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Heavy metal pollution of soil is a major concern due to its non-biodegradable 
nature, bioaccumulation, and persistence in the environment. To explore the 
probable function of EDTA in ameliorating heavy metal toxicity and achieve the 
sustainable development goal (SDG), Brassica juncea L. seedlings were treated 
with different concentrations of EDTA (0, 1.0, 2.0, 3.0, and 4.0 mM Kg−1) in 
heavy metal-polluted soil. Plant samples were collected 60 days after sowing; 
photosynthetic pigments, H2O2, monoaldehyde (MDA), antioxidant enzymes, and 
ascorbic acid content, as well as plant biomass, were estimated in plants. Soil 
and plant samples were also examined for the concentrations of Cd, Cr, Pb, and 
Hg. Moreover, values of the phytoremediation factor were utilized to assess the 
accumulation capacity of heavy metals by B. juncea under EDTA treatments.  In 
the absence of EDTA, B. juncea seedlings accrued heavy metals in their roots and 
shoots in a concentration-dependent manner. However, the highest biomass of 
plants (roots and shoots) was recorded with the application of 2 mM kg−1 EDTA. 
Moreover, high levels (above 3 mM kg−1) of EDTA concentration have reduced 
the biomass of plants (roots and shoots), photosynthetic area, and chlorophyll 
content. The effect of EDTA levels on photosynthetic pigments (chlorophyll a 
and b) revealed that with an increment in EDTA concentration, accumulation 
of heavy metals was also increased in the plant, subsequently decreasing the 
chlorophyll a and b concentration in the plant. TLF was found to be in the order 
Pb> Hg> Zn> and >Ni, while TF was found to be in the order Hg>Zn>Ni>Pb, and 
the best dose was 3 mM kg−1 EDTA for Hg and 4 mM kg−1 for Pb, Ni, and Zn. 
Furthermore, hyperaccumulation of heavy metals enhanced the generation 
of hydrogen peroxide (H2O2), superoxide anions (O2 •−), and lipid peroxidation. 
It also interrupts mechanisms of the antioxidant defense system. Furthermore, 
heavy metal stress reduced plant growth, biomass, and chlorophyll (chl) content. 
These findings suggest that the exogenous addition of EDTA to the heavy metal-
treated seedlings increases the bioavailability of heavy metals for phytoextraction 
and decreases heavy metal-induced oxidative injuries by restricting heavy metal 
uptake and components of their antioxidant defense systems.
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1. Introduction

In the recent past, rapid industrialization and enhanced 
urbanization have given rise to an amplified level of heavy metal (HM) 
contamination in the ecosystem, which has arisen as a global concern 
(Saleem et al., 2018). HMs contamination of soil is a key concern due 
to their nonbiodegradable nature, bioaccumulation, and perseverance 
in the ecosystem (Din et  al., 2020). HMs contamination has 
augmented in the soil as well as in the water because of the release of 
HMs encompassing effluents from several industries, namely alloying, 
electroplating, metallurgy, paints, tanneries, textile dyes, and timber 
processing (Ganesh et al., 2009; Gill et al., 2016). Various toxic HMs 
existing in diverse oxidation states, such as arsenic (As), cadmium 
(Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead 
(Pb), and zinc (Zn); radioactive elements, namely uranium and 
strontium; along with organic compounds like trinitrotoluene, 
1,3,5-trinitro-1,3,5-hexahydrotriazine; petroleum hydrocarbons 
(benzene, toluene, xylene, etc.), all are hard to eliminate from the 
ecosystem due to their nonbiodegradable nature, and they become 
acutely toxic if their concentration exceeds a certain threshold. Due to 
their hydrophilic nature and prevalent mobility, HMs can simply enter 
the rhizospheric region of plants, be transported to the shoot part of 
plants, and become a serious risk for living organisms, including 
humans, by food-chain transfer (Singh and Singh, 2017). Human 
exposure to HMs comes frequently via different food crops, which 
accounts for approximately 89% of the total intake, whereas the 
remaining 11% arises via skin contact and breathing of polluted dust. 
These HMs may commonly react with biological systems via losing 
one or more electrons and forming metal cations which have affinity 
to the nucleophilic sites of vital macromolecules. Several acute and 
chronic toxic effects of heavy metals affect different body organs. Birth 
defects, cancer, gastrointestinal, immune system and kidney 
dysfunction, nervous system disorders, skin lesions, and vascular 
damage are examples of heavy metals toxic effects (Balali-Mood et al., 
2021; Mitra et al., 2022). Various studies have proved that surplus 
quantities of HMs contamination negatively influence the physiology 
and phenotype of some plants. The general phenotypic signs of 
HM-induced stress are chlorosis, epinasty of leaves, disturbance in 
tube growth along with pollen germination, necrosis, and stunted 
plant growth. HMs reduces nutrient uptake, disturbs chlorophyll (chl) 
content, abolishes the ultrastructural mechanisms of the chloroplast, 
and changes nitrogen and sulfur metabolism, thereby damaging the 
photosynthetic process and hindering the metabolism of plants 
(Benavides et al., 2005; Singh et al., 2022). As few heavy metals are 
redox-inactive metals, they can indirectly produce more reactive 
oxygen species (ROS), which contain singlet oxygen (1O2), hydrogen 
peroxide (H2O2), superoxide anion (O2

