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Tuberculosis is a major global health issue, with approximately 10 million people 
falling ill and 1.4 million dying yearly. One of the most significant challenges to 
public health is the emergence of drug-resistant tuberculosis. For the last half-
century, treating tuberculosis has adhered to a uniform management strategy 
in most patients. However, treatment ineffectiveness in some individuals with 
pulmonary tuberculosis presents a major challenge to the global tuberculosis 
control initiative. Unfavorable outcomes of tuberculosis treatment (including 
mortality, treatment failure, loss of follow-up, and unevaluated cases) may result 
in increased transmission of tuberculosis and the emergence of drug-resistant 
strains. Treatment failure may occur due to drug-resistant strains, non-adherence 
to medication, inadequate absorption of drugs, or low-quality healthcare. 
Identifying the underlying cause and adjusting the treatment accordingly to 
address treatment failure is important. This is where approaches such as artificial 
intelligence, genetic screening, and whole genome sequencing can play a critical 
role. In this review, we suggest a set of particular clinical applications of these 
approaches, which might have the potential to influence decisions regarding the 
clinical management of tuberculosis patients.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium 
tuberculosis (Mtb). The World Health Organization (WHO) formulated the End TB Strategy to 
achieve the ultimate eradication of TB. The strategy gained approval in 2014 from the 67th World 
Health Assembly and aims to terminate the global TB epidemic by 2035 (WHO, 2021). Initially, 
the strategy has aimed to diminish the number of individuals afflicted with TB by 90%, along 
with lowering the mortality rate by 95% and safeguarding families from the adverse outcomes 
of TB. Predictive, preventive, and personalized medicine (PPPM) can significantly contribute 
to achieving this goal (Sadkovsky et al., 2014; Khan and Das, 2022). This approach emphasizes 
the use of advanced technologies and data analysis to predict an individual’s susceptibility to a 
disease, prevent its onset, and personalize treatment to optimize expected outcomes (Huang 
et al., 2022). In the case of TB, PPPM plays an important role in several ways:
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 1. Predictive medicine in the context of TB refers to the 
application of data analysis and advanced screening techniques 
to identify individuals with a high probability of contracting 
TB. This strategy can also predict the risk of treatment failure 
and improve TB management strategies. Predictive models are 
developed using various data sources, such as clinical, genetic, 
and environmental data (MacNeil et  al., 2019; Martinez 
et al., 2020).

 2. Preventive medicine involves strategies to prevent the onset of 
a disease. Various prophylactic measures can be implemented 
in the management of TB and prevention of the development 
of active TB. The most common is the use of the Bacillus 
Calmette-Guérin (BCG) vaccine. Other preventive measures 
include identifying and treating latent TB infection (LTBI) in 
individuals who have been exposed to Mtb but have not yet 
developed active TB (Pooransingh and Sakhamuri, 2020; 
Berrocal-Almanza et al., 2022; Migliori et al., 2022).

 3. Personalized (precision) medicine refers to the approach of 
tailoring medical treatment to individual patients by 
considering their unique traits and requirements. In TB, 
personalized medicine is mostly used to optimize treatment 
regimens for patients based on Mtb resistance and individual 
genetic variations in TB patients in responding to drugs (such 
as drug metabolism efficacy; Joshi, 2011). Many studies have 
shown an association between the genotype of Mtb and a 
higher risk of developing resistance. For example, the Beijing 
lineage is currently considered the most prevalent among 
multidrug-resistant (MDR) strains (Zhou et  al., 2017; 
Karmakar et al., 2019; Bakuła et al., 2023). Also, Mtb strains of 
this lineage are predominantly linked to active TB and carry an 
elevated risk of treatment failure (Keikha and Majidzadeh, 
2021). Genetic testing can identify patients with a higher risk 
of acquiring drug-resistant TB or experiencing adverse effects, 
and the treatment regimen can be  customized accordingly 
(Richardson et  al., 2018). The treatment regimens can 
be tailored based on a patient’s clinical characteristics, such as 
age, alcoholism, anaemia, and HIV co-infection, as well as 
sodium, iron, and albumin deficiency (Resende and dos 
Santos-Neto, 2015). In addition, measurement of plasma 
concentrations of anti-tuberculosis can be  implemented in 
adjusting the doses of respective drugs in case of various 
interactions or individual discrepancies despite using their 
recommended doses (Pršo et al., 2023).

This literature review includes the findings of the latest studies 
aimed at PPPM strategies, including artificial intelligence (AI), genetic 
screening, microRNA (miRNA) and whole genome sequencing 
(WGS). Importantly, we  explore the possibility of applying these 
approaches in enhancing TB diagnosis, treatment, and prevention by 
identifying individuals at high risk, preventing the spread of the 
disease, and personalizing treatment regimens to individual patients.

