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Studies have shown that microbes are closely related to human health. Clarifying 
the relationship between microbes and diseases that cause health problems can 
provide new solutions for the treatment, diagnosis, and prevention of diseases, 
and provide strong protection for human health. Currently, more and more 
similarity fusion methods are available to predict potential microbe-disease 
associations. However, existing methods have noise problems in the process of 
similarity fusion. To address this issue, we propose a method called MSIF-LNP that 
can efficiently and accurately identify potential connections between microbes 
and diseases, and thus clarify the relationship between microbes and human 
health. This method is based on matrix factorization denoising similarity fusion 
(MSIF) and bidirectional linear neighborhood propagation (LNP) techniques. First, 
we use non-linear iterative fusion to obtain a similarity network for microbes and 
diseases by fusing the initial microbe and disease similarities, and then reduce 
noise by using matrix factorization. Next, we  use the initial microbe-disease 
association pairs as label information to perform linear neighborhood label 
propagation on the denoised similarity network of microbes and diseases. This 
enables us to obtain a score matrix for predicting microbe-disease relationships. 
We evaluate the predictive performance of MSIF-LNP and seven other advanced 
methods through 10-fold cross-validation, and the experimental results show 
that MSIF-LNP outperformed the other seven methods in terms of AUC. In 
addition, the analysis of Cystic fibrosis and Obesity cases further demonstrate the 
predictive ability of this method in practical applications.
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1. Introduction

With the development of biological experiment technology, more and more studies have 
proved that gene cells (Hu et al., 2023), drug development (Wang et al., 2023), human metabolites 
(Sun et al., 2022) and microbes have a certain relationship with human health. Association 
between small molecules, circRNA and Mirna plays a role in the treatment of human disease 
(Chen et al., 2020; Peng et al., 2022b; Wang C. C. et al., 2022; Wang S. H. et al., 2022). Microbes 
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play a critical role in human health and diseases (Rastelli et al., 2018). 
For example, in the human gut, microbes can help synthesize various 
beneficial digestive enzymes (Sommer and Bäckhed, 2013), and there 
is a clear correlation between the occurrence and exacerbation of 
asthma and microbial communities (Ver Heul et al., 2019). Thus, it is 
important to clarify the relationship between microbes and diseases in 
humans. Biomedical researchers currently use traditional experimental 
methods to validate the potential association between microbes and 
diseases, but traditional experimental methods often require huge 
investments of time, money, and effort. Therefore, if the latest computer 
technologies are combined with bioinformatics methods, it is possible 
to efficiently obtain effective correlations between microbes and 
diseases. So far, to better utilize computer technologies for predicting 
potential microbe-disease associations, an increasing number of 
relevant databases have been established, including HMDAD, which 
records associations between diseases and microbes, and HPMCD, 
where users can search for microbial communities related to diseases 
or health, among others (Zhao et al., 2021). Association and similarity 
data are commonly used as inputs for prediction methods. There are 
two types of similarity data: those based on the original association 
calculation and those based on other data calculations. Using microbe 
and disease similarity as prior information can improve the final 
prediction performance of prediction methods. To date, a variety of 
similarity calculation methods have been proposed. Those based on the 
original association calculation include Gaussian, cosine, and linear 
neighborhood similarity, while those based on other data calculations 
include disease semantic similarity, symptom-based disease similarity, 
microbe similarity based on protein families, and functional similarity, 
among others (Wen et al., 2021). In recent years, with the development 
of computer technologies and based on existing association data and 
similarity calculation methods, microbe-disease prediction methods 
have thrived (Wang L. et al., 2022), mainly divided into three types: (1) 
matrix completion-based methods, (2) machine learning-based 
methods, and (3) network-based methods.