•−), and the hydroxyl 
radical (OH•).

The phytoremediation method utilizes plants (with or without the 
associated microorganism) for the removal of notorious contaminants. 
It has been extensively accepted and applied in the last few years. As 
this methodology is economical, sustainable, eco-friendly, and 
unintrusive, it is anticipated to play a vital role concerning industrial 
scale if executed with proper consideration (type of pollutant, 
composition of waste generated, seasonal variation, and diversity of 
plants to be utilized) (Lin et al., 2002; Yang et al., 2017). This method 
eradicates HMs by taking benefit of several plants ability to absorb and 

accrue metals and congregating them within the plant biomass. The 
perspective of this type of remediation technique is to decrease the 
concentration of HMs from polluted soil so that these plants can 
be utilized favorably for agriculture, horticulture, forestry, grazing, etc. 
Several plant species are capable of developing several approaches to 
combat HMs toxicity and reduce hostile effects by evading toxicity via 
metal-binding on the cell walls, averting transport across cell 
membranes, active efflux, compartmentalization and excretion 
methods as well as by internal metal chelation (Singh and Singh, 2017).

At present, several researchers are focused on the supportive 
treatments for phytoremediation by utilizing genetic engineering, 
sorbents, phytohormones, microbiota, microalgae or nanoparticles. 
In future, purification of soils on an industrial scale will most likely 
be possible through genetically modified organisms. However, there 
is a substantial risk of gene transfer from transgenic plants or 
microorganisms to the environment. Engineering bioremediation 
offers few operative solutions in the form of the use of various organic 
substances (e.g., sewage sludge, sorbents, enzymatic and microbial 
preparations or nanoparticles). Moreover, few research related to new 
techniques such as in situ solar driven technology make use of vascular 
plants to accumulate and translocate metals from root to shoot. 
Harvesting the plant shoots can permanently remove these 
contaminants from environment (Jadia and Fulekar, 2009; Mocek-
Płociniak et al., 2023).

Plants have a coordinated and multifaceted antioxidant defense 
system to sustain reactive oxygen species (ROS) at a steady-state level 
by rummaging the generated ROS to cope with oxidative stress (Gill 
and Tuteja, 2010; Ma et al., 2017; Ashraf et al., 2021). The defense 
system, containing enzymes namely ascorbate peroxidase (APOX), 
catalase (CAT), dehydroascorbate reductase (DHAR), glutathione 
peroxidase (GPOX), glutathione reductase (GR), 
monodehydroascorbate reductase (MDHAR), guaicol peroxidase 
(POD) and superoxide dismutase (SOD) has an imperious part in 
rummaging the produced ROS because of metal toxicity (Gill and 
Tuteja, 2010). Numerous studies have reported different functions of 
several antioxidant enzymes in diverse species of plants under HM 
stress conditions (Gill et al., 2015; Kanwar et al., 2015; Handa et al., 
2018). Non-enzymatic antioxidants such as ascorbic acid and 
glutathione tocopherols also function in a harmonized way with 
various enzymatic antioxidants to counterbalance HM-induced 
ROS. For example, ascorbic acid and glutathione levels were enhanced 
under heavy metal stress conditions (Ashger et al., 2018; Ulhassan 
et al., 2019). These antioxidant enzymes diminish oxidative damage 
encouraged by ROS. Cellular macromolecules, viz. proteins, lipids, 
and nucleic acids, are oxidized through the elevated level of ROS 
(Sigfridsson et al., 2004; Hasanuzzaman et al., 2012). These enzymes 
act as quenchers of lipid and ROS radicals (Noctor and Foyer, 1998; 
Smirnoff, 2000; Hollander-Czytko et al., 2005). B. juncea is a fast-
growing crop with medicinal and oil-yielding properties. It produces 
a high amount of biomass and has a robust and well-studied 
antioxidant defense system. However, heavy metal contamination 
results in a noteworthy loss of yield (Bhuiyan et al., 2011; Shekhawat 
et al., 2012).