2. Transforming tuberculosis care with 
artificial intelligence-powered PPPM

Identifying and treating individuals at high risk of TB infection or 
disease progression are currently considered the most cost-effective 

measures for TB control and prevention (Kielmann et  al., 2020). 
Among the tools available for these purposes, the latest analytical tools 
are currently demonstrating the greatest efficacy. Out of all the 
available analytical instruments, artificial intelligence (AI) is 
considered the most potent and encouraging for humanity. AI 
employs mathematical techniques such as ‘machine learning’ to learn 
patterns in training data and then applies this knowledge to make 
decisions when similar patterns are detected in new data (Silver et al., 
2017; Fitzpatrick et  al., 2020). Simultaneous advancements in 
information technology (IT) infrastructure and the processing power 
of mobile computing have created optimism that AI could offer 
possibilities to tackle health issues also in low- and middle-income 
countries (LMICs; Wahl et al., 2018).

In TB screening, chest radiography is recommended and the most 
preferred method globally (WHO, 2021; Moodley et al., 2022). Despite 
its usefulness, the main constraint of using chest X-ray (CXR) for 
screening TB patients in low-resource, high-burden areas is the 
shortage of radiologists, which has led to its limited implementation 
(Pande et  al., 2015). In 2021, the WHO revised its TB screening 
guidelines, suggesting computer-aided detection software to evaluate 
digital CXR for predicting the likelihood of TB-related signs. This 
leads to better diagnostic decision-making, screening, and triaging TB 
in individuals aged 15 years and above (WHO, 2022). Over the past 
decade, AI-assisted diagnostic systems have progressed and advanced 
rapidly. Various medical-image-analyzing AI algorithms based on 
deep learning and deep convolutional neural networks (DCNNs), 
have been utilized for interpreting radiographs (Lakhani and 
Sundaram, 2017). A recent study highlighted the potential of a deep 
learning web-based diagnostic assistant in the prediction of TB in 
HIV-positive patients without the need for advanced radiological 
expertise (Rajpurkar et al., 2020). Acharya and colleagues created a 
normalization-free deep learning network model that enables the 
diagnosis and classification of TB with a sensitivity and specificity of 
91.81 and 98.42%, respectively, on a dataset containing multiple 
classes. In addition, the model achieves an accuracy of 96% for binary 
classification (Acharya et al., 2022). The most extensive study using 
five commercial AI algorithms (AD4TB, InferRead DR, Lunit 
INSIGHT CXR, JF CXR-1, qXR) was performed in Bangladesh. 
Furthermore, aside from the fact that all the algorithms demonstrated 
a sensitivity of over 90%, the findings of the investigation revealed that 
utilizing these tools can potentially diminish the need for costly 
molecular diagnostic tests (e.g., Xpert MTB/RIF, Cepheid, 
United States) by up to 50% (Qin et al., 2021). The DCNN algorithm 
ResNet exhibited exceptional performance in the timely detection of 
active TB, a critical factor in managing the alarming increase in TB 
incidence (Nijiati et al., 2022). The deep learning method was utilized 
to distinguish between TB, COVID-19, and lung adenocarcinoma in 
patients with abnormal CXRs. The findings demonstrated a significant 
level of sensitivity and highlighted the potential utilization of AI 
methodologies to diagnose emerging respiratory infections (Feng 
et al., 2021; Yoo et al., 2021). Numerous research studies have been 
conducted to create AI predictive models that can differentiate 
between susceptible TB and multidrug-resistant TB using CXRs. The 
results indicate variable performance, with the area under the curve 
(AUC) values ranging from 0.74 to 0.85 (Jaeger et al., 2018; Karki 
et al., 2021). In addition, portable X-rays (MINE 2 HDT, Gwangju, 
Republic of Korea; Xair FDR XD2000, Fujifilm Corporation, Tokyo, 
Japan; Delft Ultra, Delft Imaging Systems, Netherlands) are currently 
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available on the market, which have been confirmed to be useful in 
the search for active cases of TB in high-burden and rural areas (Vo 
et al., 2021; Odume et al., 2022). The Delft Ultra and Xair systems can 
integrate with software platforms that support AI-driven 
interpretation. Hence, the utilization of this tool can effectively 
contribute to the early detection of TB and facilitate the swift initiation 
of treatment. The potential hazard for medical personnel lies in their 
exposure to radiation, albeit in the case of portable X-rays, the risk is 
significantly diminished compared to that posed by a traditional 
apparatus (Kamal et al., 2023).

