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Verticillium wilt is a disastrous disease caused by Verticillium dahliae that 
severely damages the production of cotton in China. Even under homogeneous 
conditions, the same cotton cultivar facing V. dahliae tends to either stay healthy 
or become seriously ill and die. This binary outcome may be  related to the 
interactions between microbiome assembly and plant health. Understanding 
how the rhizosphere microbiome responds to V. dahliae infection is vital to 
controlling Verticillium wilt through the manipulation of the microbiome. In this 
study, we  evaluated the healthy and diseased rhizosphere microbiome of two 
upland cotton cultivars that are resistant to V. dahliae, Zhong 2 (resistant) and Xin 
36 (susceptible), using 16S rRNA and ITS high-throughput sequencing. The results 
showed that the healthy rhizosphere of both resistant cultivar and susceptible 
cultivar had more unique bacterial ASVs than the diseased rhizosphere, whereas 
fewer unique fungal ASVs were found in the healthy rhizosphere of resistant 
cultivar. There were no significant differences in alpha diversity and beta diversity 
between the resistant cultivar and susceptible cultivar. In both resistant cultivar 
and susceptible cultivar, bacterial genera such as Pseudomonas and Acidobacteria 
bacterium LP6, and fungal genera such as Cephalotrichum and Mortierella were 
both highly enriched in the diseased rhizosphere, and Pseudomonas abundance in 
diseased rhizospheres was significantly higher than that in the healthy rhizosphere 
regardless of the cultivar type. However, cultivar and V. dahliae infection can 
cause composition changes in the rhizosphere bacterial and fungal communities, 
especially in the relative abundances of core microbiome members, which varied 
significantly, with different responses in the two cotton cultivars. Analysis of co-
occurrence networks showed that resistant cultivar has a more complex network 
relationship than susceptible cultivar in the bacterial communities, and V. dahliae 
has a significant impact on the bacterial community structure. These findings will 
further broaden the understanding of plant-rhizosphere microbiome interactions 
and provide an integrative perspective on the cotton rhizosphere microbiome, 
which is beneficial to cotton health and production.
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Introduction

Under heterogeneity of local conditions, such as the genetic 
background and abundance of pathogens (Campbell, 1985; Genin and 
Denny, 2012), host genotypes (Kwak et al., 2018), soil or plant-related 
microbiome, and soil physicochemical properties (Wei et al., 2019), 
plants facing many pathogens either stay healthy or become seriously 
ill and die. However, even under homogeneous conditions, plants 
facing soil-borne pathogens often exhibit binary outcomes. This 
binary outcome may be  the result of early differentiation of the 
rhizosphere microbiome, which may further lead to different disease 
inhibition abilities (Gu et al., 2022).

The rhizosphere is a hotspot where plants exchange 
substances and energy with their surrounding environment, 
which serves as the first line of defense against various biotic and 
abiotic stresses (Li et al., 2020, 2022). Therefore, the rhizosphere 
microbiome is critical to plant growth and health and is 
considered the second genome of plants (Mendes et al., 2011). 
The structure of the rhizosphere microbial community is the 
result of a series of complex interactions between the plant and 
soil microbiome (Zhalnina et al., 2018), and its composition and 
function change during plant development. In addition, the 
composition of the rhizosphere microbial community is 
influenced by host genotypes, plant growth stages, climate, 
microbial species pool, soil types, and agricultural management 
strategies (Berendsen et al., 2012; Gao et al., 2021). In natural 
ecosystems where roots and rhizosphere microbiomes coevolve 
over a long period of time, host genotypes have a great effect on 
microbial communities (Philippot et al., 2013). Disease-resistant 
cultivars of bean can resist the invasion of pathogens by enriching 
specific groups of bacteria in the rhizosphere (Mendes et  al., 
2017). Flavobacterium is significantly enriched in the rhizosphere 
of resistant tomato cultivars, which could change the rhizosphere 
microbial community to improve resistance to Pseudomonas 
solanacearum (Kwak et  al., 2018). Apart from these factors, 
pathogen invasion has a great influence on species composition 
and community diversity (Carrion et al., 2019; Gao et al., 2021) 
and often occurs in conjunction with changes in diversity and 
function in the rhizosphere microbiome (Wei et al., 2018; Yuan 
et al., 2018; Shi et al., 2019), as the function and assembly of the 
rhizosphere microbiome are tightly coupled (Xun et al., 2019; 
Luan et al., 2020).