Hyperaccumulation of these heavy metals can be encouraged with 
the addition of chemical alteration, such as ethylene diamine 
tetraacetic acid (EDTA), as a plant substrate to formulate a soluble or 
insoluble target metal, viz. Pb (Christopher et  al., 1998). EDTA 
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generally act as chemical chelator for eradicating toxic HMs from 
contaminated soil systems, predominantly where there is less metal 
bioavailability (Hernandez-Allica et al., 2007). EDTA function in the 
uptake of HMs and reducing its toxicity has already been documented 
in some plants (Dipu et al., 2012; Shahid et al., 2014; Khan et al., 2019). 
Moreover, different metals’ solubility is augmented by EDTA in the 
soil system, which enhances their uptake, bioavailability, and 
translocation from the rhizospheric region to the shoots in most 
vascular plants (Farid et al., 2015). EDTA has been utilized in plentiful 
experiments with diverse species of the Brassicaceae family as a metal 
chelator for monitoring a range of biochemical and physiological 
parameters. Contrariwise, Evangelou et  al. (2007) stated that Cd 
accumulation is inhibited by EDTA in Nicotiana tabacum L. plants. 
Correspondingly, this chelating agent was also detected to alter Cd 
uptake by conquering Cd toxicity in several plant species, namely Beta 
vulgaris L., Oryza sativa L., Phaseolus vulgaris L., and Vigna 
unguiculata (L.). Moreover, several studies have reported that EDTA 
improves the antioxidant defense mechanism and growth of plants 
under HMs stress conditions (Hardiman and Jacoby, 1984; Greger and 
Lindberg, 1986; Weihong et al., 2009; Xu et al., 2010; Agbadah et al., 
2016). Therefore, the aim of this study was to investigate the possible 
role of EDTA in mitigating HMs toxicity and its effect plant health. In 
view of this, we examined the effect of different EDTA levels on metal 
accumulation, physiological parameters, and the antioxidant defense 
mechanism of B. juncea in heavy metal contaminated soil.

2. Materials and methods

2.1. Plant material, physicochemical 
analysis, and experimental conditions

The collection of soil was done from a commercial horticulture 
field in Cairo, Egypt. Soil was oven-dried at 35°C for 4 days and 
filtered through a 6 mm mesh. The physico-chemical properties of soil 
were assayed as per the method described by Merkl et al. (2005). The 
soil had the properties of pH (7.4), Electrical conductivity (1.13 
dsm−1), total nitrogen (0.09%), total phosphorus (0.78%), organic 
carbon 0.487% and Zn 2.7, Fe 708.45, Mn 44.7, Ni 0.5 mg kg−1 dw, 
respectively. Afterwards, 5 different gradients of EDTA (0, 1, 2, 3, and 
4 mM kg−1) were prepared by adding the respective weight of the 
EDTA salt (292.2 g EDTA to 1 kg of water to prepare 1 M kg−1) to 
distilled water to prepare the different gradients and applied to the 
soil. Moreover, wastewater from the industry was collected in a 
propylene container from El Tebin industrial area, Egypt. The quantity 
of heavy metals present in the chemical wastewater was analyzed by 
inductive coupled plasma mass spectrometer (ICPMS). The 
composition of heavy metals were 12.36 Pb, 10.64 Ni, 30.45 Zn and 
6.5 Hg mgL−1 and their physicochemical parameters were pH 6.2 and 
chemical oxygen demand (COD) 1917, biological oxygen demand 
(BOD) 196, Cl 1895, Ca 824.5 and Mg 586.2 mgL−1. The tap water had 
the properties of pH 6.9, total dissolved solids 145, total hardness 240, 
calcium hardness 106, dissolved oxygen 3.6, chloride ion 83, alkalinity 
110, Na 25 and K 6 mgL−1.

