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Identification of enteric bacteria species by whole genome sequence (WGS) 
analysis requires a rapid and an easily standardized approach. We  leveraged 
the principles of average nucleotide identity using MUMmer (ANIm) software, 
which calculates the percent bases aligned between two bacterial genomes and 
their corresponding ANI values, to set threshold values for determining species 
consistent with the conventional identification methods of known species. 
The performance of species identification was evaluated using two datasets: 
the Reference Genome Dataset v2 (RGDv2), consisting of 43 enteric genome 
assemblies representing 32 species, and the Test Genome Dataset (TGDv1), 
comprising 454 genome assemblies which is designed to represent all species 
needed to query for identification, as well as rare and closely related species. 
The RGDv2 contains six Campylobacter spp., three Escherichia/Shigella spp., one 
Grimontia hollisae, six Listeria spp., one Photobacterium damselae, two Salmonella 
spp., and thirteen Vibrio spp., while the TGDv1 contains 454 enteric bacterial 
genomes representing 42 different species. The analysis showed that, when a 
standard minimum of 70% genome bases alignment existed, the ANI threshold 
values determined for these species were ≥95 for Escherichia/Shigella and Vibrio 
species, ≥93% for Salmonella species, and ≥92% for Campylobacter and Listeria 
species. Using these metrics, the RGDv2 accurately classified all validation strains 
in TGDv1 at the species level, which is consistent with the classification based on 
previous gold standard methods.
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Introduction

Conventional bacterial species identification methods, such as phenotypic testing and gene-
sequencing analysis, have been employed within the scientific community for years. However, 
with the increased use of next generation sequencing, new methods are available to analyze the 
entire DNA of the organisms. This allows for the simultaneous capture of a wide range of 
information, including whole genes, core genes, and ribosomal genes for species identification 
and strain typing, characterization of genes for serotype, virulence, antimicrobial resistance, 
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kmer-typing, and much more (Jolley et al., 2012; Besser et al., 2018; 
Gerner-Smidt et al., 2019a, Gerner-Smidt et al., 2019b; Stevens et al., 
2022). More diversity has been identified with sequencing methods 
than was previously known, due to the limitations of conventional 
identification methods that rely on shared metabolic characteristics 
(phenotypic tests) or gene sequencing, which typically only analyze a 
small fraction of the organism’s DNA. This has led to the taxonomic 
re-classification of entire genera (Yu et al., 2021). The increased use of 
next generation sequencing also enhances the speed and efficiency of 
bacterial identification methods, whereas conventional methods were 
more time-consuming and provided low resolution (Carleton and 
Gerner-Smidt, 2016; Besser et al., 2018; Gerner-Smidt et al., 2019a; 
Gerner-Smidt et al., 2019b; Stevens et al., 2022).

Historically, DNA–DNA hybridization (DDH) had been the gold 
standard for determining prokaryotic species for taxonomic 
classification (Rossello-Mora and Amann, 2001; Richter and Rossello-
Mora, 2009). Rossello discussed the prokaryotic species concept in 
2001, “Today, the accepted species classification can only be achieved 
by the recognition of genomic distances and limits between the closest 
classified (DNA–DNA similarity), and of those phenotypic traits that 
are exclusive and serve as diagnostic of the taxon (phenotypic 
property; Rossello-Mora and Amann, 2001).” This species concept is 
still applicable today; however, the genomic comparisons are now 
based on whole genome sequence (WGS) analysis.

In 2005, the average nucleotide identity (ANI) method was shown 
to be a plausible substitute for DDH since a 70% DDH threshold for 
species classification correlated well with a 94% ANI similarity 
threshold. This method, proposed by Kostantinidis et  al., used 
pairwise alignment (BLAST) to identify the best hits of shared 
orthologous gene content between genomes being compared, 
obtaining the ANIb values (Konstantinidis and Tiedje, 2004; Goris 
et al., 2007; Richter and Rossello-Mora, 2009; Rodriguez-R, 2016). 
However, a drawback of ANIb is the need to perform gene prediction 
on the assembly before an ANI score can be determined.

