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Respiratory syncytial virus (RSV) remains a leading cause of hospitalizations and 
death for young children and adults over 65. The worldwide impact of RSV has 
prioritized the search for an RSV vaccine, with most targeting the critical fusion 
(F) protein. However, questions remain about the mechanism of RSV entry and 
RSV F triggering and fusion promotion. This review highlights these questions, 
specifically those surrounding a cleaved 27 amino acids long peptide within F, 
p27.
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1. The RSV F protein: cleavage sites and the p27 
peptide

Respiratory syncytial virus (RSV) remains a leading cause of hospitalizations and death for 
young children and adults over 65 (Rha et  al., 2020; McLaughlin et  al., 2022). RSV is an 
enveloped, single-stranded, negative-sense RNA virus belonging to the Pneumoviridae family 
(Amarasinghe et al., 2019). Similar to paramyxoviruses, pneumoviruses consist of a nucleocapsid 
protein complex (a nucleocapsid protein (N) encapsidating the genetic material, the polymerase 
(L) and polymerase co-factor, P (phosphoprotein)), a matrix (M) protein layer linking the 
nucleocapsid protein complex with the phospholipid envelope, and three transmembrane 
glycoproteins (King et al., 2012). The fusion protein (F) and attachment (G) glycoproteins 
promote membrane fusion and viral entry. Functional and structural studies suggest that the 
pneumovirus small hydrophobic (SH) protein forms pH-dependent viroporin that regulates 
membrane permeability, infectivity, and prevent host cell apoptosis (Fuentes et al., 2007; Gan 
et al., 2012; Masante et al., 2014).

RSV F is synthesized as an inactive precursor (F0) which undergoes cleavage by host cell 
proteases to yield two disulfide-linked subunits, F1 and F2 (Collins and Mottett, 1991; Day et al., 
2006), which are fusion competent. Fusion active F is in a metastable “prefusion” state until a 
triggering event induces conformational changes, exposing the fusion peptide, which inserts 
into the target membrane, followed by formation of a six-helix bundle which is hypothesized to 
drive membrane fusion (Smith et al., 2009; King et al., 2012). This process is similar for all 
paramyxo- and pneumoviruses; however, RSV F has several differences that remain to 
be fully understood.

Collins et al. (1984) and Elango et al. (1985), respectively, first sequenced RSV F, showing 
it is 574 amino acids with a polybasic motif (KKRKRR136) corresponding to a furin 
consensus site. Unlike closely related paramyxovirus F proteins, the polybasic sequence is 
six amino acids long, leading Bolt et al. to suggest that other proteases could be involved in 
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cleavage (such as proprotein convertase 5 and 7; Basak et al., 2001) 
and activate RSV F (Bolt et al., 2000). However, it was not until 2001 
that González-Reyes et  al. (2001) and Zimmer et  al. (2001a) 
independently demonstrated that RSV F is cleaved at two polybasic 
sites (RARR109 and KKRKRR136), generating two major subunits: 
the F2 subunit (20 kDa, AA 26 to 109), and F1 (50 kDa, AA 137 to 
574), and releasing an internal peptide of 27 amino acids, termed 
p27 (AA 110–136) (Figure  1A). The fate of this fragment post-
cleavage is still unknown.

Through site-directed mutagenesis of Bovine Respiratory 
Syncytial Virus (BRSV), Zimmer et al. (2002) determined that furin 
cleavage at site R109 impaired but did not abolish fusion activity in 
vitro, highlighting the importance of cleavage at site R136, which 
exposes the fusion peptide at the N-terminus of the F1 subunit. 
Rawling et al. (2011) generated chimeric mutations of Sendai virus 
(SeV) fusion to include one or both RSV furin recognition sites rather 
than the single cleavage site normally in SeV F. SeV F normally 
requires the HN attachment protein for fusion triggering, while. RSV 
F can promote fusion in cell culture without the G protein 
(Techaarpornkul et al., 2001). Interestingly, all SeV F/RSV cleavage 
site chimeric mutants formed syncytia without HN protein, suggesting 
that the ability of RSV F to fuse without the attachment protein is 
facilitated, at least in part, by the additional cleavage site.