Seeds of B. juncea, cultivar Balady were obtained from the 
commercial market, in Cairo, Egypt for conducting in situ pot 
experiments. 5 seedlings were maintained in each pot and the 

experiment was executed using a completely randomized design 
(CRD) with three replications. Seeds of B. juncea were sown in pots 
sized 15 × 15 cm, with 15 kg of garden soil in each pot and different 
amendments of heavy metals. Irrigation of each pot was done with a 
constant quantity of 5 L of industrial wastewater per day at the same 
time for 90 days. The implications of water as well as industrial 
wastewater levels were constant across all treatment pots.

2.1.1. Plant sampling
Plant samples were collected after 60 DAS (days after sowing) 

from each pot and washed repeatedly using tap water to eliminate 
unwanted debris for the estimation of photosynthetic pigments. 
Soil and plant samples were again collected at 90 DAS to examine 
heavy metal concentrations of Cd, Cr, Pb, and Hg, as well as 
plant biomass.

2.2. Measurement of heavy metal content 
transfer factor and translocation factor

For heavy metal analysis in plants, 1 g of plant samples was 
dried out and finely grinded in an electric grinder, then digested in 
HNO3:HClO4 (3:1, v/v) at 80°C. Metal concentrations (Pb, Ni, Zn, 
and Hg) in plant samples were analyzed by means of an Inductively-
Coupled Plasma Mass Spectrometer, Perkin Elmer Corporation 
(ICP Optima 3,300 RL). For metals, a standard reference material 
(E-Merck, Germany) was utilized for calibration and quality 
assurance for each analytical investigation. The detection limits of 
Hg, Pb, Ni, Zn, and Zn were 0.01, 0.1, 0.5, and 2.0 μg/L, respectively. 
Replication analysis (n = 5) was done to measure the precision of the 
analytical techniques. Triplicate analysis for each metal varied by 
not more than 5%. The treatments of EDTA were adjusted to 
different values in contrast with the controls and repeated three 
times (Al Mahmud et al., 2019).

 

TF
Metal concentration root shoot ,mg kg

Metal concentr
=

+( )( )−1 /

aation of soil,mg kg−( )
















1

 

TLF
Metal concentration in the shoots,mg kg

Metal conce
=

( )−1 /

nntration in the roots,mg kg−( )
















1

2.3. Estimation of photosynthetic pigments 
content

Leaf chlorophyll content was estimated as per the procedure 
described by Hiscox and Israelstam (1979). 0.05 g of leaf tissue from 
each treatment was weighed and chopped in a test tube containing 
10 mL of dimethyl sulfoxide (DMSO) and incubated for 3 h at 
60°C. The absorbance was analyzed through a spectrophotometer at 
645 and 663 nm. The chlorophyll content was calculated using the 
following formula:
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[ ]663 64512.7x A 2.69 x A x V
Chlorophyll a

1000 x W
−
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x
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−
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Where:
A = Absorbance at specific wave length,
V = Final volume of solution,
W = fresh weight of tissue.

2.4. Estimation of H2O2 and monoaldehyde 
(MDA) content

Estimation of H2O2 content was done through the method 
given by Velikova et  al. (2000). The fresh leaf tissues were 
homogenized in 1.5 ml of tri-chloroacetic acid (0.1%) and 
centrifuged at 4°C for 15 min at 12,000 rpm. 0.4 ml of supernatant 
was supplemented with equal volume of 10 mM PPB (Potassium 
Phosphate Buffer) and 0.8 mL of potassium iodide (KI, 1 M). 
Absorbance of reaction mixture was observed at 390 nm. 
Concentration of H2O2 was examined by preparing standard curve 
of H2O2.

The MDA level was examined via Heath and Packer (1968) 
method. One gram of fresh leaf tissue was extracted in 3 ml of 
tri-chloroacetic acid (0.1%) and centrifuged at 4°C at 13, 000 rpm 
for 10 min. Afterwards, 4 ml of thiobarbituric acid (0.5%) in 20% 
tri-chloroacetic acid was further added in supernatant. The 
mixture was placed in a water bath for 30 min at 95°C and 
immediately cooled by keeping it on an ice bath for reaction 
termination. Reaction mixture absorbance was monitored at 532 
and 600 nm. MDA content was analyzed by taking the difference 
in absorbance using extinction coefficient, i.e., 155/mm/cm.

