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A novel marine actinomycete, designated strain MCN248T, was isolated from the 
coastal sediment in Songkhla Province, Thailand. Based on the 16S rRNA gene 
sequences, the new isolate was closely related to Nonomuraea harbinensis 
DSM45887T (99.2%) and Nonomuraea ferruginea DSM43553T (98.6%). Phylogenetic 
analyzes based on the 16S rRNA gene sequences showed that strain MCN248T 
was clustered with Nonomuraea harbinensis DSM45887T and Nonomuraea 
ferruginea DSM43553T. However, the digital DNA–DNA hybridization analyzes 
presented a low relatedness of 40.2% between strain MCN248T and the above 
closely related strains. This strain contained meso-diaminopimelic acid. The acyl 
type of the peptidoglycan was acetyl, and mycolic acids were absent. The major 
menaquinones were MK-9(H2) and MK-9(H4). The whole cell sugars consisted 
of madurose, ribose, mannose, and glucose. Diphosphatidylglycerol, hydroxyl-
phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, and 
phosphatidylglycerol were detected as the major phospholipids. The predominant 
cellular fatty acids were iso-C16:0 (40.4%), 10-methyl-C17:0 (22.1%), and C17:1ω 8c 
(10.9%). The DNA G  +  C content of the genomic DNA was 71.7%. With in silico 
analyzes, the antiSMASH platform uncovered a diverse 29 secondary metabolite 
biosynthesis arsenal, including non-ribosomal peptide synthetase (NRPS) and 
polyketide synthase (PKS) of strain MCN248T, with a high prevalence of gene cluster 
encoding pathways for the production of anticancer and cytotoxic compounds. 
Consistently, the crude extract could inhibit colorectal HCT-116 cancer cells 
at a final concentration of 50  μg/mL. Based on the polyphasic approach, strain 
MCN248 was designated as a novel species of the genus Nonomuraea, for which 
the name Nonomuraea corallina sp. nov. is proposed. The type strain of the type 
species is MCN248T (=NBRC115966T  =  TBRC17110T).
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Introduction

Marine habitats have proven to be significant reservoirs of rare 
actinomycetes, including the genus Nonomuraea, in recent decades. 
These marine rare actinomycetes are renowned bioactive compound 
producers, since a total of 267 novel compounds were reported to 
be  produced by them between 2007 and 2017 (Subramani and 
Sipkema, 2019). The genus Nonomuraea produces diverse bioactivity 
of secondary metabolites; for example, the antibacterial compound 
actinotiocin was first isolated from Nonomuraea pusilla IFO 14684T in 
1973 (Tamura et al., 1973). In addition, anticancer, antipsychotic, and 
biocatalytic compounds, as well as pigments, have been found to 
be produced by Nonomuraea spp. (Sungthong and Nakaew, 2015).

The genus Nonomuraea was included in the family 
Streptosporangiaceae by Quintana et al. (2003). The description of the 
family was subsequently emended by Stackebrandt et al. (1997), Zhi 
et al. (2009), Nouioui et al. (2018), and Ay et al. (2020), on the basis of 
the 16S rRNA gene sequence analysis and chemotaxonomic 
characteristics. At the time of writing this article, the genus 
Nonomuraea comprises 66 species with validly published names 
(LPSN, http://www.bacterio.net/nonomuraea.html). These species can 
be distinguished using a combination of chemotaxonomic, genomic, 
morphological, and phylogenetic criteria (Lechevalier and Lechevalier, 
1970; Embley et  al., 1998). They generally produce extensively 
branching aerial and substrate mycelia. Chains of aerial spores can 
be hooked, spiral, or straight, and the cell wall is composed of meso-
diaminopimelic acid (meso-DAP) (Goodfellow et  al., 1990). The 
major menaquinones are MK-9(H4), MK-9(H2), and MK-9(H0), while 
the major phospholipids are diphosphatidylglycerol, 
phosphatidylethanolamine, hydroxylated phosphatidylethanolamine, 
and ninhydrin-positive phosphoglycolipids. The genomic DNA 
contains 64.0–73.0 mol% of G + C content (Kämpfer, 2012). The 
polyphasic approach combines various data sources, including 
morphological characteristics, DNA sequences, and ecological niches, 
to enhance the precision of species identification and delimitation 

(Yang et  al., 2022). However, genomics has become a promising 
methodology as it provides a reproducible, reliable, highly informative 
means to infer phylogenetic relationships among prokaryotes, which 
allows the continuation of our tradition toward natural classification 
(Chun et al., 2018). In this study, we aimed to determine the taxonomic 
position of an actinomycete isolate that is a novel species of the genus 
Nonomuraea by using a polyphasic taxonomy.