The first method is based on matrix completion. Matrix 
completion methods often use incomplete matrices to obtain a 
complete matrix by decomposing the known matrix and then using 
the decomposed matrix. Shi et al. (2018) proposed a new algorithm 
called BMCMDA, which established a relationship model between a 
parameterized matrix and a microbe-disease matrix based on known 
microbe-disease pairs. The algorithm inferred the likelihood of a 
microbe being related to a specific disease based on the recovered 
parameterized matrix. Wu et al. (2019) proposed an algorithm called 
MHMDA, which treated potential associations as unknown matrix 
elements and used matrix completion to predict potential microbe-
disease associations. Long et  al. (2021) proposed a bidirectional 
interaction aggregator for denoising and a learning framework that 
combined graph attention networks and inductive matrix completion 
(GATMDA). Hua et al. (2022) proposed a method, MVGCNMDA, 
which combines graph convolution and convolutional neural 
networks to compute the similarity matrix of microbe-disease 
associations, followed by matrix completion to predict the final results. 
Liu et al. (2023) constructed a heterogeneous network of microbes and 
diseases and used low-rank matrix factorization and nuclear norm 
minimization to predict the associations between microbes and 
diseases. However, current matrix completion-based methods are 
based on low-order information, often neglecting high-order 
information between microbes and diseases.

The second approach is based on machine learning. The rapid 
development of computer technology has made machine learning 
achieve good results in the direction of microbial disease association. 
Wang et  al. (2017) designed a Laplacian regularized least squares 
classifier and developed a Laplacian regularized least semi-supervised 
model (LRLSHMDA) for association prediction. Peng et  al. (2018) 
combined multiple weak classifiers into a strong classifier for prediction, 
proposing an adaptive boosting model (ABHMDA) for prediction. Li 
et al. (2020) constructed a three-layer backpropagation neural network 
model (BPNNHMDA) to discover potential associations. Long et al. 
(2021) first proposed a learning framework (GATMDA) based on graph 
attention network, double interaction aggregator, and inductive matrix 
completion. Peng et  al. (2022a) integrated different similarities to 
construct a high-dimensional matrix, and used an autoencoder to reduce 
its dimensionality. A new computational method based on a deep 
autoencoder and an extensible tree-enhanced model (DAESTB) was 
proposed to predict small molecules and Potential association of 
miRNAs. Yu et al. (2023) using sparse relational data and finite feature 
data, a new graph contrast learning model based on sparse relationship 
enhancement and cascaded multicore fusion network (CasMF-GCL) 
based on machine learning is proposed. Although machine learning-
based methods have performed well, the limited number of known 
microbe-disease association data to some extent restricts the 
performance of association prediction based on machine learning.

The third method is based on network approaches. Huang 
Y. A. et  al. (2017) proposed a new computational method 
(NGRHMDA) which combines two single prediction models, namely 
the neighbor-based and graph-based prediction models, to calculate 
microbe-disease association prediction scores and achieve better 
prediction performance than single models. Huang Z. A. et al. (2017) 
proposed a method based on known similarities, using a deep 
traversal method to explore the potential path between microbes and 
diseases, so as to obtain the potential associations between microbes 
and diseases. Wang et  al. (2021) proposed a new computational 
model, named MSLINE, to infer potential microbe-disease 
associations by combining multiple similarity and large-scale 
information network embedding (LINE) based on known associations. 
Chen et  al. (2021) construct a Heterogeneous Network for Small 
Molecule-miRNA Using Bounded Kernel Canonical Regularization 
to Predict (SM-miRNA) Association Prediction (BNNRSMMA). Yin 
et al. (2023) proposed a method based on two-layer double random 
walks to combine different microbial and disease similarity networks 
(NTBiRW), and finally calculated the final prediction score based on 
K-nearest neighbors. Jiang et  al. (2018) proposed a new multi-
similarity kernel fusion method (SKF) in MDA-SKF to study the 
correlation between LncRNA and disease, and used a weighted matrix 
to denoise the fused matrix. Although this method uses a weighted 
method for denoising, the information of the similar network itself is 
still lost in the fusion process, resulting in a decrease in prediction 
accuracy due to the lack of original node similarity information. In 
order to solve the problem of information loss during the fusion 
process of the self-network nodes, Xie G. B. et al. (2023) proposed a 
method of adding a unit matrix in the process of similarity matrix 
fusion, which keeps the original similarity while cutting down on 
noise throughout the fusion process, but does not fundamentally solve 
the noise problem. Therefore, we propose a matrix decomposition 
(SVD)-based method to extract key information after fusion matrix, 
further improving the denoising effect.
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In order to overcome the problem of noise in the fusion of similar 
networks in microbe-disease association prediction, we developed a new 
method called MSIF-LNP, which combines MSIF and linear 
neighborhood label propagation (LNP) to predict microbe-disease 
associations. MSIF-LNP can predict association scores between microbes 
and diseases from three directions: Gaussian similarity, cosine similarity, 
and linear neighborhood similarity. We  constructed two similar 
networks of microbes and diseases in MSIF through nonlinear cross-
iteration, using the method of neighbor matrix-weighted constraint 
kernel, and denoised the fusion matrix using matrix factorization (SVD). 
To obtain the final prediction results of microbe-disease association, 
we  used LNP to propagate the initial microbe-disease association 
information as labels on the two constructed microbes and disease 
networks. The MSIF-LNP model was validated using 10-fold cross-
validation (10-fold-CV), and the validation results showed that the 
performance of MSIF-LNP was superior to the other seven microbe-
disease prediction algorithms. In addition, among the top 10 expected 
microbes for the respective diseases (Cystic fibrosis and Obesity), nine 
were confirmed in case studies.