Later methods eliminated the need for this prediction step by 
using local alignments of sequences of varying length and similarity. 
In 2007, Goris et al. expanded on the ANIb method by generating 
1,020 bp fragments of the query genome and compared the ANI 
between the fragments and a reference genome using BLAST (Goris 
et  al., 2007). In 2009, Richter et  al. implemented an ultra-fast 
alignment tool, which compared the entire WGS contigs between 
genomes using the nucmer alignment program in MuMMer software, 
to calculate ANI values, referred to as ANIm (Kurtz et al., 2004). Kurtz 
et al. provided a dnadiff wrapper, which compares the resulting output 
files from the nucmer alignment program, to simplify and summarize 
ANIm output metrics for the differences between two genomes (Kurtz 
et  al., 2004). Jain et  al. further developed ANI methods by 
implementing FastANI, which is a method based on the minHash 
algorithm and read mapping. FastANI, similar to ANIb, aims to 
identify reciprocal or orthologous mappings and has an 80% identity 
cutoff (Ondov et al., 2016; Jain et al., 2018). FastANI has shown results 
that are comparable to the previous methods but has significantly 
improved the overall runtime to just seconds (Jain et  al., 2018). 
GAMBIT was recently described as a kmer-based method comparable 
in accuracy and speed to FastANI (Lumpe et al., 2023). GAMBIT 
computes Jaccard distances based on a subset of the genome’s kmers 
and, similar to FastANI, uses raw sequencing reads (Lumpe 
et al., 2023).

Additional methods for species and subspecies identification have 
also been described. Ribosomal MLST was described by Jolley et al. 
(2012), but this method requires gene prediction, unlike ANIm and 
FastANI (Jolley et  al., 2012). More recently, a new method for 
ribosomal MLST nucleotide identity (r-MLST-NI) has been developed 
for classifying Klebsiella and Raoultella species and may be useful for 
identifying other bacterial species (Bray et al., 2022). Public health 
laboratories in the United  States, including our laboratory, have 
transitioned to WGS analysis from conventional methods for 
identification and surveillance of enteric pathogens. For this 
transition, a rapid and an easily standardized method of species 
identification using WGS was needed, which could be easily integrated 
into the PulseNet national molecular surveillance system [National 
Center for Emerging and Zoonotic Infectious Diseases (NCEZID), 
2021] for enteric pathogens. In this study, we  describe the 
implementation of an accurate, rapid, stand-alone, sequence-based 
method for the identification of Campylobacter, Escherichia/Shigella, 
Listeria, Salmonella, and Vibrionaceae species. This method is 
comparable to previous gold standard methods and utilizes the ANIm 
method. We  compared over 450 genome assemblies to set the 
threshold ANIm values consistent with conventional identification 
methods. This method is currently employed for the precise speciation 
of enteric organisms from WGS using the Reference Genome Dataset 
version 2 (RGDv2) in BioNumerics and on the command-line, for 
routine identification of Campylobacter, Escherichia/Shigella, Listeria, 
Salmonella, and Vibrionaceae species.

Materials and methods

Genome selection for ANI detection

For this study, we selected two sets of genomes which included the 
Reference Genome Dataset version 2 (RGDv2, Supplementary Table 1) 
and the Test Genome Dataset version 1 (TGDv1, Supplementary Table 2). 
The strains were selected from genome assemblies available on NCBI or 
from the PulseNet Reference Outbreak Surveillance Team’s (PROST) 
enteric bacteria reference collections to represent the diversity of enteric 
bacteria. These well-characterized strains were previously identified by 
methods, such as phenotypic characterization, gene sequencing, 
phylogenetic analysis of the rpoB gene, and Accuprobe® (Listeria 
monocytogenes). All sequences met the standard PulseNet QAQC metrics, 
including a minimum Q score of 30, and sequencing coverages for 
downstream analysis: 40× for Escherichia, Vibrio, and Shigella, 30× for 
Salmonella and Campylobacter, and 20× for Listeria (Tolar et al., 2019).