Cancer possesses a significant global challenge to life expectancy. 
The worldwide cancer burden is projected to increase by 47% to 28.4 
million cases by 2040, with transitioning countries facing an even 
greater increase, ranging from 64 to 95% (Sung et  al., 2021). 
Anticancer drugs undergo metabolism through phase I and phase II 
metabolizing enzymes, involving oxidation/hydroxylation and 
hydrolysis (Muhamad and Na-Bangchang, 2020). For instance, 
curcumin regulates various cellular signaling pathways, including 
apoptosis, inhibiting progression, and blocking angiogenesis in 
pancreatic cancer (Kumar et  al., 2023). Resistomycin inhibits 
Pellino-1, an E3 ubiquitin ligase that is reported to have an important 
role for lymphoid and several solid tumorigeneses, and the inhibition 
also leads to the downregulation of expression of transcription factors, 
SNAIL and SLUG, that contribute to tumor weight and lung metastasis 
in MDA-MB-231 cells (Liu et al., 2020).

Materials and methods

Isolation of actinomycetes and 2D 
anti-cancer screening

Strain MCN248T was isolated from coastal sediment from Samila 
Beach, Songkhla Province, Thailand (GPS data 7.192455, 100.590469), 
using a dilution plating technique. A 10-fold dilution of sediment 
suspension was spread onto starch casein agar (g/L: soluble starch, 10; 
casein, 0.3; KNO3, 2; MgSO4.7H2O, 0.05; K2HPO4, 2; NaCl, 2; CaCO3, 
0.02; FeSO4.7H2O, 0.01; and agar, 18) supplemented with 
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cycloheximide (50 mg ml-1) and nalidixic acid (50 mg ml-1) 
(Wattanasuepsin et  al., 2017). The colonies were picked up after 
incubation for 6 weeks at 28°C. The pure culture was maintained on 
yeast extract–malt extract agar (International Streptomyces Project, 
ISP 2 medium) at 28°C and stored in 20% (v/v) glycerol at −80°C for 
long-term preservation.

For the 2D anti-colorectal cancer assay, the crude extract cultivated 
in A-3 M production medium (g/L: soluble starch, 20; glycerol, 20; 
pharmamedia, 15; dianion HP-20, 10; glucose, 5; and yeast extract, 3, pH 
7) was prepared using ethanol/ethyl acetate extraction and then diluted 
in DMSO to prepare a stock concentration of 10 mg/mL. To conduct 
testing against cancer cell line, the crude extract was added to cell plates 
to obtain a final concentration of 50 μg/mL. High-throughput liquid 
handling and high-throughput detection system were used for screening 
compounds through the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyl 
tetrazolium bromide (MTT) (colorimetric assay) method. The absorbance 
of this colored solution was measured at a wavelength of 570 nm by a 
Multi-Mode Microplate Reader (ENVISION). The optical density (OD) 
was used to calculate the percentage of cell inhibition.

16S rRNA sequence identification

PCR amplification was performed using a Perkin Elmer 
GeneAmp  2400 PCR system and a pair of 11F′ (5′-AGTTTG 
ATCATGGCTCAG-3′) and 1540R′ (5′-AAGGAGGTGATCCA 
ACCGCA-3′) universal primers. Sequencing of the 16S rRNA gene of 
strain MCN248T was carried out by Macrogen, Inc, Korea. The values 
of sequence similarities among the most closely related strains were 
computed using the EzBioCloud server (Yoon et  al., 2017a,b).1 A 
nearly complete 16S rRNA gene sequence (1471 bp) of strain 
MCN248T was aligned with multiple sequences of available type 
strains in the genus Nonomuraea on the EZBioCloud database. 
Phylogenetic trees were constructed using neighbor-joining (Saitou 
and Nei, 1987) and maximum-likelihood (Felsenstein, 1981) tree-
making algorithms in the software package MEGA (version 11) 
(Tamura et al., 2021). Evolutionary distance matrices were generated 
according to Kimura’s two-parameter model (Kimura, 1980). The 
robustness of the tree topologies was assessed by performing bootstrap 
analysis with 1,000 replicates (Felsenstein, 1985).