2. Materials and methods

2.1. Datasets

The selection of a well-known and reliable microbe-disease 
association dataset is a crucial step to make the accuracy of the 
established prediction model as accurate as possible. We  selected 
HMDAD,1 a microbes disease dataset, and merged the microbe-
disease associations collected in it. Finally, we  obtained 450 
experimentally validated microbe-disease associations with 292 
microbes and 39 diseases, respectively.

2.2. Cosine similarity

Cosine similarity is a commonly used similarity measure (Xia 
et al., 2015), which measures the similarity between two vectors in a 
vector space based on their cosine angle. In microbes space, 
we calculate the cosine similarity between microbes vectors using a 
known microbe-disease association matrix, which is divided into two 
main steps. First, we use P mi( ) to denote the microbes mi relationship 
vector with each disease, where mi refers to the i-th row of the 
microbe-disease association matrix. In the second step, we calculate 
the cosine similarity of each microbe pair is calculated using 
P(microbes) to the microbe mi with microbe mj  as an example, the 
cosine similarity formula can be expressed as:

 
( ) ( ) ( )

( ) ( )
_
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⋅

=
∗   

P P
COS ,

P
m_i m_ j

M m_i m_ j
m_i m_ jP  

(1)

COS m mM i j,( )  indicates microbe mi and microbe mj  of the 
cosine similarity value, the symbol·indicates the vector dot product 

1 http://www.cuilab.cn/hmdad

operation. After calculation, the cosine similarity of all microbes pairs 
forms the microbes similarity matrix COSM . By the same token, 
we can calculate the cosine similarity matrix COSD  of the diseases.

2.3. Gaussian similarity

To diversify the similarity information between microbes data, 
we introduced Gaussian interaction similarity to calculate the degree 
of similarity between microbes, and constructed a kernel similarity 
matrix of microbes Gaussian interaction properties using a known 
microbe-disease association relationship matrix. For microbes data, 
microbe mi and microbe mj the Gaussian interaction property kernel 
similarity formula is as follows.
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where A denotes a known microbe-disease association, γm is the 
bandwidth used to control the kernel similarity of Gaussian interaction 
properties and the value of γ  is generally 1, nm is the number of 
microbes. By the same token, we can derive the disease Gaussian 
interaction property kernel similarity matrix GD.

2.4. Linear neighborhood similarity

We use linear domain similarity based on linear domain data to 
calculate this prediction model (Zhang et al., 2018). For the microbes 
data, it is assumed that ti represents the feature vector of the i-th 
microbe, and our objective is to minimize.