Coughing is another common symptom of pulmonary TB (Farina 
et al., 2022). AI algorithms can undergo training to analyze audio 
recordings of cough sounds and recognize patterns that are suggestive 
of TB infection. This method, referred to as “acoustic cough analysis,” 
possesses immense potential as a non-invasive and cost-efficient 
technique for TB screening. The accuracy of cough monitoring 
achieved high accuracy, however, and AI methods for diagnosing TB 
depend on various factors such as the quality and diversity of the 
training data, the specific AI algorithms used, and the stage of 
development and validation of the methods (Botha et al., 2018; Pahar 
et  al., 2021; Zimmer et  al., 2022). Additionally, AI can assist in 
epidemiological monitoring by examining cough data obtained from 
diverse sources, including wearable devices or mobile applications. 
Through the analysis of cough patterns in particular regions or 
communities, health authorities can obtain valuable information 
regarding the prevalence of TB, identify areas at high risk, and allocate 
resources more efficiently (Huddart et al., 2023). Despite its potential, 
the utilization of acoustic cough analysis and artificial intelligence (AI) 
in diagnosing and managing TB is currently in the research and 
development stage. Continuous studies and collaborations involving 
medicine, machine learning, and public health experts are essential to 
enhance and validate these methodologies. Addressing challenges 
such as personal data, standardization of cough recording protocols, 
and equitable access to AI technologies are crucial for their 
widespread implementation.

AI can predict the onset of TB and assess the efficacy of 
treatment by analyzing patient data such as demographics, medical 
history, and biomarkers. Asad et al. (2020) employed a machine 
learning model to predict the likelihood of treatment failure by 
analyzing various factors, such as social and health-related 
attributes. Similarly, Samson Balogun et al. (2021) tested 5 different 
machine learning models that performed well in classifying the TB 
treatment outcome (ranging between 67.5 and 73.4%). The latest 
research by Liao and colleagues has emphasized the potential of AI 
in anticipating side effects associated with the treatment of TB. The 
findings show that AI can identify acute hepatitis at an early stage 
in TB patients (based on levels of serum alanine aminotransferase, 
aspartate aminotransferase and total bilirubin), and also predict 
acute respiratory failure or death and may assist in clinical decision-
making before these adverse effects occur (Liao et  al., 2023). 
Moreover, Larkins-Ford et  al. developed a mathematical model 
including a series of criteria to determine what drug combinations 
must be met for effective treatments when administered as three- or 
four-drug cocktails. This method can be used in the development 
of novel regimens, including twelve commonly used anti-TB drugs, 
to narrow down the potential combinations for subsequent 
pharmacokinetic/pharmacodynamic and preclinical studies 
(Larkins-Ford et  al., 2022). To enhance medication adherence 

monitoring in TB patients, Sekandi et al. developed an AI model 
using video images of TB medication intake from Uganda and the 
rest of Africa. Their results can significantly contribute to 
determining whether the individuals have taken the pill or not, 
particularly in developing countries (Sekandi et  al., 2023). It’s 
important to note that while AI can be a valuable tool in predicting 
TB onset and assessing treatment efficacy, it should always be used 
in conjunction with clinical expertise and human decision-making. 
AI models should be continuously validated and updated with new 
data to ensure their accuracy and reliability in real-world scenarios.

AI can also play an important role in TB prevention by helping to 
identify and track TB cases and predict outbreaks. Mandal et al. used 
AI algorithms to predict TB risk among TB patients’ household 
contacts in India. They found that the algorithm was able to accurately 
predict the risk of TB based on demographic and clinical data, 
including age, sex, body mass index, and history of exposure to TB 
(Mandal et al., 2020). During the COVID-19 pandemic, there was a 
significant increase in the development and deployment of AI models 
for digital contact tracing (Haneya et al., 2021; Almotairi et al., 2023). 
These models were used to track the spread of the virus and identify 
individuals who may have been exposed to the virus, allowing faster 
and more effective tracing. The success of these models has highlighted 
the potential of AI for tracking other infectious diseases, including TB 
(Shahroz et al., 2021).

In summary, AI-driven methodologies, encompassing deep 
learning and other conventional machine learning techniques 
employed in the context of TB, offer a self-directed, convenient, and 
time-efficient approach to enhance diagnostic efficacy and precision, 
surpassing the performance of radiologists and other medical 
personnel (Figure 1). Nevertheless, the clinical applicability of these 
approaches requires further clarification, while challenges such as 
model reproducibility and data standardization need to 
be effectively tackled.

FIGURE 1

Potential applications of AI in preventing TB and mitigating the risk of 
treatment failure.
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3. Utility of genetic screening and 
miRNA in PPPM for TB

3.1. Detecting particular mutations and 
miRNAs to predict and prevent active TB

Genetic screening can play a significant role in the management 
of TB. This approach can help identify individuals who are at higher 
risk of developing TB and personalize treatment regimens for 
individuals who have already been diagnosed with TB (Yan et al., 
2022). The susceptibility of the host to TB has been linked to numerous 
genetic polymorphisms (Aravindan, 2019). Despite prior research 
linking several genetic polymorphisms to TB susceptibility, recent 
studies have identified numerous gene variations and microRNA 
(miRNA) biomarkers strongly associated with the risk of TB as well 
as the efficacy of treatment.