Draft genomic sequencing and in silico 
analyzes

The extraction and purification of chromosomal DNA for DNA 
G + C content analysis were performed according to the method by 
Saito and Miura (1963). The draft genome of strain MCN248T was 
sequenced using the paired-end method and the Illumina HiSeq 
platform. The G + C content of the genomic DNA of strain MCN248T 
was calculated from the draft genome sequences. The genomic DNA 
sequence of Nonomuraea harbinensis DSM45887T (GenBank 
accession no. JAHKRN000000000.1) was obtained from the NCBI 
database, while that of Nonomuraea ferruginea DSM43553T (GenBank 

1 http://eztaxon-e.ezbiocloud.net

accession no. JAPNUD000000000) was first deposited at NCBI in this 
study. According to the phylogenomic tree construction (Meier-
Kolthoff and Göker, 2019), based on genome data, a TYGS-genome 
blast distance phylogeny (GBDP) was generated using MCN248T and 
all the available genome data of Nonomuraea type strains in the TYGS 
database. The genomic similarities between strain MCN248T and the 
above closely related strains were investigated using the average 
nucleotide identity (ANI) algorithm with the OrthoANIu tool from 
EZBioCloud software (Yoon et al., 2017a,b) and JSpeciesWS online 
services (Richter et al., 2015). Additionally, digital DDH (dDDH) 
analysis was conducted using the Genome-to-Genome Distance 
Calculator (GGDC) 2.1 platform (Meier-Kolthoff et  al., 2013). 
Analysis of secondary metabolite biosynthesis gene clusters for rapid 
genome-wide identification was carried out using antiSMASH version 
7.0.0beta1 (Medema et al., 2011).

Chemotaxonomic characterization

Biomass for chemical and molecular studies was harvested by 
centrifugation after cultivation in tryptic soy broth (TSB) (g/L: 
tryptone, 17; soytone, 3; sodium chloride, 5; dipotassium phosphate, 
2.5; and glucose, 2.5, pH 7.3) at 28°C for 5 days. The purified cell wall 
was prepared according to the procedure described by Také et al. 
(2016). The whole-cell sugar composition was examined on cellulose 
plates using the TLC technique, which was performed following the 
procedures described by Staneck and Roberts (1974). The presence of 
mycolic acid was investigated using TLC according to the method by 
Tomiyasu (1982). Isoprenoid quinones were extracted and 
subsequently analyzed by liquid chromatography/mass spectrometry 
(JMS-T100LP, JEOL) with a CAPCELL PAK C18 UG120 column 
(OSAKA SODA) using methanol/isopropanol (7,3, v/v) and UV 
detection at 270 nm (Collins et al., 1977; Meyer, 1979; Kroppenstedt 
et al., 1990; Wang et al., 2014). Phospholipids in cells were extracted 
and analyzed by two-dimensional TLC according to the method by 
Minnikin et  al. (1977). Methyl esters of cellular fatty acids were 
prepared by direct transmethylation with methanolic hydrochloride 
using cells grown in TSB broth for 7 days at 28°C. Cellular fatty acid 
compositions were identified using a GLC system (HP 6890; Hewlett 
Packard) assisted by the ACTIN 6 database, according to the 
instructions for the Sherlock Microbial Identification System 
(Microbial ID; MIDI, version 6.0) (Kämpfer and Kroppenstedt, 1996).

