agroecological 
important enzymes

The KO terms and pathways predicted for all the ASVs were 
6,429 and 279, respectively. After multiplicity adjustment, 17 of the 
predicted pathways were significant for fertilizer type factor 
(Kruskal-Wallis rank sum test, p < 0.05; LDA > 0.181; 
Supplementary Table S4), while no significant pathway was observed 
for the plant species factor. Across the farms, a total of 161 functions 
were significant (Kruskal-Wallis rank sum test, p < 0.05; LDA > 0.274) 
after multiplicity adjustment (Supplementary Table S5). Seventeen 
abundant KO terms, contributing to important agroecological 
processes such as the synthesis or metabolism of N, P, C, S, and Fe 
compounds were compared across the farms (Figure 5). Predicted 
KO terms, including nitrogenase, acid and alkaline phosphatase, 
ferric chelate reductase and aminocyclopropane-1-carboxylate 
(ACC) deaminase, had low relative abundance in organic compared 
to conventional farms. Based on the Bray-Curtis distance, the 
predicted pathways in organic farms and conventional farms 
clustered separately as shown by the hierarchical cluster dendrogram 
plot in Figure 5.

A higher relative abundance of K01505, K02217, K07405, 
K01187, and K03332 was predicted in the rhizosphere of cabbage 
relative to other plant species. Similarly, K00368, K02585, K01183, 
K07406, and K02013 were higher for ASVs from spinach than in 
other plant species, while onion had the least abundance of predicted 
KOs (Supplementary Table S6). The major functional profile group 
of the bacterial communities at taxa rank level 1 is metabolism, 
followed by environmental information, and genetic and cellular 
processes. Using LEfSe, it was revealed there are differences in the 
abundances of key enriched pathways across the fixed factors 

FIGURE 3

Average relative abundance (>5%) of dominant phylotypes across the farms. (A) Dominant Phyla (B) Dominant Genus taxa. The phylotypes with average 
relative abundance below 1% and the unculturable and unclassified at the genus taxa level were expunged from the plot. The bar plots were 
constructed based on the average relative abundance per farm site in R studio.
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(Kruskal-Wallis rank-sum test, p < 0.05, LDA > 0.2). Organic farms 
had more differentially abundant pathways compared to 
conventional farms. Amino acid, arginine, proline metabolism, 
C-fixation and citrate cycle pathways were discriminant in the 
organic farm (Supplementary Table S4), while sulfur, phosphonate 
and phosphinate metabolism were more abundant in the 

conventional farms. Farm T, followed by farm J had the highest 
number of important enriched pathways (Supplementary Table S5). 
Xenobiotic degradation and terpenoid and polyketide metabolism 
were differentially abundant in farm J while bacterial secretion, 
translation and genetic information system were more abundant in 
farm T (Supplementary Table S5).

FIGURE 4

Differentially abundant genera of the rhizosphere bacterial communities. (A) Top 6 statistically significant discriminant (FDR-adjusted p-value  <  0.1, LDA 
score  >  2.4) genera between organic and conventional farms (B) Top 9 discriminant (FDR-adjusted p-value  <  0.05, LDA score  >  2.0) between the farms. 
(C) Differentially abundant genera (FDR-adjusted p-value  <  0.1, LDA score  >  2.0) between the plant species. The bar plot was generated using the Linear 
Discriminant Analysis (LDA) Effect size (LefSe) in the R using the microeco package. Uncul., uncultured.

FIGURE 5

Relative abundance of KEGG Orthology terms contributing to important agroecosystem functions. The hierarchical clustering dendrograms are based 
on the mean Bray-Curtis distance between the farms. The color range for the relative abundance is scaled across the farms. The superscripts by the 
enzyme commission (EC) number indicate (A); ACC, (B); N-fixation, (C); phosphorous mineralization, (D); sulfur mineralization (E); soil iron balance, (F); 
biocontrol, and (G); soil C breakdown. ICT, iron complex transport system.
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Relationship between biological and 
physicochemical properties

Although there were no significant correlations between some of 
the soil enzyme activities and physicochemical parameters 
(Supplementary Table S7), beta-glucosidase had a significantly positive 
correlation with pH (r = 0.32, p = 0.001) and PO4 (r = 0.12, p = 0.045) but 
negative correlation with OM (r = −0.69, p = 0.015), NH4

+ (r = −0.72, 
p = 0.005) and K (r = −0.30, p = 0.019). Both alkaline and acid 
phosphatase significantly (p < 0.05) correlated with TOC, positively and 
Cl, negatively. Moreover, alkaline phosphatase correlated positively 
with NO3 while acid phosphatase correlated positively with pH and 
EC. In addition, dehydrogenase had significant correlations that were 
negative with pH, PO4, NH4 and K but positive with OM and 
TOC. Although there exists either a positive or negative correlation 
between the soil enzymes and moisture content, Ca and sand, the 
correlations were not significant. Similarly, though not significant, there 
were correlations between the species function percentage of bacterial 
community with the soil parameters (Supplementary Figure S7).