China is the world’s largest cotton producer, accounting for 
more than 23% of the world’s total output (Meyer and Dew, 
2023). However, Verticillium wilt is a kind of plant pathogen with 
important economic significance that can severely restrict the 
yield and quality of cotton in China, which can occur during the 
growing season of cotton, and severe outbreaks can result in yield 
losses of more than 50% (Ranga et al., 2020; Zhu et al., 2023). 
Gaining insight into the rhizosphere microbiome’s response to 
V. dahliae may contribute to developing environmentally friendly 
V. dahliae control strategies. In this study, the rhizosphere 
microbiome of two cotton cultivars with different levels of 
resistance to V. dahliae was investigated using 16S rRNA and ITS 
high-throughput sequencing. We aimed to (i) assess the effects of 
V. dahliae on the bacterial and fungal rhizosphere microbiome of 
two cotton cultivars and (ii) determine the differences between 
healthy and diseased cotton rhizosphere microbiomes.

Materials and methods

Experimental design and sample 
preparation

In this study, two cultivars of upland cotton with different levels 
of resistance were selected: Zhongzhimian 2 (Zhong 2, resistant to 
V. dahliae) and Xinluzao 36 (Xin 36, highly susceptible to V. dahliae). 
Two cultivars were cultivated in a random arrangement in the 
Verticillium wilt disease nursery at the Shihezi Academy of 
Agricultural Sciences, Xinjiang. The field has a continuous cotton 
growing history of more than 20 years, with a serious and uniform 
incidence of Verticillium wilt. In April 2021, the seeds of two cultivars 
were sown in the field, and 18 plants (9 healthy +9 diseased plants for 
each cultivar) were randomly uprooted with shovels when plants 
infected with V. dahliae showed obvious disease symptoms in August 
2021 (Supplementary Figure 1). The disease index (DI) was used to 
evaluate the severity of cotton Verticillium wilt (Zhang et al., 2012) 
using the following formula: DI = [Σ (disease grades × number of 
infected plants)/(total checked plants×4)] × 100 (Zhang et al., 2017).

To collect the rhizosphere soil (1–2 mm–thick soil layer surrounding 
the root after shaking vigorously), the roots were transferred into a 
50 mL centrifuge tube containing 15 mL of 1× phosphate buffer solution 
(PBS), rotated for 5 min and then removed. Next, the tubes were 
centrifuged at 4000 × g and 4°C for 10 min, and the supernatant was 
discarded. Then, the samples were centrifuged at 8000 × g for 5 min, the 
supernatant was discarded again, and the remaining part was regarded 
as the rhizosphere soil (Edwards et al., 2018).

Microbiome sample collection, PCR 
amplification and sequencing

Total DNA of soil was extracted from 36 rhizosphere soil samples 
according to the instructions using the DNeasy PowerSoil Kit 
(QIAGEN, Germany). The full-length bacterial 16S rRNA gene and 
fungal ITS were amplified by PCR using the bacteria-specific primer 
pair 27F (5′-AGAGTTTGATCMTGGCTCAG-3′)/1492R 
(5′-ACCTTGTTACGACTT-3′) (Thies, 2007) and the fungi-specific 
primer pair ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′)/LR3 
(5′-CCGTGTTTCAAGACGGG-3′) (Kurtzman and Robnett, 1998), 
respectively. PCR procedure: 95°C for 2 min; 30 cycles of 95°C for 30 s, 
55°C for 30 s, 72°C for 30 s with a final extension of 72°C for 5 min. 
PCR products were purified by Gel Extraction Kit (OMEGA, USA). 
Then, the entire 16S rRNA gene and ITS lengths of the community 
were determined using the PacBio Sequel platform at Personalbio, Inc. 
(Shanghai, China).