Phenotypic characterization

Cultural characteristics were observed after cultivation at 28°C for 
14–21 days on International Streptomyces Project (ISP) media 2, 3, 4, 
5, 6, and 7 (Difco or Nihon Pharmaceutical) (Shirling and Gottlieb, 
1966). To specify the colors of aerial and substrate mycelia and 
diffusible pigment, the Color Harmony Manual was used for color 
designation (Jacobson et al., 1958). Morphological characteristics of 
strain MCN248 were observed using scanning electron microscopy 
(model JSM-5610, JEOL) after incubation on ISP 3 at 28°C for 21 days. 
Spore-producing samples of the strain were prepared according to 
previously described methods (Intra et al., 2013).

The temperature range (4–50°C) (temperature gradient incubator 
TN-2148, Advantec) and pH range (pH 3.0–11.0, at 1 pH unit 
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intervals) for growth and salinity (NaCl) tolerance [0–5% (w/v)] were 
examined on ISP 2 basal medium after 14 days of incubation. The 
carbon-source utilization was determined using the methods 
described by Shirling and Gottlieb (1966) and Williams et al. (1989). 
The capacity of the strain for starch hydrolysis, hydrogen sulfide 
production, melanin production, nitrate reduction, gelatin 
degradation, and casein hydrolysis was investigated using the 
following media: ISP 4, ISP 6, ISP 7, ISP 8 (0.5% peptone, 0.3% beef 
extract, and 0.5% KNO3, pH 7.0), peptone-glucose-gelatin (2.0% 
glucose, 0.5% peptone, and 20% gelatin, pH 7.0), and skim milk agar 
(10% skim milk (Difco) and 1.5% agar, pH 7.0). For the coagulation 
and peptonization of milk, 10% skim milk (Difco) was used (Kovacs, 
1956). A commercial kit API ZYM system (BioMérieux) was used to 
determine the enzymatic features of the strain according to the 
manufacturer’s instructions.

Results and discussion

Phylogeny of Strain MCN248T

Based on pairwise comparison of the almost-complete 16S rRNA 
gene sequences, strain MCN248T displayed a close association 
between members of the genus Nonomuraea. The highest similarity 
value to strain MCN248T was N. harbinensis DSM45887T (99.2%). 
Congruent with these results, the neighbor-joining phylogenetic tree 
indicated that the strain MCN248T was positioned within the genus 
Nonomuraea, where it formed a clade with N. harbinensis DSM45887T 
and N. ferruginea DSM43553T (Figure  1). The phylogenetic 
relationships of 40 Nonomuraea species were also supported by the 
neighbor-joining and maximum-likelihood trees, as shown in 
Supplementary Figures S1, S2, respectively.

Draft genomic characterization and in silico 
secondary metabolite cluster profiles

The draft genome sequencing of strain MCN248T yielded a 
genome of 7,557,982 bp (Figure 2) in length after assembly, which 
produced 370 contigs with an N50 value of 34,089 bp. The G + C 
content of strain MCN248T, calculated from the draft genome 
sequence, was determined to be 71.7 mol% (Supplementary Table S1).

The dDDH value for comparing strain MCN248T with both 
N. harbinensis DSM45887T and N. ferruginea DSM43553T was found 
to be 40.0 and 40.2%, respectively. The ANI values were in the range 
of 90.0 to 89.9% for these strains. Similarly, the ANIb values were 
90.8% for both N. harbinensis and N. ferruginea, as determined by 
JSpeciesWS online services. All these values were below the threshold 
for bacterial species demarcation (Chun et al., 2018).

Phylogenomic tree construction based on the TYGS-genome blast 
distance phylogeny (GBDP) (Meier-Kolthoff and Göker, 2019) using 
MCN248T and the available genome data of Nonomuraea type strains 
in the TYGS database supported the phylogenetic position of strain 
MCN248T (Figure 3). Analysis with the antiSMASH tool revealed 
differences in the number and types of annotated biosynthetic gene 
clusters (BGCs) between Nonomuraea corallina MCN248T and the 
closely related strains (N. harbinensis, N. ferruginea, and N. ceibae), as 