There are two known RSV subtypes, A and B, classified as such by 
divergences in antigenic profile from the RSV/A Long strain 
(prototypic strain historically used for in vitro studies and vaccine 

development; McLellan et al., 2013c; Pandya et al., 2019). Hause et al. 
(2017) compared sequence variability of more than 1,000 RSV 
sequences of subtypes A and B to the RSV/A Long, showing that 
although the F protein is well-conserved across RSV genotypes, the 
p27 region of RSV/B strains exhibited significantly more 
non-synonymous amino acid changes than the RSV/A strains. 
However, entropy analysis – the measure of variability at each amino 
acid position – revealed that within the same subtype, several amino 
acid positions within the p27 sequence of RSV/As are more variable 
than in RSV/Bs.

As reported by Rajan et al. (2022), RSV infection in HEp-2 or 
A549 cells (commonly used for in vitro studies) have different viral 
growth kinetics and host response when infected with RSV/A or 
B. Additionally, the efficiency of p27 cleavage shows to be cell line 
dependent, as higher levels of mature F proteins retaining p27 are 
found on the surface of RSV-infected HEp-2 cells compared to A549 
cells, independent of RSV subtypes (Rezende et al., 2023). On the 
other hand, cleavage of p27 is also subtype dependent, since F proteins 
from RSV/A were less efficiently cleaved (retaining more p27) than 
the F proteins expressed on the surface of cells infected with RSV/B 
(Rezende et al., 2023). Moreover, the authors showed that for both 
subtypes, the p27 cleavage efficiency declines over time (Rezende 
et al., 2023).

These studies highlight that despite a highly conserved F protein 
sequence among RSV subtypes and genotypes, the cleavage of p27 
relies on host factors (e.g., enzyme turnover, vesicular transport, 

FIGURE 1

Structure of the RSV F protein on prefusion and postfusion conformations. (A) primary structure showing the disulfide bonds between F1 and F2 
subunits (thin lines), N-glycosylation sites (▽), and the Fusion Peptide (FP) on F1 N-term; the p27 peptide is shown between cleavage sites R109 and 
R136 (arrows). F protein trimer on the (B) prefusion and (D) postfusion conformations with N-Glycans N27, N70, and N500 modeled as sticks. F1 + F2 
protomers on prefusion (C) and postfusion (E) conformations. The RSV F protein prefusion trimer (B) is formed by the interaction between three F1 + F2 
protomers (C). In the process of viral entry, the prefusion trimer (B) undergoes structural rearrangement to a final postfusion conformation (D). The FP 
(F1 N-term), β3/β4 hairpin, and alpha-helices α2, α3, and α4 rearrange, fusing with α5 (C) to form an extended postfusion helix, α5post (E); the prefusion 
β22 parallel strand unravels so the α10 helix (C) can meet α5post, finalizing the postfusion conformation (E). Although not shown in crystal structures, the 
p27 peptide remains at the F1 N-term when partially cleaved, capping the Fusion Peptide, which hinders the fusion efficiency. From McLellan et al. 
(2013b). Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody. Science (80- ) 340:1113–1117. Reprinted 
with permission from AAAS.
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post-translational modifications, and innate immunity) rather than 
exclusively on enzymatic accessibility to cleavage sites.

2. Insights on the p27 glycosylation 
sites

Glycosylation is a crucial post-translational modification, as it 
impacts structure, function, stability, and translocation to the cell 
surface (Beyene et al., 2004; Vigerust and Shepherd, 2007; Ellgaard 
et al., 2016). RSV F has five N-linked glycosyolation sites which are 
well conserved among subtypes (N27, N70, N116, N126, and N500) 
(Zimmer et al., 2001b); with an additional N120 glycosylation site for 
some strains (Tan et al., 2012; Kimura et al., 2017). Two and for some 
strains three glycosylation sites are located within the p27 segment 
(N116, N120, and N126; Figure 1A).

Zimmer et al. (2001b) and Leemans et al. (2018) used systematic 
N – Q mutations to show that glycosylation in the p27 segment does 
not impact cleavage or transport of the F protein to the cell surface. 
Furthermore, F proteins containing the mutations N116Q or N126Q 
did not display molecular weight differences compared to wild-type. 
Therefore, Leemans et al. concluded that p27 was cleaved entirely off 
in a mature F protein. Both groups observed formation of larger 
syncytia in BSR T7/5 cells transfected with the mutant N116Q. Viral 
proteins can use glycosylation to shield antigenic sites, evading 
antibody recognition (Klink et al., 2006); however, Leemans et al. 
demonstrated that glycosylation of p27 at N116 and N126 did not 
significantly compromise binding of Palivizumab or other neutralizing 
antibodies targeting the prefusion conformation.