 
δ = − ∈ ( )∑t w ti ii ii t N t j j

j i j i:

2

 
s t w wi iii t N t j j

j i j i
. . ,

: i =∈ ( )∑ 1 0
 

(4)

where N ti( ) denotes ti the N  (free parameter) nearest neighbor 
set (via Euclidean distance), the ti j  is the ti the jth neighbor, and the 
wiij  is the measure of ti j  the contribution to the ti the reconstruction 
contribution, which can be used as a similarity metric. Using quadratic 
programming to solve the equation, we get ti the linear neighborhood 
reconstruction weights of the domain, for any t N tj i∉ ( ) that wiij = 0. 
One way to assess similarity is to look at a data point’s neighbors’ 
weights. Thus, we are able to get the linear neighborhood similarity 
matrix LM  between microbes. In a similar vein, we can also get the 
linear neighborhood similarity matrix LD between diseases.
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2.5. MSIF-LNP method

2.5.1. Overview
In this study, MSIF-LNP was utilized to predict the possible 

relationships between microbes and diseases. In MSIF, multiple initial 
similarity matrices were fused into a network, and then the resulting 
network was subjected to SVD noise reduction and the initial 
microbe-disease associations were used as markers for bidirectional 
linear domain label propagation on the network constructed in 
LNP. The MSIF-LNP model’s diagram, which is shown in Figure 1, has 
three parts: data processing, MSIF, and LNP.

2.5.2. Similarity matrix noise reduction fusion 
(MSIF)

To be able to more accurately combine the numerous parallels 
between the microbes and diseases above and to reduce the noise 
generated by fusing similarity matrices, we have adopted a similarity 
matrix noise reduction fusion method.

In order to better similarity fusion, we must preprocess the three 
initial similarity matrices by bi-directional selective normalization of 
the matrices (Xie G. B. et al., 2023), which allows us to exclude the 
effect of all-zero rows and columns on the model and enhance 
robustness. Additionally, three neighborhood constraint kernels must 
be  created for the three disease/microbe similarity matrices and 
selectively normalize the three kernels. The selective normalization 
method for creating the initial similarity kernels is the following:
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where COSM  denotes the microbes cosine similarity matrix, M  
denotes 292 microbes, and MS1 denotes the initial kernel of microbes 
expression similarity after column normalization, satisfying 

MS m mi jm Mi
1 0,( ) ≠∈∑ , 1. Where COS m mM i jm Mi

,( ) ≠∈∑ 0,  
indicates that after the column normalization is complete, the column 
in the expression similarity matrix with all zeros is not chosen. In the 
same principle, we can also obtain the corresponding initial similarity 
kernels by column normalizing the microbes Gaussian similarity 
matrix GM  and the microbes linear domain similarity matrix LM , 
respectively MS2 and MS3.

The formula for constructing the selective row normalization of 
the neighborhood constraint kernel is as follows.
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(6)

where LMS1 is the domain constraint kernel with row 
normalization of the microbes cosine similarity matrix and satisfies 

LMS m mi jm Mj
1 1,( ) =∈∑ . Ni is the set of neighbors corresponding 

to microbe i (including itself), while the number of neighbors of 
microbe i is Nm. In a similar vein, we may determine the neighbor 
constraint kernels for the microbe Gaussian similarity matrix GM  and 

FIGURE. 1

Flow chart of MSIF-LNP.
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the microbe linear domain similarity matrix LM , respectively LMS2 
and the LMS3.

After the above series of treatment, three initial similarity kernels 
are obtained MS ll , , ,=1 2 3 and the neighbor constraint kernel 
LMS ll , , ,=1 2 3. We propose a similar kernel fusion method to fuse the 
initial similar kernel and the adjacent constraint kernel, the relevant 
formula is as follows.