The RDA plot showed that the soil physicochemical properties 
contributed 34.5% (R-squared adjusted value) of the variation in the 
bacterial community structure. Farms and fertilizer type-specific 
clustering were observed, especially for the organic farms (Figure 6). 
Among the physicochemical parameters in the RDA model, TOC, 
OM, EC, and CEC were statistically significant (ANOVA, p < 0.05) 
(Supplementary Table S8). Similarly, there were significant correlations 
between the environmental variables and the distance matrix (Mantel, 
p < 0.05) (Supplementary Table S8). Overall, the plot showed that soil 
physicochemical properties largely influenced the variations observed 
in the bacterial community (Figure 6). PO4, Na, and NH4 had more 
impact on the bacterial community structure in farm T, while 
moisture, TOC, sand, and pH, had more influence on bacterial 
community structure in the organic farms (farms B and S).

Co-occurrence analysis

Some of the ASVs had significant (r = 0.70, p < 0.05) positive 
correlations with the environmental traits, which produced a significant 
(Mantel, p = 0.001) effect on the network connectivity. The significant 
ASVs and node connectivity were found to be significant for two major 
phyla: Actinobacteria (Mantel, r = 0.120, p = 0.022) and Acidobacteria 
(Mantel, r = 0.344, p = 0.009). From the topological metrics (Table 3), 
both organic and conventional farm networks were non-random as 
inferred from the significant power-law distribution for each network 
(R2

organic = 0.88, p < 0.05; R2
conventional = 0.84, p < 0.05) and the higher values 

of some of the structural features in the empirical compared to the 
random networks (Table 3). The empirical network consisted of 247 
nodes and 704 edges (Figure 7A) for the organic farms and 284 nodes 
and 1,027 edges for the conventional farms (Figure 7B).

A higher level of positive (~72%) associations occurred among the 
bacterial communities in the organic farms compared to conventional 
farms, which had a higher negative (~33%) association. Though 
community segmentation was apparent in both networks, the organic 
farms had a more profound fragmentation. Moreover, a higher network 
complexity was observed for organic farms compared to conventional 
farms, which had more numbers of smaller modules and edges than 
organic farms. The module hubs were not of similar parameters, with 

organic farms (Figure  7A) having more bacterial communities 
compared to conventional farms (Figure  7B). Actinobacteria, 
Acidobacteria, Proteobacteria and Chloroflexi were dominant in the 
keystone nodes. No network hub was observed for both networks. 
While Actinobacteria occurred as a major node that highly connects 
modules in both networks (Figure  7), Bacteroides, Proteobacteria, 
Acidobateria and Chloroflexi are other connectors in the organic farm 
network. The keystone nodes comprised the genera Bacillus, 
Nocardioides, Blastocatella, and Saccharomonsospora. A major 
connector in conventional farms is Agromyces while organic farms are 
dominated by the family Micrococcaceae, Roseiflexaceae, 
Blastocatellaceae, Xanthobacteraceae, and Chitinophagaceae (Figure 7).

Discussion

Soil microbes significantly contribute to ecosystem functions 
through organic matter decomposition, nutrient cycling, and 
mineralization. These functions and plant ecosystems are influenced 
by agronomic practices such as soil nutrient management and 
cropping systems. Thus, this study provided insights into the 
rhizosphere soil bacterial community structure and functions of 
vegetable crops cultivated under organically and conventionally 
managed soil in different farms. Functional profiling and differentially 
abundant taxa of rhizosphere bacteria allowed for the identification 
of rare microbial communities with unique potentials in 
agroecosystems, emphasizing the benefits of understanding soil 
microbiome dynamics to reveal specific patterns, functions and 
strategies used by microbes under different agronomic conditions.

