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The increasing prevalence of multidrug-resistant (MDR) Gram-negative bacteria 
and comparatively limited options of antibiotics pose a major threat to public 
health worldwide. Polymyxin B is the last resort against extensively resistant 
Gram-negative bacterial infections. However, a large number of Gram-negative 
bacteria exhibited high-level resistance to Polymyxin B, bringing challenges for 
antimicrobial chemotherapy. Combination therapies using polymyxins and other 
antibiotics are recommended to treat multidrug-resistant pathogens. In this study, 
we  selected Gram-negative bacterial strains, including Klebsiella pneumoniae 
and Escherichia coli, to explore whether fusidic acid and polymyxin B have a 
synergistic killing effect. Through broth microdilution, we observed that minimum 
inhibitory concentrations (MICs) against polymyxin B in the isolates tested were 
significantly reduced by the addition of fusidic acid. Notably, chequerboard 
analysis indicated a synergistic effect between polymyxin B and fusidic acid. 
In addition, subsequent time-kill experiments showed that the combination 
of polymyxin B and fusidic acid was more effective than a single drug in killing 
bacteria. Finally, our investigation utilizing the murine model revealed a higher 
survival rate in the combination therapy group compared to the monotherapy 
group. Our research findings provide evidence of the synergistic effect between 
polymyxin B and fusidic acid. Fusidic acid was shown to increase the sensitivity of 
multi-drug resistant E. coli and K. pneumoniae to polymyxin B, thereby enhancing 
its bactericidal activity. This study provides new insights into a potential strategy 
for overcoming polymyxin B resistance, however, further investigations are 
required to evaluate their feasibility in real clinical settings.
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Introduction

In recent years, the escalating prevalence of drug-resistant gram-
negative bacteria has emerged as a major threat to global human health 
and public environmental problems worldwide (Lee et al., 2017). The 
threat of antibiotic resistance rendered patients at risk of ineffective 
treatment and increasing healthcare costs. Carbapenems, including 
imipenem, ertapenem, and meropenem, have been established as the 
preferred antibiotics for managing severe infections caused by multidrug-
resistant (MDR) Gram-negative pathogens (Bergen et al., 2012; Zhanel 
et al., 2022). However, irrational utilization of carbapenems has facilitated 
the emergence of carbapenem-resistant Enterobacteriaceae (CRE), 
compounding clinical treatment challenges (Zhang et al., 2018; Suay-
Garcia and Perez-Gracia, 2019; Wang et al., 2020). Thus, novel antibiotics 
are urgently needed to combat this challenge.

Polymyxins are generally regarded as the final recourse for the 
treatment of infections that are induced by CRE (Candan and Aksoz, 
2015; Aguayo et  al., 2016). Although the precise mechanism of 
antibacterial action of polymyxins remains unclear, it is widely 
acknowledged that polymyxin B and colistin (polymyxin E) are 
generally classified as cationic antimicrobial lipopeptides (CAMPs) 
that can effectively target a wide range of multidrug-resistant bacteria 
by disrupting the outer membrane (OM) barrier through lipid A 
binding (Couet et al., 2012; Gregoire et al., 2017). Although earlier 
studies suggested that polymyxin B exhibited a low incidence of 
bacterial resistance, recent evidence points to a marked increase in 
resistance rates, posing significant challenges to antibiotic treatment 
options (Cai et al., 2012; Karaiskos et al., 2017). The appearance of 
plasmid-borne resistant gene mcr-1 and mutations in chromosomal 
genes, phoPQ and pmrAB, have been implicated in the mechanism of 
resistance to polymyxin B (Li et  al., 2020; Mmatli et  al., 2022). 
Although the resistance rate of polymyxin B has been increasing 
annually, the combination therapy of polymyxin B with other drugs 
remains an effective strategy for the treatment of CRE infections 
(Rigatto et al., 2019; Fedrigo et al., 2021).