shown in the heatmap (Figure  4) and the table of numbers 
(Supplementary Table S2). The analyzed regions were mainly 
non-ribosomal peptide synthetase (NRPS), terpene, type I polyketide 
synthase (T1PKS), and other types. BGC numbers of MCN248T 
obviously differ from related strains in lanthipeptide, PKS groups, and 
NRPS. Predicted genes involved in anticancer biosynthesis were 
identified in thr strain MCN248T using the AntiSMASH database, 
highlighting its potential as a source of bioactive compounds. Notably, 
the gene cluster for the lipopeptides icosalide A/icosalide B showed 
100% similarity, followed by the polyketide cytorhodin (37% 
similarity). Icosalides A and B were initially isolated from a fungal 
culture and reported for their cytotoxic activity against Madin-Darby 
canine kidney (MDCK) cells (Boros et  al., 2006). Cytorhodins, 
belonging to the rhodomycin-antitumor compound group, were 
originally discovered in Streptomyces sp. HPL-Y11427 (Reddy et al., 
1985; Hedtmann et al., 1992). These compounds have not yet been 
reported from Nonomuraea species. The discovery of these anticancer 
compound BGCs could lead to the discovery of new targets. For 
example, the novel glycopeptide A59926 was isolated from 
Nonomuraea coxensis DSM45129 based on a prior genome mining 
study (Yushchuk et  al., 2021). Accordingly, based on a high-
throughput screening of anti-colorectal cancer activity against 
HCT-116 cell lines, the crude extract of strain MCN248 showed 
partial inhibition (27.74%) at a final concentration of 50 μg/mL. This 
provides evidence that the strain can be  further studied for the 
production of anticancer or other metabolites in future 
research endeavors.
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FIGURE 1

Neighbor-joining phylogenetic tree derived from 16S rRNA 
nucleotide sequences displaying the genetic relatedness between 
the MCN248T isolate and other strains in the genus Nonomuraea, 
with Thermopolyspora flexuosa as the outgroup. Bootstrap values of 
50% or higher are indicated at the branch points (percentages are 
based on 1,000 resamplings). The scale bar represents 0.01 
nucleotide substitutions per site.
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FIGURE 2

Circular map of the total length 7,557,982  bp draft genome visualized by CG viewer server, showing coding sequence (CDS), contig, repeat region, GC 
skew+, GC skew-, and GC content of stain MCN248.
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FIGURE 3

TYGS-genome blast distance phylogeny (GBDP) based on genome data of MCN248T, including the available genome data of Nonomuraea type strains 
in the TYGS database. Thermopolyspora flexuosa JCM 3056T was used as the outgroup.
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Chemotaxononic analyzes of strain 
MCN248T

Madurose, ribose, mannose, and glucose were detected as 
diagnostic whole-cell sugars. The type of muramic acid was 
acetyl, and mycolic acids were absent. The menaquinones found 
in strain MCN248 were MK-9(H2), with 50%, and MK-9(H4), 
with 44%. Phospholipids consisted of diphosphatidylglycerol, 
hydroxyl-phosphatidylethanolamine, phosphatidylethanolamine, 
phosphatidylinositol, phosphatidylglycerol, three unidentified 
glycolipids, two unidentified phospholipids, and two unidentified lipids 
(Supplementary Figure S3). The fatty acid profiles of strain MCN248T 
were compared with those of the two reference strains, as shown in 
Table 1. The significant differences in the fatty acid patterns between 
MCN248T and the closely related strains were found in the amount of 
iso-C16:0, iso-C15:0, and C16:0. The cellular fatty acids of strain 
MCN248T that comprised more than 10% of total fatty acids were 
iso-C16:0 (40.4%), 10-methyl- C17:0 (22.0%), and C17:1ω8c (10.9%) 
(Table 1). The chemotaxonomic traits were consistent with those of 
other species in the genus (Saygin et  al., 2021; Lin et  al., 2022), as 
reported in Bergey’s Manual of Systematics of Archaea and Bacteria 
(Kämpfer, 2012). Madurose is the major sugar, and MK-9(H4), 
MK-9(H2), and MK-9(H0) are mainly found as the menaquinones. 
Iso-C16:0 and 10-methyl- C17:0 are major types of fatty acids. 
Phenotypic characteristic of strain MCN248T and MCN248T exhibited 
good growth on ISP 3, ISP 4, and ISP 6. The color of the substrate 
mycelium varied from light coral red to burnt orange. No soluble 
pigment was observed in any media (see Supplementary Table S3). After 
7 days of incubation, the pictures of strain MCN248 on 301 agar 
(24.0 g/L starch, 5.0 g/L yeast extract, 4.0 g/L CaCO3, 3.0 g/L peptone, 