The RGDv2 (Supplementary Table  1) included all species 
characterized as part of PulseNet, and the set was minimized for rapid 
analysis. It comprised 43 genome assemblies representing 32 enteric 
species, consisting of 10 assemblies representing 6 Campylobacter spp., 
3 assemblies representing 3 Escherichia/Shigella spp., 11 assemblies 
representing 6 Listeria spp., 2 Salmonella assemblies representing 2 
species, and 15 Vibrionaceae assemblies representing 11 Vibrio species, 
1 Grimontia species, and 1 Photobacterium species. The RGDv2 
assemblies were sequenced by Illumina, PacBio, or both instruments. 
The WGS reads for RGDv2 references were assembled using SPAdes 
for Illumina data (Bankevich et al., 2012) and HGAP (University M, 
2014) for PacBio data. Escherichia and Vibrio genomes are larger and 
more complex due to phage regions; these assemblies were generated 
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using both Illumina and PacBio sequencers. The NCBI BioSample 
data include additional information regarding sequencing chemistry 
and assembly methods for all strains.

The TGDv1 consists of 454 genome assemblies from 42 different 
enteric bacterial species (Supplementary Table  2), including the 
RGDv2 genome assemblies, and it is designed to represent all species 
necessary for querying identification, as well as rare and closely related 
species, to confirm the accuracy of ANIm for correct identification of 
species. The TGDv1 genomes were assembled using SPAdes v3.11 
with default options (Bankevich et al., 2012).

Development of custom ANI scripts

We developed custom scripts to utilize the dnadiff workflow in 
MUMmer v3.23 (Kurtz et al., 2004), facilitating pairwise comparisons 
with references and generating results in a tabular format. These 
scripts were developed for the command line. These scripts are 
published on our GitHub site (NCEZID-biome, 2021). The ANIm 
script runs on dnadiff and parses the field “AvgIdentity” to detect the 
percent identity. Additionally, to measure the breadth of the alignment, 
the script parses the AlignedBases field. To ensure consistency, the 
same ANIm script runs on both the command line (ani-m.pl) and as 
a plugin for BioNumerics (ani-m-bionumerics.pl).

Determination of ANI metrics

The TGDv1 genomes were supplied as the reference and the 
query; the genomes were compared in a pairwise, all-vs-all fashion. 
The RGDv2 genomes, our gold standard set of references, were 
included in TGDv1 and the threshold analysis.

We used the ggplot2 and dplyr modules in R to analyze and 
generate a scatter plot of the values for ANI and percent aligned bases 
for all comparisons. Additionally, a violin plot was created from the 
ANI values for a subset of species represented in RGDv2. For the 
violin plot, only ANI comparisons with a minimum of 70% aligned 
bases were examined to ensure that percent ANI was being calculated 
over significant portions of the genome and to avoid spurious high 
percent ANI matches over repetitive regions.

Down sampling for limits of detection

The reads for representative species of RGDv2 including two 
Campylobacter, three Escherichia, one Listeria, two Salmonella, and 
three Vibrio were downsampled to various coverage levels: 0.5×, 1×, 
5×, 10×, 15×, 20×, 30×, 40×, and 50×. A 1× coverage was calculated 
as the total assembly size of the original coverage SPAdes assembly. 
The desired coverage and the total number of bases in the raw reads 
were used to calculate a percentage of the reads needed for that 
coverage level. Subsequently, we used the Fasten package (lskatz, 2023) 
to sample enough reads to meet the expected coverage. The coverage 
level was verified using the read metrics script in CG-Pipeline (Kislyuk 
et al., 2010). These downsampled reads were used to assemble each 
genome as previously described in this study. Most genomes at 0.5× 
and 1× could not be assembled with SPAdes and could not be used as 
assemblies for the 0.5× and 1× coverage level analyses.