To enable more precise intervention in TB, it is crucial to identify 
biomarkers and genetic variants that can accurately predict the risk of 
developing active disease from latent TB infection (LTBI), as well as 
the progression of the infection. It is well-established that genetic 
factors in the host play a crucial role in the development of active 
TB. The majority of studies investigating the genes associated with 
immunity, including DC-SIGN, TLR1/2, vitamin D receptor, tumour 
necrosis factor, interleukin 1β, interferon γ, and HLA II molecules 
(Azad et  al., 2012; Tervi et  al., 2023). Moreover, Zhang et  al. 
investigated the association between individual single nucleotide 
polymorphisms (SNPs) located within the rs1135216 and rs1057141 in 
the transporter-associated antigen processing gene (TAP)1, as well as 
rs2228396 in TAP2, and the likelihood of developing of pulmonary 
TB. According to their findings, rs1057141 may serve as a genetic 
indicator of decreased risk for TB in individuals aged 60 or older, 
whereas rs1135216 may be a potential genetic indicator for those 
under the age of 60 (Zhang et al., 2015). Xing et al. (2021) found a 
relationship between polymorphisms in cytochrome P450 (CYP450) 
and TB susceptibility. CYP2C8 and CYP2E1 variants were linked to a 
higher susceptibility to TB, implying the identification of these 
variants could be critical in defining new therapeutic strategies for 
chemoprevention. Recently, genetic variants in the cytokine genes 
(IFGN, IL-12, IL14, TNFB, and IL1RA) and transporter associated 
with TAP were associated with the susceptibility to pulmonary TB and 
genetic variants in LIA4H, P2RX7, DCSIGN, and SP110 associated 
with susceptibility to LTBI (Abhimanyu et al., 2023; Lu et al., 2023). 
While these studies make valuable contributions to expanding the 
understanding of the genetic basis of PTB and EPTB manifestations, 
further research is warranted with larger sample sizes and diverse 
populations. Moreover, the identification of a whole-blood-based host 
genetic signature comprising four transcripts that predict progression 
to TB is promising and represents a big step forward in the 
personalization of TB treatment. This simple PCR test may also help 
predict TB transmission (Suliman et al., 2018).

The results of Xin et al. (2022) showed a possible correlation in the 
prediction of the development of active TB from LTBI with circulating 
miRNA hsa-miR-451a levels. The function of certain additional 
miRNAs (e.g., 146a, 149) in the risk of active TB progression has been 
elucidated; however, these studies were conducted with restricted 
sample sizes (Li et al., 2011; Zhang et al., 2015; Sinigaglia et al., 2020). 
Similarly, (Angria et al., 2022) discovered that assessing the expression 
of miRNA-29a-3p could serve as a screening method for individuals 

with LTBI.A recent study revealed the potential of miRNAs in 
predicting extrapulmonary forms of TB. The hsa-mir-425-5p miRNA 
expression levels in patients with lymph node TB were significantly 
higher compared to the other groups (including patients with LTBI 
and pulmonary TB; Massi et al., 2023). Research focusing on specific 
miRNA profiles for distinguishing latent LTBI, extrapulmonary- and 
pulmonary TB remains relatively limited but holds significant 
importance. This is because diagnosing extrapulmonary TB can 
be challenging in clinical settings, as conventional methods like AFB 
smear and culture are not always effective. Moreover, paucibacillary 
samples such as cerebrospinal fluid and aspirates are commonly 
encountered, contributing to milder forms of infection. Further 
exploration of miRNA in this context is expected to yield substantial 
benefits, particularly in the development of miRNA-based vaccines, 
biomarkers, and host-directed therapeutic approaches.

In the PPPM context, preventing excessive inflammation and 
death in TB patients is necessary. miRNA-27b-3p, miRNA-223-3p, 
and miR-99b-5p may play an important role in achieving these goals 
(Sinigaglia et  al., 2020). By inhibiting the production of 
pro-inflammatory agents and nuclear factor kappa B activity, 
miR-27b-3p helps to decrease bacterial load and prevent excessive 
inflammation during Mtb infection (Liang et  al., 2018). Lower 
miR-99b-5p expression results in decreased bacterial proliferation in 
dendritic cells and the enhancement of several pro-inflammatory 
cytokines, including IL-6, IL-12, and IL-1β (Singh and Goyal, 2013). 
We  believe that identifying relevant miRNAs whose expression 
consistently correlates with the onset of active TB or divergent 
response to treatments could hold considerable clinical significance. 
Their collective efficacy lies in establishing routine diagnostic 
screening tests that exhibit substantial predictive capability, thereby 
enhancing the accuracy of existing tests predominantly reliant on the 
tuberculin skin test or interferon-gamma release assay (IGRA) which 
do not have a high accuracy for predicting active TB based on WHO 
recommendations (Gualano et al., 2019).