Statistical methods

The sequence data were verified using Quantitative Insights Into 
Microbial Ecology 2 (QIIME2) and the R software package (version 
3.2.0). The QIIME package1 was used to extract the high-quality 

1 http://qiime.org/acripts/pick_oyus.html
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sequences, which were then clustered into amplicon sequence 
variants (ASVs). Taxonomic assignment of 16S rRNA gene and ITS 
fragment representative sequences was performed based on the 
Greengenes database (McDonald et  al., 2012) and the UNITE 
database (Abarenkov et al., 2010). Alpha-diversity analyses included 
Shannon, Chao1, Simpson, Pielou_e and Observed_species. Beta 
diversity was calculated by the weighted UniFrac distance and then 
analyzed by principal coordinate analyses (PCoA) (Lozupone and 
Knight, 2005). The Kruskal–Wallis test and permutational 
multivariate analysis of variance (PERMANOVA) with 999 random 
permutations were used to analyze significant differences in alpha 
diversity and beta diversity (Anderson, 2001). Venn diagrams were 
implemented online to show unique and shared ASVs.2 The 
abundances of healthy and diseased rhizospheres in two cotton 
cultivars were statistically compared at different taxonomic levels and 
visualized by histogram and heatmap. Two-sided analysis of variance 
with a t test was used for two-group comparison analyses using 
STAMP (v.2.0.0) (Parks et al., 2014). Co-occurrence network analysis 
was conducted at the genus level based on Spearman correlation with 
a threshold of |r| > 0.6 (p < 0.05).

Results

Diversity and structure of the rhizosphere 
microbiome in response to Verticillium 
dahliae infection in two cotton cultivars

A total of 433,283 high-quality bacterial 16S rRNA reads and 
461,403 fungal internal transcribed spacer [ITS] reads were obtained 
via the PacBio Sequel platform from 18 healthy and 18 diseased 
samples, respectively. These reads were aggregated into 8,034 bacterial 
ASVs and 1,667 ITS fungal ASVs.

2 http://bioinformatics.psb.ugent.be/webtools/Venn/

Venn diagrams show the unique and shared ASVs in the different 
samples in Figure 1. A total of 1742 bacterial ASVs and 169 fungal 
ASVs were common to all groups (Figures  1A,B). The healthy 
rhizosphere of Xin 36 had more unique bacterial (H36, 2072; D36, 
1346) and fungal ASVs (H36, 392; D36, 372) than the diseased 
rhizosphere; the healthy rhizosphere of Zhong 2 had more unique 
bacterial ASVs than the diseased rhizosphere (H2, 2028; D2, 1562) but 
fewer unique fungal ASVs than the diseased rhizosphere (H2, 333; 
D2, 468).

Notably, there was no significant difference in alpha diversity 
between healthy and diseased rhizospheres of both bacteria and fungi 
in the two cotton cultivars (Supplementary Figure  3). Principal 
coordinate analysis (PCoA) was performed based on Bray–Curtis 
dissimilarity and revealed that bacterial and fungal communities 
showed no significant difference between healthy and diseased 
rhizospheres, especially for Xin 36 (Figure 2).

Comparison of rhizosphere community 
composition between two cotton cultivars

A total of 28 phyla, 72 classes, 133 orders, 266 families, and 505 
genera were identified in the bacterial community. In Zhong 2 and Xin 
36, the dominant bacterial phyla were Pseudomonadota (42.91%), 
Acidobacteriota (15.78%), Bacteroidota (6.34%) and Planctomycetota 
(6.18%) (relative abundance ≥5%), accounting for 71.22% (Figure 3A). 
At the genus level, most of the bacterial ASVs in Zhong 2 were 
assigned to Vicinamibacter (5.51%), Bacterium (4.69%), Pseudomonas 
(3.54%), Lysobacter (3.39%) and Novosphingobium (3.50%), whereas 
bacterial ASVs in Xin 36 were mainly classified into Pseudomonas 
(6.84%), Vicinamibacter (5.69%), Bacterium (4.48%), Bacillus (3.40%) 
and Lysobacter (3.24%) (Figure 3C).

