AUTHOR=Joshi Samiksha , Gangola Saurabh , Bhandari Geeta , Bhandari Narendra Singh , Nainwal Deepa , Rani Anju , Malik Sumira , Slama Petr TITLE=Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1229828 DOI=10.3389/fmicb.2023.1229828 ISSN=1664-302X ABSTRACT=
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as