At each downsampling level of every genome, we recorded the 
N50, a standard assembly metric. Then, we  computed the ANIm 
method against the reference genome for each coverage level. 
We  noted the change in the ANI value received at the different 
coverage levels as compared to the 50× downsampled assembly.

Comparison of ANI methods: time trials 
and method compatibility

Pairwise ANI comparisons were generated using TGDv1 
genomes, which were run in an all-vs-all fashion using the ANIm, 
FastANI, and ANIb algorithms, to evaluate the amount of time each 
method took from the launch of the script to report of the result. This 
workflow is encoded on our GitHub site (NCEZID-biome, 2021) as 
the launch_all_ani shell script. For each algorithm, we computed the 
ANI value and recorded the duration of each analysis using GNU 
time. Pairwise scatterplots for each pair of algorithms were plotted 
using ANI results, and a trend line was computed in Microsoft Excel; 
only algorithm pairs involving ANIm were included. Additionally, the 
frequency of the analysis durations for each algorithm were computed 
and plotted in Microsoft Excel.

Results

Determination of ANI metrics

Computing the ANI of a query genome against a reference 
genome yields both the ANI value and the percentage of bases aligned. 
The percent bases aligned metric conveys what percentage of the 
reference genome is shared with the query. In this study, we compared 
the 454 TGDv1 genome assemblies in an all-vs-all comparison using 
ANIm (Supplementary Table  2), which resulted in 206,116 total 
comparisons. We plotted the percent bases aligned against the ANI for 
all genera and color-coded the between-species and within-species 
values (Figure 1). We noted that all the within-species ANI values 
appeared when the percent bases aligned was above 70%, consistent 
with our percent bases aligned threshold for excluding spurious high 
ANI matches.

By plotting all-vs-all ANI, we observed that the ANIm method 
effectively distinguished within-species comparisons from between-
species comparisons, enabling the determination of thresholds for 
relevant species (Figure 2). The ANI threshold values were ≥ 95% for 
Escherichia/Shigella and Vibrionaceae species, ≥93% for Salmonella 
species, and ≥ 92% for Campylobacter and Listeria species; the ANIm 
method accurately classified all validation strains in the TGDv1 at the 
species level, when considering comparisons across >70% of bases 
aligned (Table 1). In this study, we identify an ANI threshold for each 
genus as shown in Table 1 based on the results of the ANIm analysis. 
Notably, Vibrionaceae and Escherichia species have a 95% threshold, 
while species from Salmonella, Campylobacter, and Listeria have a 
lower ANI threshold for distinguishing within-species from between-
species comparisons (92–93%) when a ≥70% alignment threshold is 
met. We used traditional taxonomic definitions of these species that 
rely on phenotypic tests to verify these within-species and between-
species comparisons (Ciufo et al., 2018). Some of these lower ANI 
thresholds may be  the attributed to the greater diversity that 
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WGS-based methods can capture compared to the conventional 
naming of Salmonella, Campylobacter, and Listeria species.

Down sampling for limits of detection

To determine the robustness of the ANIm method at different 
coverage levels, an experiment was conducted to determine the lowest 
depth of coverage of a genome assembly required for accurate species 
identification. Several assemblies from representative species were 
assembled from coverage depths of 50× to 0.5× to find where an ANI 
value starts deviating (Figure 3). After down sampling, most genomes 
at 0.5× and 1× could not be assembled with SPAdes. In some cases, 
identification was made at 5× coverage, especially for Salmonella and 
Listeria genomes. For all enteric species in RGDv2, we determined a 
minimum of 10× depth-of-coverage for genome assemblies. In the 

standard bioinformatic analysis for molecular surveillance within 
PulseNet, the sequencing depth cutoffs are 40× for Escherichia, 
Vibrionaceae and Shigella, 30× for Salmonella and Campylobacter, and 
20× for Listeria, which makes ANIm compatible with this public 
health usage (Tolar et al., 2019).