A total of 19 phyla, 52 classes, 94 orders, 160 families, and 219 
genera were identified in the fungal community. In Zhong 2 and Xin 
36, the dominant fungal phyla were Ascomycota (23.67%), 
Basidiomycota (14.28%), Mortierellomycota (9.69%), and 
Rozellomycota (6.04%), accounting for 53.68% (Figure 3B). At the 

FIGURE 1

Unique and shared ASVs in healthy and diseased rhizosphere microbiomes of two cotton cultivars.
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FIGURE 2

PCoA based on Bray–Curtis distance between healthy and diseased rhizosphere microbiomes of two cotton cultivars (n  =  36).

FIGURE 3

Comparison of the compositions between healthy and diseased rhizosphere microbiomes of two cotton cultivars at the phylum and genus levels.
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genus level, most of the fungal Zhong 2 ASVs were assigned to 
Vishniacozyma (7.10%), Olpidium (6.90%), Psathyrella (6.38%) and 
Cephalotrichum (4.19%), whereas fungal ASVs in Xin 36 were mainly 
classified into Vishniacozyma (3.06%), Cephalotrichum (4.27%), and 
Mortierella (3.42%) (Figure 3D).

Based on the heatmaps of the top  40 genera, the differences 
between the healthy and diseased rhizosphere microbiomes of the two 
cotton cultivars were compared (Figures  4A,B). According to the 
relative abundances of these genera, D2 and H36 were clustered 
together in the bacterial community, followed by D36 and H2, whereas 
H2 and D2, and H36 and D36 were clustered together in the 
fungal community.

Effects of Verticillium dahliae on the 
composition of rhizosphere microbiomes 
in two cotton cultivars

We further identified the changes between two cultivars in the 
taxonomic composition of the rhizosphere microbiomes of the two 
cultivars. Specifically, the relative abundance of 31 and 18 bacterial 
orders differed significantly in Zhong 2 (Figure  5A) and Xin 36 
(Figure 5B) between healthy and diseased rhizospheres, respectively. 
In Zhong 2, the relative abundances of bacterium WX65 and 
Fimbriimonadales significantly increased in D2, while the relative 
abundances of Caulobacterales, Myxococcales and Nevskiales were 
significantly reduced. Only Chitinophagales decreased significantly in 
D36. Furthermore, the relative abundance of Entomophthorales in the 
fungal order differed significantly in Xin 36 between the healthy and 
diseased rhizospheres (Figure  5C), and there was no significant 
change in Zhong 2.

The relative abundance of 40 and 32 bacterial families differed 
significantly in Zhong 2 (Figure 6A) and Xin 36 (Figure 6B) between 

healthy and diseased rhizospheres, respectively. In Zhong 2, the 
relative abundance of bacterium WX65 significantly increased in D2, 
whereas the relative abundances of Caulobacteraceae, 
Hyphomicrobiaceae and Steroidobacteraceae were significantly 
decreased. Only Chitinophagaceae decreased significantly in D36. 
Furthermore, the relative abundance of Ancylistaceae in the fungal 
family differed significantly in Xin 36 between the healthy and 
diseased rhizospheres (Figure  6C), and there was no significant 
change in Zhong 2. These results indicated that V. dahliae infection 
influenced the distribution and composition of the rhizosphere 
bacterial and fungal communities of the two cotton cultivars.

Different responses of two cotton cultivars 
to Verticillium dahliae infection

The relative abundance of Verticillium was significantly different 
between healthy and diseased rhizospheres of the two cotton cultivars 
(p < 0.05), with high enrichment in diseased rhizospheres compared 
with healthy rhizospheres. Notably, in both healthy and diseased 
rhizospheres, the relative abundance of Verticillium was higher in Xin 
36 than in Zhong 2 (Supplementary Figure 2A). Verticillium dahliae 
and Verticillium albo-atrum are potential pathogens causing cotton 
Verticillium wilt according to previous studies (Qin et al., 2006, 2008). 
In the genus Verticillium, only Verticillium dahliae was identified, and 
the relative abundance was D36 (0.86%) > H36 (0.14%) > D2 
(0.03%) > H2 (0%). This was consistent with the phenotypic results of 
the field Verticillium wilt investigation (Supplementary Figure 2B).