Leemans et  al. (2019), incorporated the same mutations into 
recombinant viruses. During infection of HEp-2 cells, the molecular 
weight of the F proteins expressed by viruses encoding mutations 
N116Q or N126Q was comparable to F from wild-type virus. 
However, infection with mutant virus RSV F N116Q showed a 
decrease in syncytium formation compared to wild-type 
RSV. Although the presence of glycosylated p27 was not confirmed, 
changes in syncytium format in vitro and in vivo indicate that 
glycosylation of at least one site on p27 might have an important role 
in RSV biology.

3. The impact of p27 on RSV entry

RSV F on the cell surface is generally thought to be cleaved and 
fusogenically active (González-Reyes et al., 2001; Zimmer et al., 
2001a). F0 could not be detected on the cell surface in an RSV 
infection model (Bolt et  al., 2000). However, p27 was recently 
reported on the cell surface of infected cells, leading to the 
suggestion that uncleaved or partially cleaved F was on the cell 
surface (Lee et al., 2022). Krzyzaniak et al. (2013) also suggested 
that RSV F exists on the viral surface in a partially cleaved state 
(Figure 2). They detected peptides corresponding to the p27 region 
on purified RSV/A particles through Liquid Chromatography 
coupled with Mass Spectrometry (LC/MS) analysis. Western blot 
analysis of infected HeLa cells was consistent with cleavage at site 
R109 occurring before viral assembly, while cleavage at R136 
occurred only after viral micropinocytosis upon viral entry 
(Krzyzaniak et al., 2013). However, contrary to the closely related 

human metapneumovirus (HMPV), RSV fusion is pH-independent, 
indicating that acidification of endosomes may not be required for 
cleavage of F, and consequently, for RSV entry (Srinivasakumar 
et al., 1991). The question of when both cleavage events occur has 
remained controversial, and additional work is needed to clarify the 
differing studies.

4. Insights on the impact of p27 on the 
F protein trimer

Fusion-competent RSV F is formed by non-covalent interactions 
between three disulfide-linked F1 and F2 protomers (Figures 1B–E) 
(McLellan et  al., 2013c; Gilman et  al., 2015; Krarup et  al., 2015). 
Gilman et al. in 2015 characterized an RSV-neutralizing antibody, 
AM14, that recognizes cleaved, trimeric prefusion F (Gilman et al., 
2015). AM14 binding was dependent on furin cleavage, either because 
of interference of p27 on AM14 binding through steric inhibition, or 
because F is unable to trimerize prior to cleavage. In the same year, a 
study by Krarup et al. determined that p27 destabilizes the protein 
trimer (Krarup et al., 2015). When incubating soluble F proteins in 
0.1% SDS at room temperature, 50% of trimers without p27 were 
monomerized, while 97% of trimers containing p27 did (Krarup 
et al., 2015).

Gilman et al. evaluated stability of trimerized F using an antibody 
specific for soluble, prefusion F trimers (Gilman et al., 2019). The 
trimers of F1 + F2 heterodimers on the cell surface existed in dynamic 
equilibrium of associated-dissociated trimers, suggesting a “breathing” 
mechanism for the trimerization (Liu et al., 2008; Munro et al., 2014; 
Rutten et al., 2018).

5. The impact of p27 on F protein 
structure

The first evidence study of RSV F quaternary structure was in 
2000 when Calder et al. used electron microscopy to show that F 
protein trimers from the RSV/A Long strain aggregated in rosette 
structures that were cone-like or lollipop-like rods (Calder et  al., 
2000). Morphological comparison between the RSV F protein and the 
parainfluenza 3 and 5 (PIV3 and PIV5) F protein structures indicated 
that cone-shaped trimers likely corresponded to a prefusion F 
(pre-triggered) while the lollipop-shaped trimers corresponded to a 
postfusion F (post-triggered) protein (Yin et al., 2005, 2006; Liljeroos 
et al., 2013).

Gozáles-Reyes et  al. and Ruiz-Argüello et  al. reported that 
complete enzymatic cleavage of F0 (release of p27) or partial cleavage 
at R136 alone (p27 remaining uncleaved from F2) led to the formation 
of rosettes and changes in morphology from cone to lollipop 
structures (González-Reyes et al., 2001; Ruiz-Argüello et al., 2002). 
However, Chaiwatpongsakorn et al., expressing F protein trimers from 
the RSV/A D53 strain, found cleavage of p27 was not the driving 
factor for morphological changes, but instead thermodynamic and 
physicochemical factors (e.g., temperature and low molarity) were the 
triggers (Chaiwatpongsakorn et al., 2011).