2.5. Estimation of antioxidant enzymes and 
ascorbic acid

The enzymatic activity of SOD (EC 1.15.1.1) was evaluated 
according to the procedure given by Beauchamp and Fridovich 
(1971). Reaction mixture containing 75 μM NBT, 50 mM 
potassium phosphate buffer with 2 μM riboflavin, 100 μM EDTA, 
13 mM DL-methionine, and 15 μl of enzyme extract was used for 
estimation of enzymatic activity of SOD. The absorbance was 
measured at 560 nm. The reaction mixture was illuminated for 
30 min at 25°C. Enzymatic activity (1 unit) was revealed as the 
quantity of enzymes essential for 50% inhibition at 25°C of 
NBT reduction.

Ascorbic acid was analyzed through the Roe and Kuether 
(1943) method. 0.1 g of activated charcoal and 4 ml double 
distilled water was added in the mixture containing 0.5 ml plant 
extract, and 0.5 ml TCA (50%). The mixture was filtered through 
Whatman filter paper #1. 0.4 ml of 2, 4-dinitrophenylhydrazine 

(DNPH) reagent was added to 1 mL of filtrate and incubated for 
3 h at 37°C. Afterwards, 1.6 mL of chilled H2SO4 (65%) was 
supplemented to mixture and incubated at room temperature for 
30 min. The absorbance was recorded at 520 nm.

2.6. Statistical analysis

All data is represented as mean value (n = 3) ± standard 
deviation (SD). To study the significance at p < 0.05 of the given 
data, analysis of variance (ANOVA) with LSD post hoc tests were 
done to examine substantial differences through SPSS version 
17.0 software.

3. Results

A statistical examination of the data revealed that the 
interaction of heavy metals, EDTA, and Brassica species had a 
substantial consequence on root as well as shoot biomass. The 
obtained data indicated that the maximum plant biomass attained 
for root and shoot was 35 g and 65 g, respectively, with a 2 mM kg−1 
EDTA application. Furthermore, the maximum concentration of 
EDTA (3 and 4 mM kg−1) given to B. juncea’s shoot and root leads 
to a modest decrease in plant biomass, as depicted in Figure  1. 
Though there were no signs of rot or chlorosis in the plants, this 
divulged that B. juncea has virtuous tolerance for heavy metals (Pb, 
Ni, Hg, and Zn,) and EDTA.

3.1. Effect of EDTA on heavy metal 
concentration in soil and plant samples

The comparative study of dissimilar concentrations of EDTA 
divulged that absorption of heavy metals via the roots of B. juncea 
was as follows: Zn > PbNi>Hg, as depicted in Figure 2A, while in 
shoot Pb > Zn > Ni > Hg (Figure 2B). The phytoremediation effects 

FIGURE 1

Effect of different EDTA concentration on plant biomass. The vertical 
bars represent means  ±  S.D. (n =  3). Bars with different letters are 
significantly different (p ≤  0.05).
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of water in plants on different elements Pb, Ni, Zn, and Hg were 
0.11, 0.33, 0.30, and 0.60 μg/g DW, respectively. It was observed 
that the effect differs depending on the constituents. The effect of 
phytoremediation on different elements (Pb, Ni, Zn, and Hg) in 
the shoot region was changing at different values, but it was 
identified that at 100, the values were at their maximum and were 
obtained as 894, 454, 748, and 198 μg/g DW. The procedure was 
also applied to roots, and the consequences on various elements 
Pb, Ni, Zn, and Hg were 592, 575, 698, and 165 ug/g DW 
respectively, but the values were depicted least at a value of 0. The 
treatment containing high levels of EDTA has encouraged Zn and 
Pb uptake capacity in the shoot part of B. juncea. Heavy metal 
concentrations in soil have increased by increasing the level of 
EDTA, as shown in Figure 3. Due to EDTA’s high concentration, 
plants have absorbed and deposited more heavy metals in the soil.

The translocation factor (TLF) and transfer factor (TF) in 
plants were deliberated to predict the heavy metal accretion rate 
in B. juncea under different treatments (Table 1). TF and TLF 
values in EDTA applications are amplified by enhancing the 
EDTA levels. The highest TF in Pb was recorded at 1.19 and 
1.63 μg/g DW for Zn, with an implication of 4 mM/kg 
EDTA. Moreover, the highest TF was recorded as 1.26 in the case 
of Ni with no supplementation of EDTA. Furthermore, a TF value 
of 3.91 μg/g DW was the maximum in Hg with the application of 
3 mM/kg EDTA. While the highest TLF values in Pb and Zn were 
recorded at 1.51 and 1.07 μg/g DW with supplementation of 
4 mM/kg EDTA, In the case of Ni and Hg, the TLF values were 
recorded as 0.90 and 1.33 μg/g DW in 1 mM/kg EDTA 
concentration, respectively. On average (EDTA applications only), 
TLF was found to be  in the order Pb > Hg > Zn > and > Ni 
(Figure 4), while TF was examined in the order Hg > Zn > Ni > Pb.