To determine the effects of V. dahliae on rhizosphere microbial 
co-occurrence patterns between healthy and diseased samples in two 
cotton cultivars, the genera with the top 20 relative abundances were 
screened to construct the networks based on correlation relationships 
(Figure  7). For bacterial communities, the microbial networks in 

FIGURE 4

Heatmap analysis of rhizosphere bacterial (A) and fungal (B) communities at the genus level. The average relative abundance of the genus in the top 40 
and p  <  0.05 were used as the screening criteria, n  =  36.
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Zhong 2, neither healthy nor diseased rhizospheres, were denser and 
had a more complex network than those of Xin 36. In contrast, Xin 
36 had a more complex network than Zhong 2  in the fungal 

communities. The results clearly show that the resistance of cotton 
cultivars has an effect on the complexity of the rhizosphere 
microbiome. In addition, the influence of V. dahliae infection on the 

FIGURE 5

Quantification of the abundance of differential bacterial orders between healthy and diseased rhizospheres of two cotton cultivars using a two-sided t 
test. The corrected p values are shown.

FIGURE 6

Quantification of the abundance of differential bacterial families between healthy and diseased rhizospheres of two cotton cultivars using a two-sided 
t test. The corrected p values are shown.
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complexity of rhizosphere bacterial communities was greater than 
that of fungal communities.

Discussion

Rhizosphere microorganisms play an important role in the growth 
and development of plants, and much research on the plant–microbe 
and microbe–microbe interactions has been reported in the plant 
rhizosphere (Lu et  al., 2018; Ge et  al., 2023). The rhizosphere 
microbiome is considered to be the first line of defense against soil-
borne pathogen infection and abiotic stress, which is vital to the health 
of plants (Mendes et al., 2013; Ahmed et al., 2022). The balance in the 
rhizosphere during normal plant growth is disturbed under stress 
conditions, leading to changes in the composition of the rhizosphere 
community (Qian et al., 2018). However, there are few studies on how 
rhizosphere microorganisms of different resistant cultivars of cotton 
respond to V. dahliae infection in the natural field. In this study, 
we  analyzed the different responses of rhizosphere microbial 
communities in two upland cottons with opposite resistance to 
Verticillium wilt. The results indicated that V. dahliae infection and 
cultivar alter the composition of the rhizosphere communities, with 
different responses in two cotton cultivars.

Verticillium dahliae infection influences the 
structure of the rhizosphere microbial 
community

After V. dahliae infection, the unique bacterial and fungal ASVs 
in the healthy rhizosphere of Xin 36 were higher than those in the 
diseased rhizosphere, whereas the healthy rhizosphere of Zhong 2 had 
more unique bacterial ASVs and fewer unique fungal ASVs than the 
diseased rhizosphere. The results suggested that V. dahliae infection 

may alter the structure of the rhizosphere microbiome, which is 
consistent with the result that pathogen infection disrupts host control 
over the rhizosphere microbiome (Wei et al., 2018; Wen et al., 2020).

The occurrence of diseases is usually accompanied by diversity 
changes in the rhizosphere microbiome (Wei et al., 2018; Yuan et al., 
2018; Shi et al., 2019). However, the analysis results of the alpha and 
beta diversity showed that there were no significant differences 
between the resistant cultivar and susceptible cultivar, consistent with 
a previous study (Fernández-González et al., 2020). Such results may 
be  due to differences in plant host, pathogen, soil, agricultural 
practices, or environmental conditions (Kwak et al., 2018; Gu et al., 
2020; Jiang et al., 2021).

Verticillium dahliae infection shifts the 
composition of rhizosphere microbial 
communities

This study demonstrated that the relative abundance of many 
rhizosphere microorganisms in the healthy rhizosphere differed from 
that in the diseased rhizosphere of each cultivar. The taxonomic 
composition of the rhizosphere bacterial communities showed that 
Pseudomonadota, Acidobacteriota, Bacteroidota and Planctomycetota 
were dominant in two cotton cultivars, with Pseudomonadota 
members accounting for 42.91% of the community composition 
(Trivedi et al., 2020). Zhong 2 was characterized by a higher relative 
abundance of Actinomycetota than Xin 36, which is known as a 
biocontrol microorganism (Lee et  al., 2021). In addition, the 
rhizosphere fungal community is mainly composed of Ascomycota 
and Basidiomycota, which are the most abundant phyla observed in 
previous studies (Bálint et al., 2015; Coleman-Derr et al., 2016).