Fusidic acid, a natural steroid antibiotic, was initially isolated from 
the fungus Fusidium coccineum in the early 1960s, exhibiting potent 
activity against gram-positive bacteria (Fernandes and Pereira, 2011). 
As is well known, fusidic acid is a well-known inhibitor of elongation 
factor G (EF-G) function. Fusidic acid can impede bacterial growth 
through its inhibitory actions (Fernandes, 2016). Gram-negative 
bacteria are naturally resistant to fusidic acid. It was reported that the 
use of fusidic acid in combination with other drugs has the potential 
to be a new treatment strategy (Grohs et al., 2003).

In this study, we aimed to evaluate the potential synergistic effect 
of combining polymyxin B and fusidic acid against strains of 
Escherichia coli and Klebsiella pneumoniae that exhibit resistance to 
polymyxin B.

Materials and methods

Strains of bacteria and reagents

The strains were isolated from animals and clinical samples, 
including 15 E. coli and 26 K. pneumoniae isolates analyzed by 
MALDI-TOF mass spectrometry. These isolates were retrospectively 
retrieved from several tertiary hospitals in China and agricultural 

culture collections from July 2015 to December 2021. Polymyxin B 
and fusidic acid were purchased from Solarbio (Beijing, China).

MIC assays

The Minimum Inhibitory Concentration (MIC) of Polymyxin B 
and fusidic acid were determined using broth microdilution in 
96-well microtiter plates with freshly prepared Mueller-Hinton 
broth (Solarbio, Beijing, China). The concentration range of fusidic 
acid was from 1 μg/mL to 1024 μg/mL, the concentration range of 
polymyxin B was from 0.25 μg/mL to 64 μg/mL. The bacterial 
samples were inoculated at a concentration of 5 × 105 colony-
forming units (CFU) per milliliter, and a total volume of 200 μL was 
used. The microtiter plates were then incubated at 37°C for 20 h. 
E. coli ATCC 25922 was used as a quality control strain. The 
breakpoint for Polymyxin B was ≤2 μg/mL according to 
EuropeanCommittee on Antimicrobial Susceptibility Testing 
(EUCAST) (EUCAST, 2020), while the Clinical and Laboratory 
Standards Institute (CLSI) guidelines (CLSI, 2020) for fusidic acid 
in E. coli and K. pneumoniae have not yet been established due to 
inherent resistance in Gram-negative bacteria.

Chequerboard assays

The chequerboard broth microdilution method was performed to 
study the interaction between the polymyxin B and fusidic acid using 
96-well plates. Fusidic acid was serially diluted 1:2 dilutions in 
horizontal direction (twelve dilutions in total), while Polymyxin B 
serially diluted 1:2 dilutions toward the vertical direction (eight 
dilutions in total). Then, serial dilutions were loaded into 96-well 
plates to obtain combinations of two compounds with different 
concentrations, with the addition of 100 μL of the bacterial solution 
(making an ultimate inoculum of 5 × 105 CFU/mL). The fractional 
inhibitory concentration (FIC) index was determined according to the 
equation: FIC of drug A = MIC of drug A in combination/MIC of drug 
A alone, FIC of drug B = MIC of drug B in combination/MIC of drug 
B alone, and FIC index = FIC of drug A + FIC of drug B. The FIC index 
values were interpreted as follows: antagonism = FIC index >4.0, no 
interaction = FIC index >0.5–4.0 and synergistic effects = FIC 
index ≤0.5.

Time-kill assays

Time-kill analyses were carried out according to CLSI guidelines. 
Specifically, K. pneumoniae or E. coli overnight cultures were diluted 
50–100 times in 20 mL of MHB and incubated for 3–4 h until reaching 
a density of 0.55 McFarland units. The cultures were then transferred 
to sterile borosilicate glass tubes and treated with either Polymyxin B, 
fusidic acid, or a combination of both. An equal amount of the sample 
was taken and diluted appropriately by a certain factor at 
predetermined time points (0, 0.5, 1, 2, 4, 6, and 24 h). Subsequently, 
100 μL diluted sample was spread onto an MHA plate and incubated 
at 37°C for 24 h. Synergy was defined as a reduction of ≥2log10 in 
bacterial growth observed in combination treatment compared to the 
most effective monotherapy.
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Murine infection model