In 2011, McLellan et  al. and Swanson et  al. independently 
determined the crystal structure of the postfusion conformation of 
the F protein of RSV/A A2 strain. Both constructs truncated the 
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initial portion of the fusion peptide to minimize aggregation, keeping 
the furin cleavage sites intact (McLellan et al., 2011; Swanson et al., 
2011). Similar to parainfluenza viruses, the stalk portion of the 
postfusion F monomer is composed of two anti-parallel helices 
formed by the N- and C-terminus of the F1 subunit, juxtaposing the 
fusion peptide and transmembrane region. The stalk of the lollipop-
shaped postfusion F is formed by a bundle of six alpha-helices, 
creating a thermodynamically stable structure. The absence of p27 on 
the postfusion structure was attributed to the complete cleavage of 
both furin sites during protein synthesis (Figure 1).

In 2012, Smith et al. reported the expression and purification of a 
near full-length F protein based on the RSV/A A2 strain (Smith et al., 
2012), optimized by mutating the furin cleavage R136 (from 
KKRKRR136 to KKQKQQ136, cleaving F0 on R109 only) and 
deleting the first ten amino acids of the N-terminus of the F1 subunit. 
This construct generated antibodies targeting antigenic sites specific 
to pre- and postfusion RSV structures, including antibodies sharing 
the same antigenic site as Palivizumab.

McLellan et al. first published a partial structure of RSV F in the 
prefusion conformation in 2013 by co-crystalizing the prefusion-
specific D25 antibody with a near wild-type F protein from the 
RSV/A A2 strain. The same group then published the structure of 
a prefusion construct without co-crystallizing monoclonal 
antibodies, named DS-Cav1 (McLellan et  al., 2013a,b). The 
prefusion monomer structure is compact, made of two lobes (one 
proximal and one distal from the viral membrane) connected by 
two parallel beta-strands (one from F1 and one from F2) stabilized 
by several inter-monomer contacts. The membrane-proximal lobe 
from the neighboring monomer stabilizes the highly hydrophobic 
fusion peptide at the N-terminus of the F1 subunit. In 2015, a 
mutational analysis by Krarup et  al. led to a model where p27 
cleavage is needed to allow trimerization and fusion peptide burial 
in a hydrophobic cavity (Krarup et al., 2015).

The conformational change of RSV F trimers from prefusion to 
postfusion requires drastic rearrangements, which led Gilman et al. to 
study the dynamics of F in solution and on lipid membranes (Gilman 
et  al., 2019). They observed that the prefusion trimer alternates 
between discrete open-and-closed states in a breathing-like motion 
similar to the HIV Env protein, and the same dynamics are observed 
on the surface of cells expressing the full-length RSV F protein. 
Moreover, on the surface of immortalized cell lines transfected with 
wild-type RSV F protein or F variants harboring a Foldon 
trimerization motif, the authors concluded that the F protein naturally 
exists in an equilibrium between monomer and trimer on 
cellular membranes.

To date, no structural determination method could characterize 
the most flexible regions of the F protein (the transmembrane 
domain, the cytoplasmic segment, and the p27 peptide region; 
Krueger et al., 2021). However, in 2021, Krueger et al., using small-
angle neutron and small-angle X-ray scattering techniques (SANS 
and SAXS, respectively), determined the quaternary structure of 
prefusogenic F formulated on Polysorbate 80 nanoparticles and 
modeled the positioning of such regions within the trimeric 
structure (Krueger et al., 2021). When formulated on nanoparticles, 
trimeric prefusogenic F was recognized by monoclonal antibodies 
specific to either pre- or postfusion arrangements. Most 
importantly, prefusogenic F retains a partially cleaved p27, 
indicating that the flexibility of p27 did not destabilize the F 
protein trimeric arrangement. Moreover, RSV-infected cells 
displaying F protein trimers with partially cleaved protomers 
shows higher levels of surface F protein on prefusion conformation 
(Rezende et al., 2023); F protein trimers with detectable p27 are 
more thermally stable than those comprised of completely cleaved 
F proteins protomers (Rezende et al., 2023), although more studies 
are needed to evaluate the impact of p27 on RSV infectivity and 
replication cycle.