Compared with the rhizosphere microbial communities in 
the healthy rhizosphere of Zhong 2 and Xin 36, Pseudomonas and 
Acidobacteria bacterium LP6 in the bacterial communities and 

FIGURE 7

Co-occurrence network analysis of rhizosphere bacterial and fungal communities between healthy and diseased samples in two cotton cultivars. 
p  <  0.05, |r|  >  0.6.
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Cephalotrichum and Mortierella in the fungal communities were 
both highly enriched in the diseased rhizosphere. Pseudomonas 
abundance in diseased rhizospheres was significantly higher than 
that in the healthy rhizosphere regardless of the cultivar type. 
Consistently, a previous study found that Rhizoctonia solani 
invasion alters the rhizosphere microbial community and 
specifically accumulates beneficial Pseudomonas (Yin et  al., 
2021). Therefore, it is reasonable to speculate that the increase in 
Pseudomonas in diseased rhizospheres may contribute to the 
potential resistance of their host plants to Verticillium wilt. These 
results suggest that plants may increase the enrichment of specific 
microbiomes in response to pathogen infection (Busby et  al., 
2016), which can be  used as antagonistic candidates for 
Verticillium wilt and need to be confirmed by further culture-
based experiments.

Effects of cultivar resistance on the 
microbial community structure in the 
cotton rhizosphere

Different microorganisms are recruited by plants to shape their 
rhizosphere microbiome, and the rhizosphere microflora community 
structure of the same species changes due to genotype differences 
(Bressan et al., 2009; Zhang et al., 2021; Yue et al., 2023). The growth 
and development of different blueberry cultivars were enhanced by 
recruiting specific rhizosphere microflora based on genotype (Jacoby 
et al., 2017). Our results showed that the different genotypes of cotton 
recruited specific rhizosphere microbiomes, suggesting that the 
rhizosphere microbial community was regulated by host genotypes, 
consistent with the results in soybean, rice, and barley (Bulgarelli et al., 
2015; Singh et al., 2022; Qu et al., 2023). In addition, resistant cultivars 
may resist pathogen invasion by enriching specific bacterial or fungal 
groups in the rhizosphere (Mendes et al., 2017; Kwak et al., 2018). The 
analysis of co-occurrence networks also showed that the resistant 
cultivar Zhong 2 has a more complex network than the susceptible 
cultivar Xin 36 in the bacterial communities, and V. dahliae has a 
significant impact on the bacterial community structure compared 
with fungal communities.

Conclusion

Analyzing the rhizosphere microbial communities of different 
resistant cotton is conducive to elucidating the interaction 
mechanism between cotton and V. dahliae, which plays an 
important role in the green and durable control of cotton 
Verticillium wilt. In the present study, the healthy and diseased 
rhizosphere microbiome communities were compared between 
Zhong 2 and Xin 36, which have significant differences in 
resistance to V. dahliae. The results showed that no significant 
differences were found in alpha diversity and beta diversity 
between healthy and diseased rhizospheres in the two cotton 
cultivars. V. dahliae infection and cultivar alter the composition 
of the rhizosphere communities, with different responses in two 
cotton cultivars. V. dahliae invasion may specifically accumulates 
beneficial microbiomes, such as Pseudomonas, which can be used 
as antagonistic candidates for Verticillium wilt. Additionally, 

cultivar and Resistant cultivar has a more complex network 
relationship than susceptible cultivar in the bacterial 
communities, and V. dahliae has a significant impact on the 
bacterial community structure. This study analyzed the resistance 
mechanism of cotton from the perspective of microbiology, and 
the research results will provide a theoretical basis for the green 
control strategy of cotton Verticillium wilt.
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