3.0 g/L meat extract, and 1.0 g/L glucose) were demonstrated in 
comparison with the related strains, as shown in 
Supplementary Figure S4. Aerial mass color was white on all the media 
used for cultural characterization. Vegetative mycelia were branched but 
not fragmented. Straight and flexuous long chain spores were produced 
on substrate and aerial hyphae. Sporangia were not observed. The 
surface of the spores was rough, and the spores were 0.5–0.6 × 0.7–1.0 μm 
in size (Figure  5). Growth occurred at 24–42°C, with an optimal 
temperature range of 28–36°C and pH of 5.0–11.0 (optimum 7–11). 
Strain MCN248T could grow on 5% (w/v) NaCl-containing medium, 
while reference strains could not tolerate 5% NaCl concentration and a 
pH above 9.0. Several physiological traits indicated differences between 
the test strain and the closely related species. All degradation tests—
starch hydrolysis, nitrate reduction, gelatin liquefaction, milk 
peptonization, and hydrogen sulfide production—yielded negative 
results in strain MCN248T, while tyrosinase activity was detected. On 
the other hand, N. ferruginea DSM43553T was positive for starch 
hydrolysis and nitrate reduction, and N. harbinensis DSM45887T was 
positive for only nitrate reduction (Table 2). The carbohydrate utilization 
capacity of the test strain—including D-mannitol, rhamnose, D-xylose, 
L-arabinose, mannose, and galactose—is the property that distinguishes 
it from the reference strains. Other physiological characteristics are 
shown in Table 2.
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FIGURE 4

Heatmap demonstrating the numbers of biosynthetic regions in 
genome of strain MCN248T and its closely related strains analyzed 
using antiSMASH software version 7.0.0beta1.

TABLE 1 Fatty acid compositions (%) of strain MCN248T and closely 
related Nonomuraea species.

Fatty acidsa N. corallina 
MCN248T

N. ferruginea 
DSM43553T

N. harbinensis 
DSM45887T

16:0 iso 40.35 30.21 32.76

17:0 10-methyl 22.06 28.17 30.28

17:1 ω8c 10.92 6.54 5.96

16:1 iso G 4.99 2.32 4.20

17:0 4.57 3.66 4.49

14:0 iso 2.34 0.97 0.76

15:0 iso 2.22 5.41 5.25

18:0 iso 1.89 2.92 3.02

16:0 1.25 1.35 1.02

17:0 iso 0.90 0.81 1.37

18:0 10-methyl, 

TBSA

0.89 2.64 1.58

17:0 iso 3OH 0.88 2.62 2.56

18:1 ω9c 0.79 1.78 1.00

18:1 iso H 0.43 – –

12:0 iso 0.34 – –

15:1 ω6c 0.33 1.04 0.81

17:0 2OH 0.31 – 0.94

13:0 0.29 0.30 0.35

14:0 0.27 0.88 0.64

17:0 anteiso 0.17 0.60 0.55

15:0 2OH 0.16 0.28 0.34

18:1 2OH 0.14 0.34 0.42

13:0 iso 0.10 – –

aFatty acid contents of < 0.1% are omitted.
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Description of Nonomuraea corallina sp. 
nov.

Nonomuraea corallina (co.ral.li’.na. L. fem. Adj. corallina coral red, 
referring to the color of the substrate mycelium) is aerobic, gram-
positive, and mesophilic actinomycetes. The colonies are light coral red 
to burnt orange in color. White aerial mycelium is produced, and a 
single spore develops on the substrate mycelia. The spores are 