BALB/C mice (6 weeks old, female) were randomly divided into 
three groups (n = 6 per group), monotherapy group, combination 
therapy group and control group. FK3009 isolate was cultured 
overnight in Luria-Bertani (LB) broth. The overnight cultures were 
then diluted 200-fold and reinoculated into LB media, where they were 
grown to logarithmic phase. The isolate was subsequently washed 
three times with normal saline (NS) solution. Then, mice were infected 
via tail vein injection with 100 μL NS containing 1.0 × 108 bacterial cells 
suspended. Mice injected with 100 μL sterile NS solution were used as 
control. After a 2-h period, monotherapy group and combination 
therapy group were injected polymyxin B (1.28 mg/kg) alone or both 
polymyxin B and fusidic acid (2.56 mg/kg). The mice were then 
observed at hourly intervals after the infection.

Detection of resistance genes

The polymerase chain reaction (PCR) was used to amplify the 
resistance genes and the PCR product was sent for sequencing. Primers 
used in the experiment were mcr-1-F (5′-ATCAGCCAAACCTATCCC-3′) 
and mcr-1-R (5′-ACGCCACCACAGGCAGTA-3′).

Results

Bacterial isolates

We selected bacterial strains from hospitals and farms, and 
identified experimental strains through antimicrobial susceptibility 
testing. Our investigation included 26 isolates of K. pneumoniae and 
15 isolates of E. coli, originating from both human and animal strains. 
Among the K. pneumoniae isolates, 50% displayed resistance to 
polymyxin B, while only 33.4% of E. coli isolates demonstrated 
resistance to polymyxin B (Table 1). Our PCR validation revealed that 
the mcr-1 encoding resistance to polymyxin B was detected in isolates 
of E. coli from 4 out of 15 cases (26.7%), whereas only one isolate of 
K. pneumoniae tested positive for the gene.

Fusidic acid is a sensitizer for polymyxin B

Table  1 presented the MIC values of 41 bacterial strains 
toward polymyxin B and fusidic acid. The MICs of fusidic acid 
for all other strains were ≥ 128 μg/mL. In most strains of 
K. pneumoniae, we observed a decrease in the MICs of polymyxin 
B due to the addition of 32 μg/mL of fusidic acid. Notably, for 
some highly resistant isolates, whose MICs of fusidic acid >64 μg/
mL, the MIC values of the polymyxin B in the presence of fusidic 
acid were reduced to 1 μg/mL or 2 μg/mL. The results indicated 
that the magnitude of the reduction in MIC values was positively 
correlated with the concentration of fusidic acid, as observed 
following the addition of either 64 or 128 μg/mL of fusidic acid. 
Additionally, the addition of fusidic acid was found to have a 
similar effect on the growth of E. coli, indicating that it may 
increase sensitivity to polymyxin B regardless of the strains’ 

origin or the underlying mechanism of polymyxin B resistance. 
These findings suggested that fusidic acid has the potential to 
enhance the susceptibility of strains to polymyxin B.

Synergistic effect of polymyxin B and 
fusidic acid

Chequerboard assays were conducted to evaluate the potential 
synergism of the polymyxin B and fusidic acid, and FICI scores are 
shown in Table 2. Our findings showed varying levels of synergy among 
12 K. pneumoniae isolates, with FICI scores ranging from 0.063 to 0.281. 
Conversely, three isolates of K. pneumoniae demonstrated no 
interaction, as shown by FICI scores ranging from 0.5313 to 0.7500. 
Among isolates of E. coli, our results indicated a possible synergy 
between polymyxin B and fusidic acid. Overall, our chequerboard 
assays suggested a potential synergistic interaction between the 
two drugs.

Time-kill results of polymyxin B and fusidic 
acid against Klebsiella pneumoniae and 
Escherichia coli

We determined the optimal concentration of fusidic acid in 
combination with polymyxin B using chequerboard assays. Except 
for a few strains, the optimal concentration of polymyxin B for 
the remaining bacterial strains was determined to be 1/4 MIC, 
when the concentration ranged between 32 and 128 μg/mL. As a 
result, we  selected the 1/4 MIC of polymyxin B and the 
concentration of fusidic acid at 32 μg/mL for conducting time-kill 
experiments. Whilst neither drug alone exhibited complete 
inhibition of bacterial growth, the combined treatment of 
polymyxin B and fusidic acid demonstrated a remarkable 
reduction in the number of viable bacteria. This effect was 
particularly pronounced for strains LYM, LQP, 1769, N12, N16 
and N21, at 1 h, 2 h, 4 h, 6 h, and 24 h (Figure  1). Despite the 
presence of subtle distinctions, time-kill assays demonstrated the 
rapid bactericidal activity of the combination therapy comprising 
polymyxin B and fusidic acid.

