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The aim of this study was to compare the effect of different additives on nutritional 
quality, fermentation variables and microbial diversity of hybrid Pennisetum 
silages. A control (CK – no additives) and seven treatments were tested, namely, 
Lactiplantibacillus plantarum (LP), Lentilactobacillus buchneri (LB), propionic acid 
(PA), calcium propionate (CAP), LP + LB; LP + PA and LP + CAP. In comparison with CK, 
all treatments increased the contents of crude protein and lactic acid, decreased the 
content of butyric acid, and altered the bacterial communities of the silage. Except 
for the CAP and LP + CAP treatments, the additives decreased pH and the ammonia 
nitrogen:total nitrogen (NH3-N:TN) ratio. The results of principal component analysis 
revealed that the PA, LP + PA and LP + LB treatments ranked as the top three silages. 
The PA and LP + PA treatments exhibited higher water-soluble carbohydrate content, 
but lower pH, and NH3-N:TN ratio than the other treatments. With the PA and LP + PA 
treatments, the relative abundances of Lactobacillus and Enterobacter decreased, 
and of Proteobacteria and Delftia increased, while the carbohydrate metabolism of 
the microorganisms improved. The LP and LB treatments reduced the Shannon and 
Simpson diversities. In the beta diversity, PA and LP + PA separated from the other 
treatments, indicating that there were differences in the composition of bacterial 
species. The relative abundance of Lactobacillus increased in the LP and LB treatments 
and of Leucanostoc and Weissella increased in the CAP and LP + CAP treatments. In 
summary, the addition of L. plantarum, L. buchneri, propionic acid, calcium propionate, 
and their combinations improved fermentation quality, inhibited harmful bacteria and 
conserved the nutrients of hybrid Pennisetum.
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1. Introduction

With the rapid development of the livestock industry and the increased demand for 
animal products, more animal feed is needed. This has increased the cost of animal feed and 
the competition for land between food for humans and feed for livestock (Sandström et al., 
2022; Zhao et al., 2022), which has led to utilization of different forage resources for ruminants 
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(Li D. et  al., 2019; Wang N. et  al., 2022). Hybrid Pennisetum 
(Pennisetum americanum × Pennisetum purpureum) has been 
incorporated into animal feed and has great potential to be used for 
ruminants. It is distributed widely in southern China, and is 
characterized by low cultivation input, high biomass, and strong 
stress tolerance (Song et al., 2019; Cai et al., 2020; Wu et al., 2020).

Ensiling is a traditional method of preserving forage (Ren et al., 
2018; Drouin et al., 2021). However, the hybrid Pennisetum is difficult 
to ensile because of its low lactic acid bacteria (LAB) count (Shah 
et al., 2020). Bacterial inoculants and chemicals are often added to 
improve the fermentation and nutrient qualities of the silage, and to 
inhibit the activity of harmful microbiota (Queiroz et  al., 2018; 
He Q. et al., 2021). The LAB inoculants are known for their ability to 
alter fermentation patterns, and are added widely to improve 
fermentation in the production of silage (Ogunade et  al., 2017). 
Lactiplantibacillus plantarum, the most common additive, is a 
homofermentative LAB that produces lactic acid efficiently and 
reduces the pH rapidly (Xu et  al., 2021; Xian et  al., 2022). 
Lentilactobacillus buchneri, also a heterofermentative LAB, produces 
acetic acid during fermentation, inhibits yeast and mold, improves 
aerobic stability and reduces feed loss (Romero et al., 2017; Zhang 
et  al., 2020). Propionic acid is an aerobic microbial inhibitor that 
affects nitrogen conversion and reduces the degradation of protein by 
acidizing the silage or limiting the activity of undesirable bacteria at 
the early stage of fermentation (Carvalho et al., 2012; He et al., 2020; 
Ren et  al., 2021). Due to the volatility of propionic acid and its 
relatively short residual time, calcium propionate (CAP), which has 
the same antibacterial effect as propionic acid after ionization in water, 
was developed (Xiong et al., 2017). The above-mentioned additives 
have advantages, but little information is available on their effect on 
silage quality and the bacterial community of hybrid Pennisetum. To 
fill this knowledge gap, we  compared the effects of L. plantarum, 
L. buchneri, propionic acid, calcium propionate, and their 
combinations on the chemical composition, fermentation quality, and 
microbial community of hybrid Pennisetum.