FIGURE 2

Two proposed mechanisms of RSV entry. (A) in the macropinocytosis method of entry, F is only cleaved at FCS1 in the trans golgi, expressing on the 
viral surface in a half-cleaved state. Newly synthesized virus enters host cells through macropinocytisis, allowing for FCS2 to be cleaved by cathepsin L 
in an endosome. This activates F, facilitating fusion with the endosomal membrane and releasing the viral genetic material into the host cell cytoplasm. 
(B) in the direct plasma membrane method of entry, F traffics through the secretory pathway to be cleaved at both FCS1 and FCS2 by furin, expressing 
on the viral surface in a fully cleaved state. Entry occurs through receptor binding, resulting in the fusion of the viral and host cell membranes 
facilitated by F.
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According to Krueger et al., in the prefusogenic structure, the p27 
on the N-terminus of the F1 subunit would be  solvent exposed, 
supporting Krarup’s observation that fusion peptide+p27 would not 
fit in the cavity formed within the prefusion structure (Krarup et al., 
2015). On the other hand, the partially cleaved RSV F proteins can 
form trimers without the assistance of a Foldon trimerization motif 
(Krueger et al., 2021).

6. Humoral and mucosal immune 
response to p27 during natural 
infection

In 2016, Fuentes et al. published the first report demonstrating an 
immune response to p27 upon natural RSV infection (Fuentes et al., 
2016). Looking at sera from five infants before and after their first RSV 
infection, the authors identified new antigenic sites using whole-
genome-phage display libraries (GFPDL) encoding peptides covering 
the length of F. One new antigenic site mapped to p27. The authors 
then synthesized peptides covering the p27 region and surveyed 
serum samples from a cohort of children (<2 years old), adolescents 
(10–14 years old), and adults (30–45 years old) using Surface Plasmon 
Resonance (SPR). Although p27-binding antibodies were identified in 
all age groups, reactivity was higher in children than adolescents and 
lowest in adults. The authors suggested the immune response to p27 
came from an uncleaved F0 precursor, present in immature virions 
and dying infected cells. Based on the work from Tapia et al., the 
immune pressure caused by the high mutation rate in the p27 region 
may be  the driver for a high antibody response to p27 (Tapia 
et al., 2014).

Humoral and mucosal immunity to p27 was found in RSV 
infected hematopoietic cell transplant (HCT) recipients (Fuentes et al., 
2019). Fuentes et al. again used GFPDL and SPR to examine blood 
serum and nasal washes of 11 HCT patients infected with RSV/A who 
stopped shedding the virus in less than 14 days (early recovery) or over 
14 days (late recovery). Both groups developed antibodies recognizing 
p27. However, early-recovered patients generated mucosal antibodies 
with higher binding to p27 than late-recovered patients.

Leemans et al. evaluated the immune response to recombinant F 
proteins lacking glycosylation on N116 or N126. BALB/c mice 
immunized with plasmids encoding F N116Q generated an enhanced 
neutralizing antibody response compared to the control (Leemans 
et  al., 2018). Immunization of BALB/c mice with a recombinant 
infectious RSV harboring the N116Q mutation (Leemans et al., 2019) 
generated higher neutralizing antibody titers compared to the wild-
type RSV F virus.

Ye et  al. quantified the amount of IgG, IgA, and p27-like 
antibodies (P27LA, natural antibodies capable of competing with a 
monoclonal anti-p27) in serum and nasal washes of 33 HCT patients 
during (acute) and post (convalescent) RSV infection (Ye et  al., 
2020). Anti-p27 IgG and IgA concentrations in both serum and 
nasal wash samples were about 1,000-fold lower than other F-specific 
sites (Ye et al., 2018, 2019). P27LA also showed a 1,000-fold lower 
concentration level than the correlate of immunity PCA 
(Palivizumab Competitive Antibody; Ye et al., 2018, 2019). Anti-p27 
antibodies did not appear to improve the overall neutralizing 
antibody activity against RSV. However, a reduction in antibody 
concentration in nasal wash samples from convalescent HCT 

patients suggests that mucosal anti-p27 antibodies bind to either 
released viruses or virus-infected epithelial cells, aiding in 
controlling respiratory tract infection.

In 2019, Patel et al. demonstrated that prefusogenic F protein 
formulated in nanoparticles is recognized by pre-F specific 
monoclonal antibodies (antigenic sites Ø and VIII – also called V) and 
by monoclonal antibodies targeting antigenic sites shared between 
pre-F and post-F conformations (sites II and IV; Patel et al., 2019). The 
prefusogenic F protein also elicited significant levels of functional 
neutralizing antibodies and competitive antibodies to antigenic sites 
Ø, VIII, II, IV, and p27 in a challenge cotton rat model, preventing 
viral replication in the lungs with no significant histopathology. The 
prefusogenic nanoparticle formulation was further developed into a 
vaccine candidate for maternal immunization, eliciting a strong, broad 
antibody response and neutralizing antibody activity. It was the first 
RSV vaccine candidate targeting protection of newborns by 
vaccinating pregnant individuals during late gestation showing 
efficient antibody transplacental transfer [reviewed elsewhere (Blunck 
et al., 2021)].