Murine infection model

The combination therapy of polymyxin and fusidic acid 
exhibited a synergistic effect in vitro, indicating that it is essential 
to verify the effects in vivo. Consequently, we conducted the murine 
infection model, employing the FK3009 isolate as the subject. 
FK3009 has shown high resistance to polymyxin B, and the MIC 
value of polymyxin B decreased significantly in the presence of 
fusidic acid. Within 24 h, the group treated with a combination of 
polymyxin B and fusidic acid exhibited a significantly higher 
survival rate (83%) compared to the group administered with 
polymyxin B alone (33%) (Figure 2). These results indicated that 
the combination of polymyxin and fusidic acid exhibited a 
significantly synergistic antibacterial effect against Klebsiella 
pneumoniae in vivo.
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TABLE 1 Strain information and minimum inhibitory concentrations (MIC) of polymyxin B and fusidic acid against bacterial isolates in this study.

Isolate Source

MIC Polymyxin 
susceptibility and 
mechanism of 
resistance

FA PB
PB in the 

presence of 
32  μg/mL FA

PB in the 
presence of 
64  μg/mL FA

PB in the 
presence of 

128  μg/mL FA

Klebsiella pneumoniae

LYM Human 512 >64 2 2 1 Uncharacterized

LQP Human 1024 64 2 2 1 Uncharacterized

GBC Human 128 2 1 1 0.5 Susceptible

XGE Human 32 2 0.5 0.5 0.5 Susceptible

N816 Human >1024 >64 32 4 4 mcr-1

1530 Human >1024 >64 2 2 1 Uncharacterized

1570 Human 128 4 1 1 0.5 Uncharacterized

1582 Human >1024 >64 4 2 2 Uncharacterized

1584 Human >1024 >64 4 4 2 Uncharacterized

1625 Human 1024 4 1 1 1 Uncharacterized

1769 Human 512 >64 1 1 1 Uncharacterized

FK3009 Human 512 >64 1 1 1 Uncharacterized

FK3035 Human >1024 8 1 1 1 Uncharacterized

FK3062 Human >1024 32 2 2 2 Uncharacterized

FK3064 Human >1024 16 1 1 1 Uncharacterized

FK3101 Human 512 2 1 0.5 0.5 Susceptible

FK3061 Human 1024 2 1 1 0.5 Susceptible

FK3021 Human 512 2 1 1 0.5 Susceptible

FK3109 Human 512 2 0.5 0.5 0.5 Susceptible

FK3143 Human >1024 2 1 0.5 0.5 Susceptible

FK3048 Human 512 2 1 1 0.5 Susceptible

1521 Human 512 2 0.5 0.5 0.5 Susceptible

N1060 Human >1024 2 1 0.5 1 Susceptible

N1071 Animal >1024 2 2 0.5 0.5 Susceptible

N597 Human >1024 2 2 1 0.5 Susceptible

N656 Human 512 2 1 1 0.5 Susceptible

Escherichia coli

N6 Animal >1024 4 1 1 1 mcr-1

N12 Animal 512 64 2 2 1 Uncharacterized

N16 Animal 512 >64 4 2 2 mcr-1

N19 Animal >1024 >64 2 2 2 mcr-1

N21 Animal 256 64 2 1 1 mcr-1

1120 Human 512 2 2 1 0.5 Susceptible

1124 Human >1024 1 2 1 0.5 Susceptible

1143 Human >1024 1 2 1 1 Susceptible

1144 Human >1024 1 1 1 1 Susceptible

1147 Human 512 1 2 0.5 1 Susceptible

1188 Human 512 1 1 1 0.5 Susceptible

1324 Human >1024 2 2 1 1 Susceptible

1117 Human >1024 1 1 0.5 0.5 Susceptible

1118 Human 1024 1 1 0.5 0.5 Susceptible

1119 Human >1024 1 1 1 1 Susceptible

PB Stands for polymyxin B and FA stands for fusidic acid.
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Discussion