Soil physicochemical parameters influence 
nutrient richness

The fact that soil nutrients and structure drive plant growth and 
soil microbial diversity is well established (Bach et al., 2010; Xu et al., 
2022). Some of the soil parameters, including pH, EC, moisture 
content, NH4

+ and NO3
− were not significant across the farms, 

However, except for pH and P, the measured values were relatively not 
within the optimal range required for the productivity of most crops, 
including vegetables (Rosen and Eliason, 2005; Warncke et al., 2009; 
Liu and Hanlon, 2018). Contrary to our results, low moisture content 
has been reported in chemically fertilized soils (Rachwał et al., 2021) 
and a higher pH in organically managed soil (Diacono and 
Montemurro, 2010; Aziz et al., 2017). Higher levels of organic matter 
increase soil water holding capacity through soil aggregation, 
signifying soil organic matter and moisture content are strongly 
correlated (Rajkai et al., 2015). Although organic farms typically have 
higher organic matter content and soil texture type that support high 
moisture content, our results showed that conventional farms had 
higher moisture content, possibly due to other factors such as time of 
sampling and irrigation system. Compared to conventional farms, 
soils in the organic farms largely had higher clay content, CEC and 
OM content; this is in agreement with the observations from other 
studies (Han et al., 2016; Rigane et al., 2020). Among the farms, farm 
S, which is organically managed, had the highest particle size (Table 1). 
Soil particle sizes impact soil aeration and structure, while high clay 
content and CEC strongly drive the fixation of key soil nutrients 
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(Ramos et al., 2018; Kome et al., 2019). Being negatively charged, clay 
particles adsorb positive ions such as Ca2+, Fe3+, K+, and NH4

+ which 
are key indicators of soil nutrient richness (Tomašić et al., 2021). In 
contrast, our results show that in the organic farms (Farm B and S), 
which had higher clay content, some of the positive ions, including 
NH4

+, K+, and Ca2+ were relatively lower suggesting other factors, 
including irrigation, could have influenced the soil nutrient levels.

Soil enzyme activities in organically and 
conventionally managed soil

High activity of soil enzymes, including dehydrogenase, 
β-glucosidase and urease activities have been reported in organic 
farms (Hernandez T. et al., 2021; Pittarello et al., 2021). Extracellular 
enzyme production has been positively correlated with high microbial 
biomass and diversity in the community. Such reports are consistent 
with our results that showed a high activity of β-glucosidase across 
organic farms, validating the comparatively higher C mineralization 
in organic farms compared to conventional farms; compost and 
manure applied in organic farms are rich in carbon substrate (Zang 
et  al., 2018; Cordero et  al., 2019). Acid and alkaline phosphatase 
activities are optimal at pH 3.0–5.5 and 8.5–11.5, suggesting the low 
activities across the farms may be linked to the soil neutral pH (Neina, 
2019). Soil enzyme activities dynamically respond to soil nutrient 
management, which influences soil parameters, particularly pH, OM, 
moisture content and nutrient content (Pan et al., 2013; Koishi et al., 
2020). A significant correlation between soil pH and dehydrogenase, 
β-glucosidase and acid phosphatase suggests pH is a key factor driving 
enzyme activities (Pan et al., 2013). The observed positive correlation 
of β-glucosidase with OM indicates the specificity of the enzyme to 
soil C, which is a fraction of the total soil OM (Meena and Rao, 2021). 
Corroborating with our result of reduced enzyme activities in the 
conventional farm, excessive use of chemical fertilizers has been 

reported to hinder soil enzyme activities (Pittarello et  al., 2021; 
Rachwał et  al., 2021). Thus, the types of fertilizers used in plant 
cultivation affect changes in soil conditions, such as enzyme activities 
which may cause variations in the dynamics of the associated soil 
microbial community (Liu and Hanlon, 2018; Ullah et al., 2019).

Rhizosphere bacterial community diversity 
and structure

Soil properties, especially organic matter drive bacterial growth and 
metabolism, suggesting the bacterial richness across the farms is related 
to soil conditions (Peltoniemi et al., 2021; Rachwał et al., 2021). This was 
evidenced in the RDA triplot (Figure 6), which revealed a significant 
correlation between the soil parameters and some bacterial 
communities. Soil physical and biological parameters, including OM, 
moisture and nutrient content, pH, dehydrogenase, β-glucosidase, and 
urease, support improved soil and plant health, which in turn influence 
the rhizosphere bacteria composition (Yan et al., 2021). Rhizosphere 
microbiome has some analogous traits with its associated plants, 
suggesting plant selective impact on rhizosphere microbes and 
consequently shaping rhizobacterial assemblage (Ling et  al., 2022). 
Similar to other studies, though only the inverse Simpson diversity 
index was significant, the differences in alpha diversity across the farms 
suggest fertilizer types influence bacterial community richness (Hu 
et al., 2011; Acharya et al., 2021). According to Hermans et al. (2017) 
and Kamaa et al. (2011), bacterial communities respond to prevailing 
soil nutrient management types, which vary across landscapes; this is in 
agreement with our results which revealed differences in bacterial 
communities across the different farms, as depicted by the NMDS plot 
(Figure 2A). However, the bacterial community structure of soils from 
similar fertilizer types showed some differences, an indication that other 
site-specific factors, such as the source and type of seeds, fertilizers, and 
irrigation systems not considered in this study, may be responsible.