Comparison of ANI methods: time trials 
and method compatibility

We compared several methods to calculate ANI: ANIb, ANIm, 
and FastANI. We first compared these three methods in a speed trial 
(Figure  4), examining the range of ANI runtimes for pairwise 
comparisons. An all-vs-all comparison of the TGDv1 showed that 
FastANI trials produced the fastest results, followed by ANIm and 
ANIb. Peak frequency runtimes for FastANI (approximately 0.75 and 

FIGURE 1

ANI limits for enteric detection. Scatter plots of average nucleotide identity versus percent aligned bases for four genera and one family: 
Campylobacter, Escherichia, Listeria, Salmonella, and Vibrionaceae. Each plot displays the relationship between ANI and percent aligned bases (e.g., 
reference genome alignment coverage) for both within-species and between-species in each group.
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2 s), ANIm (approximately 2 and 4 s), and ANIb (approximately 9 s) 
were observed; two different frequency peaks were noted for ANIm 
and FastANI. FastANI, while being an order of magnitude faster than 

ANIm, lacks an alignment report that includes the number or 
percentage of aligned bases, similar to ANIb. We selected ANIm as a 
preferred method due to speed, and it has provided the desired 
output of ANI score and percent genome alignment.

Using the same results from the time trials, we next measured the 
similarity between the results when comparing FastANI to ANIm and 
ANIb to ANIm (Figure 5). We plotted the percent identity of ANIb 
and FastANI against ANIm to form a scatterplot. This benchmark 
shows a trendline with FastANI: y = 1.2376× − 23.245 (R2 = 0.9741) 
and ANIb: y = 1.463× − 45.49 (R2 = 0.9124). The R2 scores suggest a 
correlation between ANIb, ANIm, and FastANI. However, ANIb and 
FastANI often reported ANI scores of 0, a null value, when compared 
against distantly related species; instances of null ANI scores were 
excluded in our benchmark analysis. ANIb and FastANI do not 
consider low identity regions in their calculations, and ANIb and 
FastANI report these null ANI scores when the scores fall below 60 
and 80%, respectively (Konstantinidis and Tiedje, 2005; Jain et al., 
2018). Alternatively, ANIm does not have this requirement and null 
ANI values were never reported for ANIm.

FIGURE 2

ANI values for five genera. Violin plots show ANI ranges for five genera: Campylobacter, Escherichia, Listeria, Salmonella and Vibrio. Each plot displays 
the variation in ANI values for both within a species (blue) and between a species (red) in each group.

TABLE 1 Taxon-specific values for identification by ANI.

Taxon ANI value 
(%)

Aligned 
bases (%)

Genome 
size (Mb.)

Campylobacter spp. ≥92 ≥70 1.4 to 2.2

Escherichia spp. ≥95 ≥70 4.5 to 5.5

Listeria spp. ≥92 ≥70 2.7 to 3.1

Salmonella spp.1 ≥93 ≥70 4.56 to 5.5

Vibrionaceae spp. ≥95 ≥70 3.8 to 6.2

Species level identification results are reported for query assemblies with ANI values listed 
below for Campylobacter, Escherichia, Listeria, Salmonella, and Vibrionaceae species. Taxon, 
ANI value (% value for ANI lower cutoff), aligned bases (%) and genome size (in megabases) 
for each species are listed. 1ANI can be used to identify one clinically important subspecies, 
Salmonella enterica subspecies enterica when the ANI score against the Salmonella enterica 
reference is >98%. Individual species thresholds may ultimately differ for Salmonella bongori, 
as all isolates tested to date result in >98% ANI score, >85% coverage, and lengths up to 5.0 Mb.
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FIGURE 3

Downsampling for limits of detection. Representative species of Campylobacter, Escherichia, Listeria, Salmonella, and Vibrio were downsampled from 
50× to 0.5× and analyzed with the ANIm algorithm. Genome coverage is plotted on the x-axis; the natural log of N50 (lnN50) is plotted on the left 
y-axis; and percent change from ANI at 50× is plotted on the right y-axis. The dotted blue line shows the average N50 for all the assemblies. The dark 
green line indicates the aggregate ANI values, or the average percentage that each ANI value deviated from what it was at 50×. Coverage cutoff of 10× 
was established based on this analysis, as species identification is not reliable below 10×. Additionally, the aggregate ANI begins accruing below 10×, 
gaining larger standard deviations.