3.2. Photosynthetic pigment determination

The impact of various EDTA concentrations on photosynthetic 
pigments (chlorophyll a and b) is shown in Figure  5. Maximum 
chlorophyll content was recorded at 5.12  in 1 mM EDTA 

concentration, followed by 3.45 in 0 mM concentration. These data 
clearly indicate that as EDTA levels increased, heavy metal 
accumulation subsequently decreased chlorophyll a and b content 
in plants.

3.3. H2O2 and monoaldehyde (MDA) 
content activity

Brassica sp. seedlings exposed to EDTA revealed that 
maximum levels of oxidative stress were due to an increase in 
H2O2 production. A severe rise in H2O2 level of 161.64% in 3 mM 
Kg −1 EDTA-treated seedlings was revealed, contrary to control 
seedlings (0 mM EDTA). However, a sharp decline in H2O2 
content of 111.58% was examined in seedlings grown with the 
application of 1 mM Kg−1 EDTA. These results clearly signify the 
effect of EDTA treatments on plant health under oxidative stress. 
Similarly, Brassica seedlings grown with EDTA showed a steep 
increment in the MDA content (640.19%), contrary to the control 
(0 mm EDTA). As EDTA concentration increases from 1 to 4 mM 
Kg−1, the lipid peroxidation level in leaves also increases (from 
232.35 to 640.19%) (Figure 4).

3.4. SOD and ascorbic acid activity

Exogenous EDTA supplementation in heavy metal affected plants 
raised SOD activity in contrast to plants without EDTA 
supplementation. As the EDTA concentration increased from 0 to 
4 mM/kg, the activity of SOD also increased from 19.6 to 
49.7 U min−1 mg−1 protein. Moreover, non-enzymatic antioxidants like 
ascorbic acid were correspondingly examined and found to 
be  increased in seedlings under heavy metal stress conditions. A 
tremendous increment of 11.94% in ascorbic acid content was 
monitored in seedlings under heavy metal stress with the application 
of 1 mM Kg−1 EDTA, contrary to control, which was further promoted 
by 23.88, 29.59, and 112.83% with 2, 3, and 4 mM Kg−1 EDTA 
treatment (Figure 4).

FIGURE 2

Depiction of heavy metal accumulation in roots (A) and shoot (B) under different EDTA concentration. The vertical bars represent means ± S.D. (n =  3). 
Bars with different letters are significantly different (p ≤  0.05).
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4. Discussion

HMs uptake through plant rhizosphere and its transportation into 
the shoots of B. juncea plants were enhanced in parallel with stress 
intensity when HMs was implemented in the medium. HMs 
mobilization in the rhizosphere, uptake by plant roots, translocation 
from roots to aerial parts of plants, and heavy metal ion sequestration 
and compartmentation in plant tissues are some of the steps utilized 
by plants to extract HMs. Enhanced HMs concentrations result in 
reductions in elongation, biomass, and seedling growth. A statistical 
study revealed that HM, EDTA, and the interaction of HM × EDTA 
with plant species had a substantial effect on both root and shoot 
length. In the current investigation, heavy metal stress substantially 
affected the biomass of B. juncea seedlings, as observed by a decrease 
in the fresh and dry weights of the seedlings. Similarly, Qadir et al. 
(2004) studied B. juncea sps. For the efficacy of phytoextraction and 
found a decrease in shoot length of B. juncea subjected to Cd 
(0.0–2.0 mM). Furthermore, plants imperiled to heavy metal stress 

have detrimental effects on numerous metabolic cycles because of 
ROS generation, resulting in reduced plant yield, production, and 
biomass. Heavy metal toxicity has also been revealed to decrease 
biomass in Solanum lycopersicum, B. juncea, S. seban, and S. melongena 
(Mahmud et al., 2017; Singh and Prasad, 2019; Din et al., 2020). Zheng 
et al. (2010) affirmed that application of Cd to the growth medium 
leads to increased Cd accretion in the root, in contrast to the shoot, 
which was validated by a greater reduction in root growth compared 
to shoot growth. Implementing EDTA in the soil decreases free Cd2+ 
ions around the rhizosphere and thereby reduces plant metal uptake. 
Moreover, Jiang et al. (2003) illustrated that EDTA perhaps decreases 
the solubility and bioavailability of HMs in the soil system and 
consequently reduces plant uptake.