FIGURE 6

Redundancy analysis (RDA) triplot showing the correlation between bacterial community relative abundance (for 30 major genera) and explanatory 
variables (physicochemical factors). The first species axis (RDA) is significant (p  <  0.05).
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Important bacterial phyla, including Actinobacteria, 
Proteobacteria, Acidobacteria, Firmicutes and Chloroflexi, which 
were relatively abundant across the farms have been reported in 
similar studies (Ezeokoli et al., 2020; Zhang et al., 2022). These phyla 
usually exist in C-rich niches, such as the rhizosphere, which supports 
high metabolic activities and fast microbial growth. The variation in 
taxa abundance across crop species may be due to differences in root 
architecture and exudates, which differentially stimulate the growth of 
rhizosphere microbial communities (Hoch et  al., 2019; Yan et  al., 
2021). Similarly, this may have influenced the higher ASVs abundance 
observed in cabbage compared to other crop species, suggesting the 
need to further explore factors influencing rhizobacteria diversity 
variability in different crop species under similar conditions. Several 
studies have identified core bacterial microbiomes primarily using 
taxonomic assignment; however, for detailed knowledge of microbial 
dynamics, it has become imperative to further identify soil microbes 
using key functions that are commonly expressed (Ling et al., 2022). 
For instance, Gemmatimonadetes, a recently classified phylum found 
among the major phyla in the cabbage soil have species that contribute 
to C-fixation through chlorophototrophy (Thiel et  al., 2018). In 
addition, predominant genera, such as Bacillus, Nocardioides, 
Pseudomonas, Rubrobacter, and Lysobacter, which are constantly 
enhanced in the rhizosphere, contribute to key microbial functions 
and processes, such as biogeochemical cycling, organic matter 
decomposition, mineralization and processes that are crucial to 
agroecosystem sustainability (Raimi et al., 2017; Adeleke et al., 2019).

Ecological functions of differentially 
abundant rhizosphere bacterial community

The differentially abundant Rubrobacter in organic farms is 
underexplored despite its ecological restoration and engineering 
potential, which is attributed to its ability to survive in low-nutrient 

soil and under intense desiccation (Baubin et  al., 2021). Similarly, 
Lysinibacillus and Pseudomonas predominant in organic farm soils are 
well-known plant growth-promoting rhizobacteria involved in 
N-fixation, phytohormone production and P solubilization (Li et al., 
2017; Vignesh et  al., 2021; Shahwar et al., 2023). Candidatus 
Udaeobacter, a differentially abundant genus in the spinach 
rhizosphere, exhibits multidrug resistance and the ability to evade the 
harmful effects of antimicrobials (Willms et al., 2020). The unique 
properties of these genera suggest they are suitable indicator species 
for assessing the soil nutrient status. In contrast to the organic farms, 
conventional farms had differentially abundant Norcardioides, 
Lysobacter, Ilumatobacter, and Marmoricola. Nocardioides participate 
in bioremediation, especially organochlorine degradation such as 
lindane pesticide and chloroaromatics, making them a crucial 
candidate for soil remediation strategy (Ito et al., 2019; Singh and 
Singh, 2019). Lysobacter is a well-known biocontrol agent (Lin et al., 
2021) while Ilumatobacter and Marmoricola participate in C and N 
cycling, respectively (Edgmont et al., 2012; Liu et al., 2023). Although 
soil microbes have been extensively classified, the high proportion of 
unclassified sequences in this study gave credence to the fact that the 
majority of soil microbiomes are yet to be  fully identified and 
characterized (Delgado-Baquerizo, 2019; Furtak et al., 2020). However, 
metagenomics, a leading and relatively recent technique for effective 
analysis of diverse environments has advanced microbial diversity 
knowledge, offering valuable strategies for optimizing the cultivation 
of yet uncultured species (Kulski, 2016; Mendes et al., 2017).