FIGURE 4

Individual Query Speed by ANI Method. Time trials were conducted to compare the runtime of three different ANI methods: ANIb, ANIm, and FastANI. 
TGDv1 genomes were compared against each other, and 206,116 total comparisons were generated along with their associated runtimes. 
Approximately 0.10% (ANIm) and 0.02% (ANIb) of the comparisons were excluded because they exceeded the maximum graphical runtime of 100  s; 
there were no comparisons excluded for FastANI. The most common runtimes were approximately 9  s for ANIb, 2 and 4  s for ANIm, and 0.75 and 2  s 
for FastANI; two different frequency peaks were noted for ANIm and FastANI.
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When removing null percentages, ANIb scores ranged from 
73.43 to 100.00 with Q1, median, and Q3 being 77.01, 79.55, and 
89.00, respectively (Supplemental Table 3). Similarly, FastANI scores 
ranged from 76.76 to 100.00 with a median of 82.15, Q1 of 81.75, and 
Q3 of 95.11. Similarly, the associated ANIm scores ranged from 82.42 
to 100.00 with a median of 84.98 (Q1 and Q3: 84.47 and 95.23) for 
the FastANI trendline and ANIm scores from 82.29 to 100.00 with a 
median of 85.15 (Q1 and Q3: 84.45 and 90.21) for the ANIb trendline. 
Inclusion of additional ANIm scores, which were associated with null 
percentages in either ANIb or FastANI, had an adjusted range of 
78.51100.00 with a median of 83.48, Q1 of 81.53, and Q3 of 85.6 
(Supplemental Table 3).

An outline of the ANIm species identification method is 
illustrated in Figure  6. For routine identification, ANI values are 
calculated for genome assemblies that meet or exceed the alignment 
criteria of 70% aligned bases with an RGDv2 reference(s). If the 
threshold meets the cutoffs per species (Table  1), then a species 
identification is reported.

Discussion

The ANIm method described here allows for rapid, quantitative, 
and accurate species identification using the WGS data from enteric 
bacteria. We  have implemented an ANIm methodology on the 
UNIX command line and in BioNumerics version 7.6 for routine 
identification of Campylobacter, Escherichia/Shigella, Listeria, 
Salmonella, and Vibrionaceae species. The ANIm value and percent 
bases aligned describe the extent to which one genome assembly is 
identical to another and can be  used to determine the species 
identity of an assembled query genome by comparing it to a 
database of reference genomes with historically described 
taxonomy. To generate this reference genome database for ANIm 
species identification, we assembled the RGDv2, which contains 43 
high-quality representative genomes for relevant PulseNet species, 
whose species identity had been established with previous gold 
standard methods (Supplementary Table 1). Any genome assembly 

can be  compared against the reference genomes found in the 
RGDv2 for species identification. This smaller representative set of 
reference genomes was chosen to make this identification faster. To 
expand ANI speciation to other species, a representative genome or 
genomes of the species of interest, after validation, can be added to 
the RGDv2 (Supplementary Table 1).