Moreover, strong metal chelators like EDTA are known to have a 
significant impact on chemical speciation, which in turn affects soil 
solution phase mobility, solubility, and bioavailability as well as root 
absorption and accumulation of metals. The current study indicated that 
high-concentration EDTA treatment has encouraged Zn and Pb uptake 
capability in the shoot part of B. juncea. This is confirmed by a previous 
study that observed the application of EDTA to the soil, which results in 
heavy metals being phytoextracted and moved from the rhizospheric 
region to the plant’s harvestable above-ground components (Meers et al., 
2008; Singh and Singh, 2017). Several experiments have been done by 
utilizing soil that was artificially enriched with heavy metals, which may 
result in high phytoextraction effects (Zhuang et al., 2007) due to the 
greater accessibility of heavy metals in artificially enriched soils. 
However, Wu et al. (2004) also concluded that Cu and Pb concentrations 
were also increased by EDTA application in shoots of B. juncea.

The impact of EDTA was examined on the uptake, leaching, and 
mobilization of heavy metals, along with the effects of EDTA 
inoculations on B. juncea. The most effective EDTA dose was 4 mM 
EDTA kg−1 in soil, where Ni, Pb, and Zn were significantly higher in 

TABLE 1 Transfer factors and translocation factors for different EDTA 
concentration.

EDTA 
Level 

(mM  kg−1)

Transfer factor Translocation factor

Pb Ni Zn Hg Pb Ni Zn Hg

0 0.25 1.26 1.00 1.07 0.76 0.36 0.43 1.29

1 0.58 0.44 0.74 1.75 1.28 0.90 0.99 1.33

2 0.90 0.73 1.10 3.17 1.35 0.54 0.73 1.03

3 1.05 0.90 1.51 3.91 1.44 0.67 0.82 1.32

4 1.19 1.15 1.63 2.28 1.51 0.79 1.07 1.20

FIGURE 3

Illustration of heavy metal accumulation in soil under different EDTA concentration. The vertical bars represent means  ±  S.D. (n =  3).
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the shoot biomass, and a 3 mM kg −1 concentration for Hg that was 
maximum in the shoot biomass, contrary to the control. Implications 
of EDTA on soil-induced Hg, Ni, Pb, and Zn bioavailability, which 
consequently stimulated phytoaccumulation and facilitated 
phytoextraction. Conversely, enhanced Cd and Pb bioavailability also 
reduced plant growth. The exact mechanism by which EDTA increases 
metal absorption is still being investigated.

The efficacy of phytoextraction is associated with both plant dry 
matter generation and heavy metal content. The best plant species for 
cleaning up a polluted area should be capable of producing the driest 
matter while tolerating and accumulating the target toxins (Wu et al., 
2004; Clemens, 2006; Singh et al., 2017). Heavy metal concentrations 
by roots and shoot parts are unveiled in Figure  5, depicting less 
accretion of heavy metals in roots and a relatively high amount of 
heavy metals translocated to the shoot of B. juncea. Moreover, as per 
Brunetti et al. (2011), who studied B. napus plants in polluted soil, the 
accrual of the several metals under investigation (Cd, Cr, Cu, Ni, Pb, 

and Zn) was more prominent in shoots than in roots, as is 
characteristic of accumulator species. Zaier et al. (2010) analyzed the 
effect of EDTA on B. napus to eliminate metals from soils amended 
with sludge in HM removal, and the study disclosed an improvement 
in shoot metal accumulation. Furthermore, inoculation with EDTA 
has also encouraged the accretion of all heavy metals in the roots and 
shoot parts of B. juncea. Grcman et al. (2001) reported high metal (Pb, 
Zn, and Cd) accumulation performance in B. rapa. Moreover, for the 
disposal of phytoremediation plants with HMs, a variety of techniques 
including heat treatment, extraction treatment, microbiological 
treatment, compression landfilling, and nanomaterial synthesis can 
be applied. Each disposal technique has a unique operation procedure 
and set of technical requirements. HMs can move and change 
throughout various disposal procedures. Some techniques of disposal 
and usage may produce byproducts (Liu and Tran, 2021).