Nitrogenase and NifT play key roles in the N-cycle, while cellulases 
break down cellulose and polysaccharide, and chitinase degrades 
chitins, contributing to C and N levels in the ecosystem (Glick, 2012). 
Corroborating the report by Ling et al. (2022), alpha-glucosidase and 
beta-fructokinase were highly predicted in organic farms, possibly due 
to the high level of C supplied by compost and animal manure, 
suggesting a more sustainable soil microbial community may 

TABLE 3 Topological properties of empirical and random networks between bacterial communities of organic and conventional farm.

Network indices Organic Conventional

ENI 100 RNI ENI 100 RNI

Average clustering coefficient 0.129 0.043 ± 0.006 0.216 0.309 ± 0.011

Average path distance 6.183 3.467 ± 0.038 2.791 2.545 ± 0.027

Geodesic efficiency 0.215 0.321 ± 0.003 0.456 0.435 ± 0.003

Harmonic geodesic distance 4.648 3.115 ± 0.025 2.191 2.300 ± 0.017

Centralization of degree 0.073 0.073 ± 0.000 0.326 0.326 ± 0.000

Centralization of betweenness 0.122 0.074 ± 0.008 0.067 0.090 ± 0.010

Centralization of stress centrality 17.228 0.299 ± 0.028 2.725 0.590 ± 0.055

Centralization of eigenvector centrality 0.210 0.184 ± 0.015 0.175 0.173 ± 0.003

Density 0.019 0.019 ± 0.000 0.050 0.050 ± 0.000

Reciprocity 1.000 1.000 ± 0.000 1.000 1.000 ± 0.000

Transitivity 0.192 0.061 ± 0.006 0.131 0.254 ± 0.005

Connectedness 0.801 0.958 ± 0.021 0.471 0.980 ± 0.017

Efficiency 0.981 0.984 ± 0.000 0.900 0.952 ± 0.001

Hierarchy 0.000 0.000 ± 0.000 0.000 0.000 ± 0.000

Lubeness 1.000 1.000 ± 0.000 1.000 1.000 ± 0.000

Modularity 0.676 0.406 ± 0.006 0.210 0.166 ± 0.004

ENI, Empirical Network Indices; RNI, Random Network indices.
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be achieved through organic amendments that increased these key 
enzymes. Bacterial communities such as Bacillus, Enterobacter, 
Citrobacter, and Pseudomonas detected have been previously reported 
with N-fixing ability due to their nitrogenases (Gomez-Garzon et al., 
2017; Li et al., 2017). On the contrary, nitrite reductase genes driving 
the denitrification pathway in the N-cycle were significantly abundant 
in Farm T, which is a conventional farm, establishing the fact that these 
genes play a crucial role in preventing groundwater pollution caused 
by nitrate compounds due to excessive chemical fertilizer application 
(Liu et al., 2020). Arylsulfatase and choline-sulfatase drive the sulfur 
content in the soil and are usually activated under sulfur-deficient 
conditions (Cregut et al., 2013; Sánchez-Romero and Olguin, 2015). 
Surprisingly, these genes were highly prevalent in conventional farms 
(Farm T and J) (Figure 5), suggesting other factors, including available 
sulfur, forms of sulfur compounds and other nutrient complexes in the 
soil may have influenced the prevalence of these enzymes (Siwik-
Ziomek et  al., 2016). In addition, the high abundance of enzyme 
coding genes predicted in the rhizosphere of cabbage compared to 
other vegetables could enhance soil nutrient richness and in turn drive 
increased soil microbial composition and diversity (de Bruijn, 2015; 
Xu et al., 2022). While variations across geographic locations drive 
changes in soil physicochemical parameters (Moore et al., 2022), the 
changes may in turn influence soil microbial and enzyme activities 
(Meena and Rao, 2021), suggesting the reason for some of the 
variations observed across the farms. Thus, it may be recommended 
toward best practices to always understand agronomic soil parameters 
for appropriate selection of efficient soil nutrient management.