2. Materials and methods

2.1. Silage preparation

Hybrid Pennisetum was harvested in Fujian Province (117.93 °E, 
26.79 °N, subtropical monsoon climate) in May 2021 by manually 
mowing at 8–10 cm above ground level, and was transported to the 
laboratory immediately. The Pennisetum was spread out evenly, and 
air-dried for 6 h, resulting in a dry matter (DM) content of 181.3 g/kg 
fresh weight (FW), and was chopped into 1–2 cm lengths using a 
paper cutter. The following were added to the Pennisetum: (1) 
distilled water (CK); (2) L. plantarum (LP, provided by Fujian 
Academy of Agricultural Sciences, viable counts ≥1 × 106 cfu/g FW); 
(3) L. buchneri (LB, BNCC187961, Beijing Beina Chuanglian 
Biotechnology Institute, Beijing, China, viable counts ≥1 × 106 cfu/g 
FW); (4) propionic acid (PA, 0.5% FW, analytical pure, Fuzhou Mili 
Biotechnology Co., Ltd., Fuzhou, China); (5) calcium propionate 
(CAP, 0.5% FW, Fuzhou Mili Biotechnology Co., Ltd., Fuzhou, 
China); (6) LP + LB; (7) LP + PA; and (8) LP + CAP. Each additive was 
dissolved in 10 mL sterile water and sprayed evenly onto the surface 
of the Pennisetum (CK was sprayed with an equal volume of distilled 

water). Subsequently, 400 g of the sprayed hybrid Pennisetum samples 
were placed in a polyethylene bag (248 mm × 344 mm), with 3 
replicates for each treatment. The bags were vacuum sealed, and 
ensiled at room temperature of 26°C for 30 or 60 days.

2.2. Nutritional composition and 
fermentation variables of hybrid 
Pennisetum silage

After ensiling, DM content of the silage was determined by oven 
drying at 65°C for 48 h, and the oven-dried samples were sieved 
through a 0.425 mm screen. The content of water-soluble 
carbohydrates (WSC) was determined by anthrone sulfuric acid 
colorimetry (Fu and Diao, 2007); total nitrogen (TN) was determined 
using an automatic nitrogen analyzer (K9840 Kjeldahl, Hanon, Jinan, 
China), the crude protein (CP) content was calculated as TN × 6.25; 
and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) 
contents were measured following Van Soest et al. (1991).

Ten g of sample were added to 90 mL of distilled water for 24 h at 
4°C, and filtered through 4 layers of gauze for pH determination 
(pHS-3D, Shandong, China). Ammonia nitrogen (NH3-N) was 
determined by phenol sodium hypochlorite colorimetry (Arthur 
Thomas, 1977), and lactic, acetic, propionic, and butyric acids were 
determined using high-performance liquid chromatography (Wang 
et al., 2020).

2.3. The pH and microbial count during 
aerobic exposure

The pH and microbial counts of the treatments after 60 days of 
ensiling were determined at 0, 3, 6, and 9 days after aerobic exposure. 
The pH was determined as described previously. The methods of 
Dong et al. (2017) were used to measure the counts of LAB, yeast, 
and aerobic bacteria during aerobic exposure with the de Man 
Rogosa Sharpe medium, Potato Dextrose Agar medium, and Plate 
Count Agar medium, respectively (Fuzhou Mili Biotechnology  
Co., Ltd., Fuzhou, China). No antibiotics were added to the 
culture media.

2.4. Microbial diversity analysis

After 60 days of ensiling, a sample of each treatment was stored at 
−80°C for microbial diversity determination. High throughput 
sequencing was performed in triplicate, and total DNA was extracted 
using the CTAB/SDS method to check DNA concentration and purity 
with a 1% agarose gel. The 16S rDNA gene of the bacterial V3 ~ V4 
hypervariable region was obtained by primer sequences 338F 
(ACTCCTACGGGAGGCAGCAG) and 806R (GGACTAC 
HVGGGTWTCTAAT) (Ling et  al., 2022). PCR amplicons were 
identified by agarose gel electrophoresis using NEXTFLEX® Rapid 
DNA-Seq Kit for Miseq library construction and sequencing. After the 
library qualified, it was sent to Majorbio BioPharm Technology Co. 
Ltd. (Shanghai, China) for sequencing. The library was paired-end 
sequenced based on the Illumina Novaseq sequencing platform 
resulting in a complete microbial community.
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2.5. 16S rRNA gene sequence analysis