non-motile. Vegetative mycelia are branched and not fragmented, 
and no sporangia are observed. The acyl type of the peptidoglycan 
is acetyl, and the cell wall contains meso-diaminopimelic acid. 
Madurose, ribose, mannose, and glucose are detected as whole-
cell sugars. Major phospholipids are diphosphatidylglycerol, 
hydroxyl-phosphatidylethanolamine, phosphatidylethanolamine, 
phosphatidylinositol, phosphatidylglycerol, and unidentified lipids. The 
major menaquinones are MK-9(H2) and MK-9(H4), and mycolic acids 
are not detected. The major cellular fatty acid is iso-C16:0. The growth of 
the type strain is observed at temperatures between 24°C and 42°C, 
with an optimum range of 28–36°C and pH of 5–11, with an optimum 
pH of 7–11. The maximum NaCl concentration for growth is 3% (w/v). 
Strain MCN248T is capable of utilizing D-mannitol, rhamnose, sucrose, 
D-xylose, L-arabinose, mannose, and galactose as sole carbon sources, 
but it shows limited growth with maltose and sorbitol. Casein hydrolysis, 
gelatin liquefaction, nitrate reduction, starch hydrolysis, H2S production, 
and melanin production are negative for the strain. Enzymatic activity 
of the API ZYM system is positive for alkaline phosphatase, 
α-chymotrypsin, α-glucosidase, β-galactosidase, β-glucosidase, cystine 
arylamidase, esterase (C4), esterase lipase (C8), leucine arylamidase, 
N-acetyl-β-glucosaminidase, trypsin, α-galactosidase, acid phosphatase, 
and valine arylamidase, while it is negative for lipase (C14), naphthol-
AS-BI-phosphohydrolase, β-glucuronidase, α-mannosidase, and 
α-fucosidase. The G + C content of the genomic DNA is 71.7%. The type 
strain, MCN248T (=NBRC115966T = TBRC17110T), was isolated from 
Songkhla Province, Thailand. The GenBank accession numbers are 
OP658912 (16S rRNA gene) and JAPNNL000000000 (draft genome), 
respectively.

Conclusion

Strain MCN248T should be classified as a member of the genus 
Nonomuraea on the basis of both the phylogenetic analysis and 
chemotaxonomic characterization. However, strain MCN248T was 
clearly distinguishable from the closely related strains by its biochemical 
and physiological properties (e.g., carbon utilization, starch hydrolysis, 
nitrate reduction, growth temperature and pH, and enzymatic activity) 
(Table 2). Furthermore, the dDDH and ANI values between MCN248T 
and the closely related strains were lower than the bacterial species 
thresholds. Based on phenotypic and phylogenetic evidence and whole 

FIGURE 5

Scanning electron micrographs of spores of strain MCN248T grown on ISP 3 medium for 21  days at 28°C. Bar, 5  μm (left); 2  μm (right).

TABLE 2 Differential physiological and biochemical properties of strain 
MCN248T and closely related Nonomuraea species.

Characteristics 1 2 3

Colony color Light coral red 

to burnt orange

Sand to burnt 

orange

Pale yellow 

to camel

Growth in NaCl (%, w/v) 0–5 0–3 0–4

Growth temperature (°C) 24–42 (28–36) 28–38 20–34

Growth pH 5.0–11.0 6.8–7.8 6.0–9.0

Biochemical test

  Starch hydrolysis − + −

  Nitrate reduction − + +

Utilization of carbohydrate

  D-mannitol + − −

  Rhamnose + + −

  D-xylose + + −

  L-arabinose + − −

  Mannose + − −

  Galactose + + −

APIZYM

  Naphthol-AS-BI-

phosphohydrolase

− − +

  β-glucuronidase − − −

  α-mannosidase − + +

  α-fucosidase − − +

Strain: 1, MCN248T; 2, N. ferruginea DSM43553T [39, 40]; 3, N. harbinensis DSM45887T [41]. 
Optimum temperatures are shown in parentheses. +, positive; −, negative; w, weakly positive; 
ND, not determined.
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genomic data, it is proposed that strain MCN248T represents a novel 
species of the genus Nonomuraea, namely, Nonomuraea corallina sp. 
nov. With a 27.74% inhibition of HCT-116 cells at a 50-μg/ml 
concentration of the crude extract, pure compounds may exhibit higher 
activity, being devoid of inactive contaminants. Nevertheless, strain 
MCN248T holds the potential for future research on anticancer 
compounds or metabolite production, as it possesses biosynthetic gene 
clusters encoding the lipopeptides icosalide A/icosalide B (100% 
similarity) and the polyketide cytorhodin (37% similarity).
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