Microbial co-occurrence network and 
keystone taxa

Microbial co-occurrence structure greatly impacts community 
assembly, abundance and diversity (Pan et al., 2021). Soil nutrient 
management (types of fertilizer applied) and plant species have been 
reported to influence the network structure of soil bacterial 
communities (Xue et al., 2018; Xu et al., 2022). The network analysis 
showed that conventionally managed soil had high numbers of 
bacterial communities with negative links, which may indicate weak 
connections among microbial associations. This observation was 
corroborated by Huang et al. (2019), who attributed the distinctly 
weakened ecological interactions between soil microbes to long-term 
chemical fertilization. In contrast, the higher level of positive 
interactions in the organic farms may signify greater ecological 
cooperation among the microbial communities for diverse ecosystem 
functions and consequently; a network structure with high stability 
and high-order level complexity (Xue et al., 2018; Gu et al., 2019). 
Profound community fragmentation was noticed for organic farm 
networks. According to Hernandez D. J. et al. (2021), ecological stress 
greatly influences the complexity and stability of microbial networks, 
indicating fragmentation may not necessarily be  due to fertilizer 
types. Thus, other factors such as soil types, irrigation and land 
preparation that impact soil microbial diversity may be influential.

In microbial networks, modules comprise species, which are 
interconnected with more frequent and intensive interactions than other 
parts of the community (Ling et al., 2022). Compared to conventional 

FIGURE 7

Co-occurrence networks of bacterial communities and classification of nodes for detection of keystone taxa within ecological networks in (A) organic 
and (B) conventional farm rhizosphere soil. The nodes represent bacterial species (round shape), colored according to the community modularity class. 
Node sizes are proportional to their degree of distribution, and nodes having less than two connections have been removed. Edges are network 
connections signifying significant (FDR-adjusted p  <  0.01) associations between nodes. Positive associations are colored red, while negative associations 
are colored blue. Detected module hubs in the two farm networks are linked with Acidobacteria, Actinobacteria, Proteobacteria and Chloroflexi, while the 
connectors are affiliated with Actinobacteria for both organic and conventional farms. The co-occurrence network statistics are presented in Table 3.
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farms, the organic farms had high numbers of complex topological 
structures and modules, which suggests high niche differentiation in 
organic farms (Figure 7; Table 3). Unique microbes play key roles in the 
functioning of bacterial communities by contributing to the information 
current across the entire network (Banerjee et al., 2018). Similar to our 
observation, Gu et al. (2019) reported no network hubs in their study, 
suggesting unique phylotypes for specific functions are absent. However, 
some generalists, including Bacillus, Nocardioides, Agromyces, and 
Blastocatella were detected, signifying diverse keystone species that 
could drive the soil microbial communities in each of the farms (Gu 
et al., 2019). Module hub, network hub and connectors harbor keystone 
communities whose identification further improves the understanding 
of microbial community structure and interactions (Pan et al., 2021). In 
this study, Bacillus found in organic farms is a unique generalist, 
participating in nutrient solubilization and mineralization; therefore, 
can generate a niche for other plant growth-promoting rhizobacteria. 
On the other hand, the conventional farm network has Agromyces as a 
major connector, which is involved in xylan degradation; thus, may 
create a niche for microbial populations that cannot degrade 
polysaccharides (Rivas et al., 2004).

To further improve our agroecosystem management knowledge, 
we recommend that the impact of soil nutrient management on soil 
microbial diversity and functional structure be investigated across 
seasons. Data on crops cultivated in the previous seasons, irrigation 
systems and sources of fertilizers were not available, contributing to 
some of the limitations in this study.

Conclusion

This study revealed the soil bacterial community diversity and 
functions are influenced by farm sites and fertilizer types. Unique 
bacterial communities, which contribute to ecosystem functions were 
also differentiated across these fixed factors. To a large extent, the 
discovery of unique bacterial communities such as Bacillus and 
Rubrobacter with plant growth-promoting and niche-creation potentials 
across the farms could improve the understanding of soil microbial 
dynamics for enhancing soil and plant productivity. In addition, 
conventional farms had reduced keystone taxa compared to organic 
farms, signifying fertilizer types impact the abundance of keystone taxa, 
which is a key factor in ecosystem functioning. This study provided 
comprehensive details on rhizosphere soil bacterial diversity and 
functions, which could be useful in the identification of biomarker 
species for monitoring soil productivity in a particular nutrient 
management system. Keystone taxa, such as Bacillus and Agromyces 
could be  a good source of microbial resources for bioformulation 
production. Overall, the findings provide a baseline for understanding 
how fertilizer types, organic and conventional fertilizers, impact soil 
bacteria community structure and related ecological functions. Such 
knowledge may be useful for monitoring invasive species or formulating 
a strategy for replenishing extinct beneficial species following land-use 
intensification or a particular agronomic practice.
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