Integrating genetic screening and miRNA analysis can provide a 
more comprehensive understanding of TB pathogenesis and 
individualized patient management. By identifying genetic variants 
associated with TB susceptibility and miRNAs related to disease 
progression or treatment response, researchers can develop predictive 
models to guide personalized treatment decisions. This approach may 
also help identify novel therapeutic targets for drug development.

3.2. Advantages of genetic analysis in the 
individualized treatment of TB

In personalized medicine, pharmacogenetics and 
pharmacogenomics are two emerging fields that play a critical role in 
predicting individual responses to medication. Research has shown 
that differences in pharmacokinetic (PK) vulnerability to drugs among 
individuals contributed to some unfavorable outcomes, even in 
patients who followed the prescribed dosage regimen. This finding 
challenges the traditional idea that treatment failure, relapse, and the 
development of antimicrobial resistance are mostly attributed to 
non-adherence, thereby highlighting the need for genetic screening in 
TB patients (Sloan et al., 2017; Khan et al., 2022).

Several studies have also indicated a link between different genetic 
mutations and alterations in the plasma concentrations and adverse 
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effects of first- and second-line anti-tuberculosis drugs in TB patients. 
Adverse reactions to the anti-tuberculosis drugs frequently include 
hepatotoxicity, severe cutaneous reactions (e.g., Stevens-Johnson 
syndrome, toxic epidermal necrolysis, acute generalized 
exanthematous pustulosis, maculopapular exanthema), queasiness, 
vomiting, purpura, lethargy, dizziness, abdominal discomfort, rare 
cases of osteomalacia, hyperuricaemia, rare incidents of acute kidney 
failure, rare instances of anemia, gastrointestinal or neurological 
disorders (Gholami et al., 2006; Tostmann et al., 2008; World Health 
Organization, 2010; Yu et  al., 2017; Minardi et  al., 2021). 
Hepatotoxicity is the most critical (Huai et al., 2019). Genetic factors 
have been recently widely studied to predict the risk of developing a 
drug-induced liver injury. At present, liver toxicity has been 
predominantly linked with variations in drug metabolism genes such 
as N-Acetyltransferase 2 (NAT2), CYP2E1, pregnane X receptor 
(PXR), and glutathione S-transferase (GST; Roy et al., 2001; Leiro 
et al., 2008). A better understanding of these mutations could facilitate 
in designing and developing a more effective personalized treatment 
for TB (Meitei et al., 2022). Lyu et al. (2019) described a significant 
correlation between single nucleotide polymorphisms (SNPs) in 
calcium signaling-related genes, specifically bradykinin receptor B2 
(BDKRB2) and transforming growth factor beta 2 (TGFB2), and the 
onset of liver injury induced by anti-tuberculosis drugs. Moreover, 
performing genotyping on the ABCB11 gene, which encodes the bile 
salt export pump (BSEP), could offer advantages for personalizing 
anti-tuberculosis treatment regimens (Cavaco et al., 2022). Regarding 
rifampicin, alterations in the solute carrier organic anion transporter 
family member 1B1 gene (SLCO1B1) have been extensively studied 
(Khan et al., 2022). Previous research showed that a genetic variant 
known as rs4149056 might decrease the expression of SLCO1B1, 
resulting in reduced uptake/transport activity of organic anion-
transporting polypeptide 1B1 (OATP1B1) and higher levels of 
rifampicin in the bloodstream. Genetic screening of this variant may 
help to predict the increased rifampicin concentration (Niemi et al., 
2011; Allegra et  al., 2017). In contrast, patients carrying the 
rs11045819 or rs2306283 variant in SLCO1B1 reached notably lower 
plasma levels of rifampicin compared to those with the wild-type 
genotype (Weiner et al., 2010; Dompreh et al., 2018). Similarly, Weiner 
et  al. examined the impact of the –11187G > A mutation in the 
SLCO1B1 gene on the pharmacokinetics of the second-line anti-
tuberculosis drug moxifloxacin. The authors observed that patients 
carrying the variant exhibited significantly elevated Cmax values. This 
increase in the drug’s plasmatic concentration may contribute to the 
adverse effects of moxifloxacin, especially the prolongation of QT 
interval (Weiner et  al., 2018). Song et  al. (2013) found the 
c.-22263A > G mutation in the carboxylesterase (CES2) gene and 
described its correlation with elevated concentrations of rifampicin in 
the plasma of TB patients. Concerning isoniazid, the first step in the 
metabolism of this drug involves the non-inducible hepatic and 
intestinal enzyme NAT type 2, which is encoded by a highly 
polymorphic gene called the NAT2 gene (Khan et al., 2013). Previous 
studies on genotyping the NAT2 as a pharmacogenetic biomarker for 
the personalization of isoniazid therapeutic dosage revealed a direct 
correlation between the plasmatic concentration and the NAT2 allele 
(Kinzig-Schippers et al., 2005; Fukino et al., 2008). In addition, the 
gene polymorphisms in NAT2 have consistently demonstrated an 
association with an elevated risk of isoniazid-induced hepatotoxicity 
in various studies (Jaramillo-Valverde et al., 2022; Masiphephethu 

