AUTHOR=Liu Bangyan , Dai Yisha , Cheng Xin , He Xian , Bei Qicheng , Wang Yifan , Zhou Yuling , Zhu Bo , Zhang Kangping , Tian Xiaoqin , Duan Meichun , Xie Xiaoyu , Wang Longchang TITLE=Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1217966 DOI=10.3389/fmicb.2023.1217966 ISSN=1664-302X ABSTRACT=
This study was conducted to investigate the capability of the microbial community characteristics and soil variables to promote carbon and nitrogen cycles in maize fields under straw mulch. We covered the surface soil of the maize field with different amounts of wheat straw (0 kg/ha, 2,250 kg/ha, and 4,500 kg/ha) and used 16S rRNA and ITS sequencing, Biology ECO-plate, traditional enzymology, TOC analyzer, and HPLC to measure bacterial and fungal community composition and functions, characteristics of microbial carbon source metabolism, carbon and nitrogen fraction, enzyme activity, and organic acid content in the maize rhizosphere and non-rhizosphere. The results indicated that short-term straw mulch insignificantly affected the alpha diversity of bacterial and fungal communities whereas significantly influenced their beta diversity. The results of functional prediction revealed that straw mulch considerably boosted the relative abundances of bacteria belonging to chemoheterotrophy, aerobic chemoheterotrophy, ureolysis, and nitrogen fixation and inhibited fermentation and nitrate reduction in maize rhizosphere soil. These processes primarily drove the C and N cycles in soil. Straw mulch also improved fungal saprotrophs by raising the proportion of