We determined the thresholds for species identification with 
ANIm by comparing the enteric bacterial genomes from TGDv1, 
which comprised 454 genomes, including the RGDv2 genomes, 
whose species identity had also been previously established using 
gold standard methods. The analysis showed that ANI threshold 
values of ≥95% for Escherichia/Shigella and Vibrionaceae species, 
≥93% for Salmonella species, and ≥ 92% for Campylobacter and 
Listeria species classified all validation strains in TGDv1 accurately 
at the species level, when considering comparisons across >70% of 
bases aligned. The ANIm thresholds reported in this study are similar 
to the previously published species boundaries for ANIb (94%), 
ANIm (95–96%), and FastANI (95%; Konstantinidis and Tiedje, 
2005; Richter and Rossello-Mora, 2009; Jain et al., 2018). The lower 
ANI boundaries (92–93%) observed in this study for Salmonella, 
Campylobacter, and Listeria may be due to a wider degree of diversity 
within the species of those genera. As new species may be identified 
for these genera, we will re-evaluate our ANI thresholds. Moreover, 
we performed downsampling experiments to examine how genome 
coverage levels affect the ability of the ANIm tool to provide a result 
consistent with gold standard methods, and we found that reliable 
speciation using ANIm can be achieved with genomes assembled 
from ≥ sequencing read coverage of 10× or greater.

We compared three different methods for computing ANI: ANI 
using BLAST (ANIb), ANI using MuMMer (ANIm), and 
FastANI. We focused our comparison on these ANI methods and 
evaluated them for speed, accuracy, and easy interpretation. While 
all three of the ANI methods tested were comparable in speed and 
accuracy, ANIm was the easiest to standardize and interpret using the 
ANI and percent bases aligned metrics provided by the dnadiff 
wrapper script. We  compared ANIm to ANIb and FastANI by 
correlating the ANI values from pairwise comparisons across the 

FIGURE 5

Pairwise comparisons of ANIb and FastANI to ANIm. ANIm is plotted on the x-axis while ANIb and FastANI are plotted on the y-axis. All data satisfied 
the ANIm metric of greater than 70% aligned bases. A goodness-of-fit was detected for each method. FastANI’s slope is close to one (FastANI: 
y  =  1.2376–23.245with an R2  =  0.9741), while ANIb’s slope is also close to one (ANIb: y  =  1.463×  −  45.49 with an R2  =  0.9124).
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TGDv1 genome set. All three methods produced comparable ANI 
results with correlation coefficients of 1.24 and 1.46 and high R2 
scores (>0.9), for both the correlation of FastANI to ANIm and ANIb 
to ANIm. Additionally, we evaluated the differences in speed of the 
three distinct tools. All three of the ANI methods had median run 
times of less than 10 s for a pairwise comparison. To the best of our 
knowledge, this is the first comparison of the runtime for ANIm and 
FastANI. FastANI analyses were generally completed faster than 
ANIm and ANIb, and ANIm was somewhere in the middle from job 
submission to result. However, overlap was observed in runtimes 
among all three tools. As all tools demonstrate efficient performance 
within the range of 10 s or less, the variations in runtimes are likely 
not significant until a large number of comparisons are being 
analyzed. While other methods, such as ribosomal MLST, ribosomal 
MLST nucleotide identity (r-MLST-NI), and k-mer based methods 
like GAMBIT, hold promise for bacterial species identification, it is 
important that these methods were not evaluated in this study.

In this study, we have implemented ANI for enteric species 
identification using MUMmer (ANIm) and demonstrated the 
utility of ANI for species identification. Furthermore, we simplified 
ANI-based enteric species identification using a new standard 
database, RGDv2, built from reference genomes identified with 
previous gold standard methods and demonstrated its robustness. 
We also showed that only 10× sequencing coverage is needed to 
reliably detect species using RDGv2. This low coverage 
requirement and the speed of the ANIm analysis are advantageous 
when turnaround time is crucial, as is common in public health 
settings. For further variant analysis, we  have higher coverage 
requirements in PulseNet. An opportunity for future development 
may include evaluating the robustness of ANI with additional 
genome assembly methods compatible with both short-and long-
read sequencing methods. The approach here is also generalizable 

for any situation, where a set of organisms need to be  rapidly 
identified for species by adding and validating reference species 
genomes to an ANIm database.
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