et al., 2022; Mohamed Noor et al., 2022). On the contrary, the study 
conducted by Kim et  al. yielded results indicating that severe 
cutaneous adverse reactions associated with first-line anti-tuberculosis 
drugs are not linked to polymorphisms in NAT2 or CYP2E1 genes. 
However, these reactions are indeed associated with mutations in the 
CYP2C9 and CYP2C19 genes (Kim et al., 2011).

Among patients receiving drug-resistant TB therapy that includes 
aminoglycoside antibiotics, the most severe potential adverse effect is 
ototoxicity (Selimoglu, 2007). Previous studies have indicated that 
variations in mitochondrial DNA, particularly in the 12S rRNA genes, 
may be  linked to increased susceptibility and toxicity to these 
antibiotics (Stocco et al., 2020). The m1555A > G and m.1494C > T 
variants in the 12 s rRNA gene have been extensively investigated and 
were conclusively associated with an increased risk of developing 
hearing loss after exposure to aminoglycosides (Guan, 2011; Zhang 
et al., 2013). It is hypothesized that several additional mitochondrial 
variations may eventually be  identified as key contributors to the 
development of hearing loss. However, the complete biochemical 
mechanisms underlying this phenomenon have yet to be  fully 
understood. These findings suggest that personalized antibiotic 
prescribing based on the patient’s 12 s rRNA genotype has the 
potential to lower the incidence of aminoglycoside-induced hearing 
loss in patients with drug-resistant TB (McDermott et al., 2022).

We recommend screening the established and well-defined 
genetic polymorphisms in the CYP2E1 and NAT2 genes, as their 
effects have been confirmed through robust association studies 
involving large population cohorts. As demonstrated in this review, 
ongoing research is investigating the association between 
polymorphisms in numerous candidate genes and adverse effects of 
anti-TB drugs. However, it is important to note that these 
associations are supported by limited studies with smaller sample 
sizes, often conducted in highly specific patient populations. 
Implementing genotyping tests as a part of a personalized medicine 
approach for TB treatment in high-endemic regions could be  a 
crucial step toward achieving the “End-TB” goal by 2025 (Khan and 
Das, 2022). However, it’s important to emphasize that the inclusion 
of genetic screening for these factors may depend on several factors, 
including the availability of tests, cost-effectiveness, and the specific 
adverse effects of concern in the local population. Additionally, 
individual patient characteristics, such as liver function and 
comorbidities, should also be  taken into consideration when 
assessing the risk of adverse effects and determining personalized 
treatment plans. Further investigation and consultation with 
experts in pharmacogenetics and personalized medicine are 
recommended to obtain the most relevant and up-to-date 
information for a particular clinical context (Sharma et al., 2022).

4. Unlocking the potential of 
next-generation sequencing in the 
context of PPPM in TB

Next,-generation sequencing (NGS) has emerged as a powerful 
tool for understanding the genetic background of various infectious 
diseases, including TB (Gordon et al., 2021). In the context of PPPM, 
NGS can transform and accelerate the delivery of personalized 
treatment to patients affected by TB, thus revolutionizing the way TB 
is diagnosed and treated.
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A more comprehensive drug susceptibility profile is needed to 
design an effective treatment plan for patients with drug-resistant TB 
(WHO, 2022). WGS has been identified as a highly promising tool for 
this particular purpose (Figure 2; Gröschel et al., 2018; Wu et al., 2020; 
Dohál et al., 2022). Cox et al. recently employed WGS to assess the 
accuracy of treatment regimens (derived from standard drug 
susceptibility testing and clinical information) in individuals with 
drug-resistant TB. Overall, 305 (24%) patients had MDR/rifampicin 
resistant (RR)-TB with second-line TB drug resistance, where the 
availability of WGS-derived drug susceptibility testing (DST) would 
have enabled more effective treatment personalization for these 
patients, such as reducing drug dosages or removing ineffective drugs 
(Cox et al., 2022; Xiao et al., 2023). Similarly, the results of Korhonen 
demonstrated that WGS could aid in the selection of optimal 
treatment regimens in the future, primarily for patients with resistance 
to ethambutol (Korhonen et al., 2022). The application of WGS in 
routine clinical practice also enables rapid identification of isoniazid 
monoresistance, reducing delays in treatment decisions and initiating 
WHO-recommended treatment for isoniazid-resistant TB (Park et al., 
2022). In settings with a low incidence of TB, WGS reduced the time 
required for appropriate treatment modification, thus decreasing the 
expenses associated with hospitalization and treatment (Mugwagwa 
et al., 2021).