 
LMS MS

LMS
MSl

x
l

r l r
x

l
T+ ≠= × ×

∑1

2  
(7)

Which LMSl
x+1 is the number of iterations after the x +1 after the 

first iteration of the l  state of the first kernel, and MSl
T  represents the 

MSl  is the transpose matrix of After x +1 iterations, the similarity 
network of microbe KM  can be expressed as

 
KM LMS

l
l
x=

=

+∑1
3

1

3
1

 
(8)

Finally, due to the matrix KM  of high dimensionality, there may 
be noise in the matrix, therefore, we used the SVD algorithm to noise 
reduce the matrix and improve the quality of the data. By keeping the 
first n maximum singular values to reconstruct KM , the final noise-
reduced microbe similarity network is obtained KM .

 KM U Vn n n= Σ  (9)

where U  denotes the left singular vector matrix, Σ denotes the 
diagonal matrix of singular values, V  denotes the right singular vector 
matrix, and n denotes the maximum singular value. And, we adjusted 
to half of the number of singular values proposed by Franceschini 
et al. (2016), this is because if the obtained ranking is set too low, the 
key data may be removed.

In the same way, according to the above steps, the disease cosine 
similarity KD after noise reduction can be obtained by calculated by 
COSD , GD and LD.

2.5.3. Bidirectional linear neighborhood label 
propagation (LNP)

We carry out linear domain label propagation on the created 
microbe similar network KM  and disease similar network KD
respectively. The final forecast outcome is the average value of the 
prediction score obtained from the propagation in the microbes and 
diseases network. Since the label propagation is not purely carried out 
on a network, the prediction value thus obtained will be more accurate.

In LNP, we used the known microbe-disease association matrix as 
a marker H 0  that is propagated in the microbes/diseases similarity 
network (Xie G. B. et al., 2023). The label of each node at each step is 
obtained from the probability θ  of the directed graph KM  /KD of its 
neighbors and retains its initial labeling information at 1−θ  rate of the 
update until the convergence propagation process can be expressed as.

 H K H Hm m+ = ∗ ∗ + −( )1 0
1θ θ  (10)

The following conclusions can be drawn.

 
lim lim
m

m
m

m
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m
iH K H K H

→∞ →∞ =

−
= ∗( ) + −( ) ∗( )∑θ θ θ0

0

1
0

1

 = −( ) − ∗( )−1
1 0θ θI K H  (11)

when linear domain labeling is performed on a microbe similarity 
network, the K  is equal to KM , the final prediction score matrix can 
be derived YM :

 YM I KM H= −( ) − ∗( )−1
1 0θ θ  (12)

when linear domain labeling is performed on the disease 
similarity network, the K  is equal to KD, the final prediction score 
matrix can be derived YD:

 YD I KD H= −( ) − ∗( )−1
1 0θ θ  (13)

The scoring matrix is then most normalized so that microbe-
disease pairs that are associated have higher scores and microbe-
disease pairs that are not associated have lower scores, and the final 
prediction accuracy of the model can be improved by this step, and 
the scoring matrix is YM  The process of performing the most-valued 
normalization is shown below.

 
YM m m

YM m m YM m
YM m YM mi j

i j i

i i
,

, ,

, ,
( ) = ( ) − ( )

( ) − ( )
min

max min

:

: :  
(14)

where YMmax  represents the maximum value of YM mi , :( ) ,and 
YMmin  is the minimum value of YM mi , :( ) .Similarly, we  use the 
normalization to the scoring matrix YD to obtain the final scoring 
matrix YD. Finally, we average the two prediction score matrices and 
take the result as the final prediction score Y .

 
Y YM YD= +( )1

2   
(15)

2.6. Assessment indicators

In the validation process of this paper, we used the 10-flod-CV 
validation method to test the performance of the model. In 10-flod-
CV, each known microbe-disease associations will be  randomly 
divided into 10 groups, each group will become a test group, and the 
other groups will be training groups. We used the area under the curve 
(AUC) evaluation criterion as a performance judgment criterion for 
evaluating the model, and AUC is the area under the ROC curve 
enclosing the horizontal axis (Wang W. et al., 2022).
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2.7. Optimal parameter selection

In our model, it is necessary to take into account the choice of four 
parameters, which are Nm,Nd ,x  and θ .Nm and Nd  are the number of 
neighbors of microbes and diseases, and through several parameter 
debugging, we set Nm the selection range of Nm =5–85, and set the Nd 
the selection range of Nd  = 2–26. From Figure 2, it can be seen that 
the range when Nm and Nd  are 5 and 26, respectively, the value of 
10-fold-CV is the largest, and the final determination of Nm and Nd  
of the optimal parameters are 5 and 2.