Alongside the increasing utilization of carbapenem, there is a 
growing concern about the development of novel resistance to 
antibiotics used against Gram-negative bacteria. It is imperative to 
identify new antimicrobials that can effectively combat against 
CRE. Polymyxin B has been considered as the last-resort treatment 

option for MDR infections, including infections caused by CRE (Li 
et al., 2006; Lim et al., 2010). However, the reported epidemiological 
information suggests that many cases of polymyxin B-resistant strains 
are emerging worldwide at an alarming rate (Nation and Li, 2009; 
Moffatt et al., 2019).

Currently, the mechanisms for Polymyxin B resistance have not 
been clearly elucidated. The previous studies showed the following 

TABLE 2 FIC index values for polymyxin B and fusidic acid against MDR bacterial isolates.

Isolate FIC of Polymyxin B FIC of Fusidic acid FIC index Interpretation

LYM <0.0625 0.0019 <0.0644 Synergistic

LQP 0.0625 0.0010 0.0635 Synergistic

N816 <0.0625 <0.0625 <0.125 Synergistic

1530 <0.0312 <0.0039 <0.0352 Synergistic

1570 0.5000 0.0312 0.5313 No interaction

1582 <0.0625 <0.0156 <0.0781 Synergistic

1584 <0.0625 <0.0312 0.0938 Synergistic

1625 0.2500 0.0009 0.2510 Synergistic

1769 <0.0625 0.0625 <0.1250 Synergistic

FK3009 <0.0156 0.0078 <0.0234 Synergistic

FK3035 0.1250 <0.0009 <0.1260 Synergistic

FK3062 0.0625 <0.0009 <0.0635 Synergistic

FK3064 0.0625 <0.0009 <0.0635 Synergistic

N6 0.2500 0.0312 0.2812 Synergistic

N12 0.2500 0.0019 0.2519 Synergistic

N16 <0.2500 0.0019 <0.2519 Synergistic

N19 <0.0312 <0.0312 <0.0625 Synergistic

N21 0.0625 0.0039 0.0664 Synergistic

FIGURE 1

Time-kill experiments. Bacterial colony forming units in the absence of drug, and in the presence of 1/4 MIC polymyxin B, in the presence of 32  μg/mL 
fusidic acid and in the presence of both drugs after different periods of incubation PB  =  polymyxin B, FA  =  fusidic acid. Data presented are Log10CFU/mL 
mean values from the results of two independent experiments. Results for all 6 strains tested are presented. (A) LYM, (B) LQP, (C) N12, (D) 1769, (E) N16, 
and (F) N21.

https://doi.org/10.3389/fmicb.2023.1220683
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2023.1220683

Frontiers in Microbiology 06 frontiersin.org

four principal findings. Firstly, numerous bacteria develop resistance 
to polymyxins by decreasing the alteration of the head group of lipid 
A. This modification is originally enabled by electrostatic interactions 
and is likely mediated by genes located on both the chromosomal and 
plasmid (Sarkar et al., 2007; Nordmann and Poirel, 2016; Moffatt et al., 
2019). Secondly, another mechanism is the induction of efflux pump 
systems and barriers, which involves increasing the production of 
capsular polysaccharides, mutations that alter the expression of efflux 
pumps, and the presence of modified porins that reduce outer 
membrane permeability, among others (Gregoire et al., 2017; Moffatt 
et al., 2019). In addition, enzymes produced by bacteria can facilitate 
the degradation of polymyxin B, leading to the reversal of the 
resistance phenotype associated with polymyxin B (Sarkar et al., 2007; 
Moffatt et  al., 2019). Finally, the heterogeneity of resistance 
mechanisms also plays a crucial role in the development and spread 
of drug resistance (Rigatto et al., 2019).