Bedaquiline and pretomanid, novel oral anti-tuberculosis drugs, 
have demosntrated excellent efficacy against both drug-susceptible 
and drug-resistant strains of Mtb and have been recommended by 

WHO (2022) as “reserved drug” for the treatment of MDR. As 
primary resistance to bedaquiline has been reported for several years, 
determining the sensitivity is essential for every patient being 
considered for a treatment regimen that includes this drug (Villellas 
et al., 2017). According to Hu et al. (2023) a combination of phenotypic 
drug sensitivity testing (pDST) and WGS was beneficial for the timely 
diagnosis and personalized treatment of bedaquiline-resistant 
TB. Similarly, as there is a lack of defined cutoffs and critical 
concentrations for conducting pDST of pretomanid, it is crucial to 
integrate conventional methods with WGS in determining its 
resistance (Bateson et al., 2022). In the past, the major limitation in 
using the WGS approach was the reliance on limited available 
mutation knowledge only. To overcome this limitation, WHO has 
developed a catalog of Mtb mutations and their association with 
phenotypic drug resistance to support personalized medicine in TB 
treatment. The catalog provides a reference standard for the 
interpretation of mutations conferring resistance to all first-line and a 
variety of second-line drugs (Walker et al., 2022b). Due to the complex 
bioinformatics analysis involved in processing WGS data, various 
non-commercial, freely available, and user-friendly software tools 
have been developed (such as TB Profiler, Mykrobe Predictor, 
TGS-TB, PhyResSE, and KvarQ). These software solutions enable 
medical personnel to rapidly diagnose TB, and interpret 
comprehensive drug resistance profiles directly from raw sequencing 
data (FASTQ files; Steiner et al., 2014; Feuerriegel et al., 2015; Sekizuka 
et al., 2015; Phelan et al., 2019).

FIGURE 2

Key applications of M. tuberculosis WGS in PPPM include characterization of complete resistance profile to reach the highest treatment efficacy, 
determination of transmission chains and outbreaks to prevent the spread of TB, and distinguishing the cause of TB recurrence to guide TB control and 
treatment.
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The recurrence of TB is another factor that can complicate 
treatment individualization in TB patients (Dooley et  al., 2011). 
Distinguishing the cause of TB recurrence is crucial to guide TB 
control and treatment. The potential of WGS lies in its ability to 
differentiate between relapse and reinfection, the two distinct 
mechanisms underlying TB recurrence (Nikolenka et al., 2021). WGS 
demonstrated its capability to differentiate between treatment failure 
(with the necessity to use a new drug regimen) and reinfection with a 
new strain in clinical trials evaluating novel anti-tuberculosis drugs 
(Gillespie et al., 2014). Another study utilizing WGS demonstrated a 
relatively high incidence of fluoroquinolone resistance during the 
second episode of TB relapse. These findings lead to caution when 
using fluoroquinolones for treating patients with recurrent TB and 
suggest the use of DST results for any treatment decisions (He 
et al., 2023).

To personalize TB treatment, it is crucial to consider if a mutation 
accurately identifies a strain with a higher minimum inhibitory 
concentration as well as if this mutation is linked to treatment failure 
(Chen et al., 2020). Recently, Domínguez et al. (2023) reviewed studies 
linking the treatment outcome with the presence of a specific mutation 
encoding resistance to first- and second-line anti-tuberculosis drugs. 
We consider these data to be very important, as they could prompt the 
clinician to consider a change in the treatment regimen in patients 
showing these mutations associated with resistance.

The utilization of WGS can also facilitate the identification and 
prediction of TB transmission. Recent research has demonstrated 
that the application of this technology enables the identification of 
transmission hotspots, both in countries with a low and high 
incidence of TB (Alaridah et al., 2019; Asare et al., 2020; Gordon 
et al., 2021; Dale et al., 2022). To prevent the spread of TB, it is crucial 
to describe the transmission chains in particular communities. 
Prisons are widely acknowledged to have an exceptionally high 
burden of TB (28 times greater) compared to the general population, 
serving as a reservoir for persistent MDR TB (Witbooi and 
Vyambwera, 2017; Anselmo et  al., 2023). The recent findings 
demonstrated that 43 and 45.4% of TB cases among prisoners were 
due to direct transmission (Anselmo et  al., 2023; Sanabria et  al., 
2023). WGS-based screening for TB before and after the transfer of 
prisoners could contribute to preventing TB transmission and 
reducing the number of TB cases. Migrants are another at-risk 
demographic group, accounting for up to 40–60% of TB cases in 
many high-income countries (Iñigo et al., 2013; Ospina et al., 2016). 
WGS-based cross-border surveillance is essential to present TB 
epidemiological monitoring to differentiate between imported and 
recent transmission cases (Abascal et al., 2019). Overall, TB tracing 
with WGS may be  an effective strategy in the treatment and/or 
chemoprophylaxis of close contacts.