In MSIF, there is a parameter x  is the number of iterations, and 
we set the number of iterations x  in the range of [1,2,3,4,5,6,7,8,9]. As 
shown in Figure 3, the parameter debugging can be obtained when x  
=2, the value of AUC is the largest, so x  the best parameter choice is 2.

In the LNP, there is a parameter ¸  that ¸  is the propagation 
probability parameter. We set the ̧  the range of values of is set as [0.1
,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. Through parameter debugging, as 
shown in Figure 4, it can be seen that when θ =0.2, the performance 
of the model is best.

Based on the aforementioned tests, we ultimately identified these 
four parameters’ ideal values as Nm  =5, the Nd  =26, x = 2, and θ =0.2.

2.8. Algorithm comparison

To validate the reliability of the MSIF-LNP model, we compare 
MSIF-LNP with NTSHMDA (Luo and Long, 2018), KATZHMDA 
(Chen et  al., 2017), NBLPIHMDA (Wang et  al., 2019), BiRWMP 
(Shen et al., 2018) BPNNHMDA (Li et al., 2020), HMDA-Pred (Fan 
et al., 2020) and LRLSHMDA (Wang et al., 2017) were compared with 
seven prediction methods. The comparison results under 10-flod-CV 
are shown in Figure  5. The maximum AUC of MSIF-LNP is 
0.9653 ± 0.0002, and the values of NTSHMDA, KATZHMDA, 
NBLPIHMDA, BiRWMP, BPNNHMDA, HMDA-Pred and 
LRLSHMDA are 0.8882 ± 0.0009, 0.8354 ± 0.0033, 0.9000 ± 0.0027, 
0.8601 ± 0.0089, 0.9188 ± 0.0009, 0.8841 ± 0.0037 and 0.8873 ± 0.0029, 
respectively. The results indicate that our method achieves better 
prediction than other of these methods achieved better prediction.

We performed a statistical test at the significance level ′ =p 0 05. . 
If ′ >p p , it means that the original hypothesis was not rejected, and 
there is no difference in prediction performance. If ′ <p p , it means 
that the original hypothesis is rejected and there is a significant 
difference in the prediction algorithm (Xie G. et al., 2023). According 
to Table 1, we can reject the original hypothesis that the other seven 
models performed on the same data set have the same effect as 
MSIF-LNP because the p-values are all smaller than ′p .

2.9. Case study

We use MSIF-LNP to predict each unrecognized microbe-disease 
pair and rank the resulting association prediction scores in descending 
order. We have selected cystic fibrosis and obesity as our case study, 
and we have validated the top 10 microbes in the PubMed database 
that rank in the prediction of these two diseases, both of which have 
an accuracy of 90%, and Table 2 shows the prediction results for cystic 
fibrosis (CF). CF is an inherited exocrine gland disease that primarily 
affects the gastrointestinal and respiratory systems and can lead to 

FIGURE. 2

10-flod-CV under different Nm and Nd effects on AUC values.

FIGURE. 3

The different 10-flod-CV x effect on AUC values.