Several studies have demonstrated that the combinations of 
polymyxin B and various traditional antibiotics result in increased 
antibacterial efficacy, highlighting the potential of combination 
therapy in addressing drug-resistant bacteria (Liu et al., 2020; Allend 
et  al., 2022; Almutairi, 2022). Tian et  al. (2021) observed the 
combination of polymyxin B and tigecycline reduced both of their 
MICs, indicating that tigecycline combined with polymyxin B may 
be a promising strategy. Phee et al. (2019) first identified colistin/
fusidic acid as a novel strategy against Multidrug-resistant 
Acinetobacter baumannii (MDR-AB). The combination treatment 
remains effective even at low concentrations, which is clinically 
feasible while minimizing drug toxicity. The antibiotic fusidic acid 
targets EFG, thereby obstructing protein synthesis (Kinoshita et al., 
1968). Moreover, fusidic acid exhibits an immunoregulatory effect 
primarily by impeding cytokine production, eradicating bacteria, and 
treating various inflammatory responses instigated by bacterial toxins 
(Kraus and Burnstead, 2011). Fusidic acid has been shown highly 
effective against staphylococcus, and is usually administrated via oral 
and parenteral routes (Mlynarczyk-Bonikowska et al., 2022). However, 
it is notable that gram-negative bacteria have an inherent resistance to 
fusidic acid.

According to the pharmacokinetics of fusidic acid, administration 
of a single 500 mg oral dose on an empty stomach results in a blood 

concentration of approximately 30 μg/mL within 2 to 3 h. For dosing 
regimens involving oral administration every 8 h over a span of 4 
consecutive days, the blood concentration can reach 50–100 μg/
mL. Given that large initial doses autoinhibit the clearance of fusidic 
acid, a steady state can be achieved earlier with dosing regimens that 
contain higher doses (Bulitta et al., 2013). Therefore, in this study, 
we tested MIC of polymyxin B against 41 isolates in the presence of 
32 μg/mL, 64 μg/mL and 128 μg/mL fusidic acid in order to simulate 
the drug concentration achieved in human plasma and inhibit the 
clearance of fusidic acid. Recent pharmacodynamic (PD) and 
pharmacokinetic (PK) findings concerning polymyxin B indicate that 
the use of polymyxin B monotherapy is insufficient in achieving 
consistent and effective plasma concentrations (Garonzik et al., 2011). 
Notably, monotherapy may lead to resistance development, 
particularly when a concentration exceeds clinically feasible levels 
(Bergen et al., 2008). Low levels of resistance evolve repeatedly when 
low concentration of polymyxin B is applied, but this resistance is 
reversed after the antibiotic is removed. In contrast, super-MIC levels 
of polymyxin B (≥4 × MIC) drive the evolution of irreversible 
resistance. Therefore, combination therapy is recommended to 
enhance antimicrobial activity and counter resistance (Zhao et al., 
2022). In our study, we compared the effectiveness of fusidic acid and 
polymyxin B in combination therapy and monotherapy for treating 
E. coli and K. pneumoniae infections. Additionally, a murine model 
was employed to further assess the efficacy of the combination therapy 
of polymyxin and fusidic acid.

In our study, E. coli with resistance to polymyxin B were isolated 
from animals, while K. pneumoniae with resistance to polymyxin B 
were isolated from humans. We also found that the combined use of 
polymyxin B and fusidic acid was more effective in bacterial killing 
than single-drug therapies. Notably, this synergistic effect was 
observed across various bacterial strains, as evidenced by the low FIC 
index of less than 0.5 in 5 E. coli and 12 K. pneumoniae strains tested 
in the chequerboard assay (Table 2). Besides, a higher survival rate was 
shown in the mice receiving combination therapy compared to those 
treated with polymyxin B alone.

Our findings suggested that the combination of fusidic acid and 
polymyxin B has a potential for broad clinical application value. 
Meanwhile, the drug resistance of polymyxin caused by the usage of 

FIGURE 2

The survival rates of mice infected with FK3009 isolate.
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polymyxin in animal husbandry deserves attention. Therefore, we urge 
a decrease in the administration of polymyxin B in animal husbandry.
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