Blunck et al. (2022) reported the kinetics of immunity to p27 in 
healthy adults under age 65, naturally infected with RSV/A or RSV/B 
during the 2018–2019 RSV season. The cohort of 19 subjects was 
divided into uninfected, acutely infected, and recently infected 
individuals based on levels of neutralizing antibody titers. As observed 
in HCT patients, all subjects presented detectable anti-p27 IgG and 
IgA levels. Throughout the study, uninfected individuals maintained 
constant levels of serum IgG anti-p27, while acutely infected and 
recently infected individuals experienced an increase and decrease in 
anti-p27 antibodies, respectively. However, p27 was not an 
immunodominant epitope in this cohort of healthy adults.

7. p27  in vitro and in vivo: first 
evidence of p27 detection on the 
surface of infected cells and 
histopathology sections

To better understand the protective antigenic sites within F, Lee 
et al. (2022) chemically synthesized peptides spanning the entire F 
protein. BALB/c mice were vaccinated with these peptides and 
challenged intranasally with RSV/A A2 strain. At 5 days post-
challenge, mice immunized with the p27 region had significantly 
lower lung viral titers and pathology scores compared to mock-
vaccinated mice (Lee et al., 2022), suggesting that p27 may elicit a 
protective immune response; however, the protective effect is unlikely 
due to neutralizing antibody activity. The authors instead speculate 
that p27 may induce antibody-dependent cell cytotoxicity (ADCC) 
and T cell-mediated effector functions.

Additionally, lung tissues immunostained with anti-F-p27 antisera 
showed p27 surface expression post-infection. A549 cells infected 
with RSV/A A2 showed comparable surface staining, confirming p27 
surface expression in vitro (Lee et al., 2022). The authors attribute this 
to the expression of F0 on the surface of infected cells, consistent with 
the results seen in 2013 by Krzyzaniak et al. (2013). However, other 
studies have determined that F0 is inefficient in reaching or unable to 
reach the cell surface (Collins and Mottett, 1991; Bolt et al., 2000; 
Sugrue et  al., 2001). A mechanistic understanding of how p27 is 
expressed on the cell surface has yet to be uncovered.
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8. Gaps in knowledge and future 
directions

Important work in electron microscopy, crystallography, and 
structure modeling over the past 20 years has increased our 
understanding of the RSV F protein structure; however, the biological 
roles and fate of p27 remain elusive.

Cleavage of p27 is not a requirement for cellular transport, as 
the F protein can exist in a heterogenous population of uncleaved, 
partially cleaved, and fully cleaved F proteins on the cell surface 
(San-Juan-Vergara et al., 2012; Krzyzaniak et al., 2013; Lee et al., 
2022). However, it is unknown if the fully cleaved p27 is secreted 
as free peptide or if it has an intracellular role that improves  
viral fitness. In addition, although the F protein sequence is  
well-conserved between RSV subtypes and genotypes, the p27 
region is variable (Hause et  al., 2017); therefore, future  
studies that address such sequence differences may shed light on 
F protein structure, entry mechanism, and infectivity  
(Fuentes et al., 2016).

It is unclear if complete cleavage of the F protein is required for 
trimerization of F1 + F2 heterodimers, although it is accepted that a 
partially cleaved p27 within the F protein cavity would disrupt the 
trimerization (Krarup et al., 2015). On the other hand, the “breathing” 
motion of the F protein trimer and models of prefusogenic F trimer 
indicate that the RSV F protein could trimerize while harboring a 
partially cleaved p27 (Gilman et al., 2019).

While immunological data showed that p27 elicits serum antibody 
responses in RSV-infected individuals of all ages, the lackluster 
neutralizing activity of anti-p27 IgG antibodies raises the possibility 
that protection might come from ADCC or other cell-mediated 
immune mechanisms, and this deserves further investigation (Blunck 
et al., 2022). Likewise, the role of mucosal anti-p27 IgA antibodies in 
viral clearance requires additional studies. Lastly, the humoral and 

mucosal immune responses to p27 might be potentially powerful 
biomarkers of RSV infection.
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