One of the limitations of WGS is its reliance on obtaining high-
quality genomic DNA from cultured Mtb isolates. The cultivation 
process can take several weeks, presenting an additional disadvantage 
of this technology from a clinical perspective (Dookie et al., 2022; 
Walker et al., 2022a). Increasing interest is focused on culture-free 
target-based NGS (Cabibbe et al., 2020). The use of direct sputum 
samples for analysis makes targeted NGS an attractive method, 
primarily because of its capability to provide results more rapidly 
(Mansoor et al., 2023). Recently, several studies have demonstrated the 
efficacy of culture-free targeted NGS for the detection of drug-
resistant Mtb using Deeplex Myc-TB (Genoscreen, Lille, France). This 

assay achieved excellent sensitivity and specificity in the detection of 
resistance to 13 anti-tuberculosis drugs compared to pDST and could 
be  a breakthrough in the rapid diagnosis of MDR TB in routine 
practice (Bonnet et al., 2021; Feuerriegel et al., 2021; Jouet et al., 2021). 
Another benefit of this assay is its ability to be utilized in conjunction 
with nanopore-based DNA sequencing instruments, such as the 
MinION (Oxford Nanopore Technologies (ONT), Oxford, UK). This 
characteristic makes it especially advantageous in settings with limited 
resources (Cabibbe et al., 2020). These sequencing instruments exhibit 
portability, resilience, and cost-effectiveness, which renders them 
suitable for potential use in point-of-care settings to perform targeted 
NGS (Dippenaar et al., 2022; Hall et al., 2023). This capability has the 
potential to revolutionize TB DST and personalize the treatment 
process. Moreover, Sibandze et al. conducted focused NGS to detect 
drug resistance directly from stool samples provided by individuals 
with TB. This offers a valuable opportunity to gather essential 
diagnostic information for TB patients who encounter challenges in 
providing respiratory specimens (Sibandze et al., 2022).

The choice of method depends on the specific research or 
diagnostic goals, as well as the available resources and expertise. The 
field of NGS is continually evolving, and new methods and 
technologies are being developed to improve our understanding and 
management of TB.

5. Conclusion

PPPM can help improve TB prevention, diagnosis, and treatment 
by considering individual differences in risk and response to 
interventions. Adopting this approach can also help engage patients 
and communities in managing TB, leading to better health outcomes 
and reduced disease burden. Currently, the most promising strategies 
in PPPM for TB include the use of AI, genetic screening, and NGS.

More specifically, AI has the potential to assist in the prediction 
and diagnosis of TB in developing countries where advanced 
radiological expertise is lacking. Additionally, this technology may 
be useful in predicting the effectiveness of treatment regimens and 
acute adverse effects during therapy and tracking TB cases. Genetic 
screening can also have a crucial function in anticipating active TB 
and ensuring the efficacy of therapy.

Recently, a variety of mutations in genes related to immune 
function, CYP450, and certain miRNAs linked to LTBI reactivation 
have been identified. Furthermore, identifying mutations in certain 
genes can predict the likelihood of adverse reactions and the efficacy 
of treatment. Based on these assumptions, it may be worth considering 
the clinical relevance of genetic screening and its potential application 
in routine diagnostics.

The development of novel molecular diagnostic methods has also 
made a huge contribution to the personalization of therapy and the 
prevention of TB transmission. Utilizing the full potential of NGS, 
comprehensive insights into the phylogenetic lineage of infecting 
strains can provide clinicians with valuable information regarding the 
likelihood of the strain developing additional drug resistance. These 
innovative approaches in TB treatment signify a new era in the 
management of MDR-TB that will aid in mitigating treatment failure 
and ongoing transmission.

In contrast to the aforementioned advantages, there are several 
potential knowledge gaps and areas for future research regarding 
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the management of TB and the roles of AI, genetic screening, and 
WGS. The successful integration of AI into clinical practice for TB 
management requires a holistic approach that addresses technical, 
regulatory, educational, and usability aspects. Research in these 
areas can pave the way for more effective and widespread use of AI 
to combat TB and improve patient outcomes. In the realm of genetic 
screening for TB management, research should focus on 
understanding population-specific variations, and assessing the 
cost-effectiveness of these screening methods. It’s essential to 
determine the accuracy of genetic markers, integrate them 
effectively into clinical decision-making, and provide ethical patient 
counseling. Additionally, research should explore the impact on 
healthcare systems and potential contributions to drug 
development. Global collaboration and data sharing are also vital 
for advancing this field. In summary, addressing these knowledge 
gaps and conducting research in these areas can contribute to more 
effective TB control and management strategies, ultimately reducing 
the global burden of this disease.
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