FIGURE. 4

10-flod-CV under different θ effect on AUC values.
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bronchitis, malnutrition, and other symptoms, and it is estimated that 
there are about 70,000 cases worldwide, with approximately 1,000 new 
cases added each year (Jean-Pierre et al., 2023). According to previous 
studies, a relationship exists between CF and S. aureus, and Jean-Pierre 
et  al. (2023) concluded that S. aureus is the main opportunistic 
pathogen in CF patients and that biofilm production is a determining 
factor for CF patients to have persistent episodes of S. aureus 
respiratory infections. According to Menetrey et al. (2021), it was 
shown that Stenotrophomonas maltophilia (SM) is an emerging 
pathogen that shares important pathophysiological features with CF 
pathogens and that SM possesses a large number of adaptive strategies 
to persist in CF patients. In terms of exercise and health, Williams 
(2016) found that cystic fibrosis (CF) patients who exercised for more 
than 30 min per day had fewer hospitalizations and improved lung 
function after 12 months compared to CF patients who exercised for 
less than 30 min per day. Kalamara et al. (2021) also suggested that 
daily exercise can improve aerobic capacity and slow down the decline 
of lung function in CF patients, and a combination of aerobic and 
anaerobic training may be the best training approach for CF patients.

Table 3 shows the association results of obesity-related microbes. 
Gut microbiota is considered an important factor in the development 
of metabolic diseases such as obesity, as well as an endocrine organ 
that maintains energy homeostasis and human immunity. Gomes 
et al. (2018) found that dysbiosis could alter the function of the gut 
barrier and gut-associated lymphoid tissue (GALT) by allowing 
bacterial structural components such as lipopolysaccharides (LPS) to 
activate inflammation in the human body, leading to increased insulin 
resistance. Xie et al. (2022) demonstrated through experiments that 
excessive neutral lipids were stored in greatly expanded lipid droplets 

(LDs) due to enhanced endoplasmic reticulum (ER)-LD interaction. 
Campbell and Wisniewski (2017) showed in their research that 
exercise could enhance microbial diversity, prevent weight gain, and 
improve body composition, such as reducing fat mass, in the context 
of a high-fat diet (HFD). However, the effects of exercise are not 
limited to increasing diversity. Exercise can also reduce inflammatory 
mediators, increase antioxidant enzymes, and reduce the expression 
of tumor necrosis factor (TNF)-α in gut lymphocytes. Exercise can 
promote gut health and microbial diversity, thereby reducing the risk 
of chronic diseases.

3. Conclusion

Microbes are closely related to human health and have played 
important roles in drug development, medical beauty, disease 
diagnosis and treatment, and other fields. In order to understand the 
relationship between microbes and human health, it is necessary to 
clarify the potential relationship between microbes and diseases. To 
this end, we  propose a method called MSIF-LNP to predict the 
potential association between microbes and diseases. After combining 
multiple similarity matrices and performing matrix decomposition, 
the noise impact of matrix fusion is reduced. Then, linear 
neighborhood label propagation is performed under the fused 
microbe/disease similarity network to obtain the final microbe-
disease association score matrix. In experiments, the AUC value of 
MSIF-LNP in 10-fold CV was 0.9653, which was significantly better 
than the seven existing methods for predicting microbe-disease 
relationships. Meanwhile, it has been demonstrated through 
McNemar’s test that there are differences between MSIF-LNP and 
other comparative algorithms. In addition, the MSIF-LNP method 
was applied to case studies of cystic fibrosis and obesity, and the top 10 
microbes obtained from our method were compared with clinical 
results. The results showed that the identification accuracy of both 
diseases was 90%. Therefore, MSIF-LNP has performed exceptionally 
well in predicting the correlation between microbes and diseases, and 
subsequently predicting the correlation between microbes and health. 
In future work, we can use other relevant information, such as genetic 
information between microbes, to improve the problem of matrix 
sparsity caused by incomplete datasets. We believe that by using the 
biological characteristics of microbes and human-made predictions, 
we can promote the development of microbes and human health for 
the benefit of human health and human life.
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FIGURE. 5

AUC of MSIF-LNP with seven other models of 10-fold-CV.

TABLE 1 The statistical test between MSIF-LNP and the other seven models.

Model NTS-HMDA KATZH-MDA NBLPIH-MDA BiRW-MP BPNNH-MDA HMDA-Pred LRLSH-MDA

p -value
2 94 10

5
. × −

2 56 10
14

. × −
3 27 10

5
. × −

1 07 10
41

. × −
1 67 10

41
. × −

4 38 10
11

. × −
1 43 10

42
. × −
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