Heavy metal stress is commonly associated with oxidative stress 
and altered metabolism, such as alteration of chlorophyll biosynthesis, 
enzymatic activity, and pigment content (Szollosi et al., 2009). Heavy 
metal-induced oxidative stress also damages chlorophyll. Therefore, 
chlorosis of leaves is a common deleterious outcome of heavy metal 
stress. Plants have evolved multiple adaptation mechanisms to protect 
themselves from heavy metal stress. Disproportionate generation of 
ROS has deleterious effects on various cellular components, which 
affect cellular integrity and result in cell death (Askari et al., 2021). 
Heavy metal stress has damaging consequences for plant biomass and 
augments ROS production, which hinders the plant’s function 
(Qureshi et  al., 2020). Several plant sps. Can be  reconnoitered as 
phytoremediators to diminish the contrary effects of heavy metals via 
the modulation of enzymatic and non-enzymatic antioxidants. The 
current study demonstrated the efficacy of B. juncea in the presence 
of EDTA in ameliorating heavy metal-induced oxidative damage in 
B. juncea seedlings via the production of enzymatic and non-enzymatic 
antioxidant molecules. The decrease in biomass in seedlings in the 
presence of heavy metals could be attributed to overproduction of 
ROS and reduced nutrient and water uptake. Our results are in 
agreement with Niakan and Kaghazloo (2016) and Farid et al. (2017) 
who stated that chlorophyll content in Helianthus annuus L. and 
B. napus plants increase in the presence of EDTA.

FIGURE 5

Effect of different EDTA concentration on photosynthetic pigments 
(Chlorophyll a and b). The vertical bars represent means  ±  S.D. (n =  3). 
Bars with different letters are significantly different (p ≤  0.05).

FIGURE 4

Antioxidant enzyme (A) and MDA, ascorbic acid (B) activity in Brassica juncea seedlings induced by implication of different EDTA concentration under 
heavy metal stress condition. The vertical bars represent means ± S.D. (n =  3). Bars with different letters are significantly different (p ≤  0.05).
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Moreover, SOD enzyme activity in B. juncea showed a significant 
increase with different EDTA concentrations since the increment in 
EDTA level upsurges the heavy metal concentrations in different plant 
parts. The enhanced SOD activity was concomitant with reduced O2• 

− content as the conversion of O2• − to H2O2 is controlled by SOD. These 
findings support the earlier work carried out with diverse plant types 
(Shaw and Mueller, 2009). SODs are a group of enzymes that accelerate 
the dissociation of superoxide radicals into H2O2. Several studies have 
reported the repressive effect of lipid peroxidation in leaf and root 
tissues under heavy metal stress (Demirbas et al., 2005; Charriau et al., 
2016). Malondialdehyde-derived toxic compounds are produced 
downstream of ROS to mediate metal stress-induced oxidative 
damage in several crops. Our results clearly signify the consequences 
of EDTA as well as heavy metals on plant membrane oxidative 
damage. The non-enzymatic antioxidants, viz., ascorbic acid, are 
important redox buffering mediators in cells, which regularize 
oxidative stress by quenching ROS and conserving the redox status of 
the cell (Noctor et al., 2018). Additionally, ascorbic acid is also engaged 
in governing numerous plant developmental functions such as cell 
division and differentiation, homeostasis, pollen growth, 
phytohormones, etc. (Potter et al., 2012). The findings of the current 
study showed an elevated level of ascorbic acid in EDTA-treated 
seedlings under heavy metal stress, which was analogous to the results 
observed in O. sativa, B. napus, and Z. mays under heavy metal stress 
(Chen et al., 2017; Ulhassan et al., 2019; Adhikari et al., 2020; Mocek-
Płociniak et al., 2023).

5. Conclusion

Our study suggests that heavy metal stress significantly reduced 
the growth, biomass, and photosynthetic pigments of B. juncea. It also 
changes the antioxidative machinery of the plant system due to the 
overgeneration of ROS and lipid peroxidation. Furthermore, the 
effects of EDTA on the heavy metal-treated seedlings reduced heavy 
metal accumulation and upregulated the various nonenzymatic 
metabolites and antioxidant enzyme activity, which scavenged the 
toxic ROS (H2O2 and O2• −) from the plant. The most effective EDTA 
dose was 4 mM EDTA kg − 1 in soil, where Ni, Pb, and Zn were found 
to be significantly higher in the shoot biomass, and a 3 mM kg −1 
concentration for Hg that was maximum in the shoot biomass. Thus, 
EDTA can be a potent candidate for conferring heavy metal stress, but 

the underlying molecular mechanism of heavy metal stress should 
be further elucidated.
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