Raw fastq files were demultiplexed and quality filtered using 
Trimomatic, and further merged by FLASH software. Uparse software 
(Uparse v7.0.1001)1 was used to cluster the entire high-quality 
sequences of all samples, and, by default, the sequences were clustered 
to operational taxonomic units (OTUs) with 97% similarity (He 
L. et al., 2021). Alpha diversity was determined using species richness 
indices (Ace and Chao 1) and species diversity indices (Shannon and 
Simpson) (Zheng et al., 2020). Beta diversity was determined using 
principal coordinates analysis (PCoA), and was further analyzed 
using the ANOSIM test (Dong et al., 2017). The metabolic function 
of bacteria was predicted by comparing the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database with the Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved 
States 2 (PICRUSt2) (Langille et al., 2013). Spearman’s correlation 
tested the relationships between silage quality and the relative 
abundances of bacteria at the genus levels in each treatment. Raw 
sequencing files and associated metadata have been deposited in 
NCBI’s Sequence Read Archive (PRJNA946341).

2.6. Statistical analyses

The data of silage quality were analyzed by the GLM program in 
SPSS software (version 26.0, Chicago, IL, United States) with ensiling 
time, additive treatment and their interaction. The principal 
component analysis used SPSS software. The eigenvalues of the 
variance matrix, the variance contribution rate and the weight 
coefficient of each factor were calculated to generate the principal 
component equation. The principal component comprehensive score 
was calculated by standardizing the original data into the principal 
component equation (Tharangani et al., 2021).

3. Results and discussion

3.1. Nutritional quality of hybrid 
Pennisetum silage

The DM and WSC contents of hybrid Pennisetum silage were 
affected by ensiling time, additives and their interactions (Table 1). 
When compared to CK, the LP treatment had a lesser (p < 0.05) DM 
content, while the LP + LB, PA, LP + PA, CAP and LP + CAP treatments 
had greater (p < 0.05) DM contents. The loss of DM from silage was 
due to the breakdown of nutrients, as aerobic microbes converted 
carbohydrates to water, carbon dioxide, and heat (Haas et al., 2011). 
In the present study, the DM content in the PA treatment was greater 
than in the other treatments after 60 days of ensiling. It is likely that 
the addition of propionic acid inhibited the growth of undesirable 
microorganisms and reduced their consumption of nutrients (Li et al., 
2022). Propionic acid has antifungal properties by maintaining its 
activity on the surface of microorganisms and competing with amino 

1 http://www.drive5.com/uparse/

acids for enzyme activity sites or by altering the cell permeability of 
the organisms (Gheller et al., 2021).

With the prolongation of ensiling, the CP content in each 
treatment decreased. The degradation of protein during ensiling 
involves a series of plant and microbial enzymes (Xiong et al., 2017). 
Proteins are converted into free amino acids and peptides through the 
catalytic hydrolysis of plant enzymes, and then are degraded further 
(Zheng et al., 2022). In the present study, the CP content was greater 
(p < 0.05) with each additive than in CK. Previous studies reported 
that propionic acid inhibited Clostridia and Enterobacteria effectively, 
as these bacteria were poor acid resistant bacteria, and reduced protein 
breakdown (Ali and Tahir, 2021). Adding calcium propionate also 
reduced CP loss, but less so than propionate, which might be due to 
the lesser concentration of dissociated propionate ions with CAP. The 
increase (p < 0.05) of CP content with the LB treatment most likely 
involved propionic acid. L. buchneri produces 1,2-propanediol from 
sugars and then propionic acid in the metabolic process, resulting in 
a bacteriostatic effect (Ling et al., 2022).

The WSC content of all silages was lower (p < 0.05) at 60 days than 
at 30 days of ensiling. The WSC serves as an energy source for 
microorganisms and its consumption implies microbial activity 
(Gheller et  al., 2021). The WSC is converted into organic acid to 
reduce the pH of the silage (Zhang et al., 2019; Zhu et al., 2022). The 
NDF content of silage was reduced (p < 0.05) with the LP + LB 
treatments. Similarly, Du et al. (2022) reported that the content of 
NDF in ryegrass silage inoculated with L. plantarum, L. buchneri and 
L. casei was reduced after 60 days of ensiling. When ensiled for 30 days, 
the PA and LP + PA treatments had a lesser (p < 0.05) NDF content 
than CK. This could be due to the increase in total organic acids after 
the addition of PA, which could hydrolyze digestible cell walls (Jiang 
et al., 2020; Ren et al., 2020).

3.2. Fermentation quality of hybrid 
Pennisetum silage

Table  2 presents the effect of different additives on the silage 
fermentation parameters of hybrid Pennisetum. A pH in the range of 
3.6–4.2 for silage is considered optimal, as it effectively reduces 
undesirable microorganisms (Lv et al., 2020; Bao et al., 2023). In the 
current study, the pH was below 4.2 at 30 days of ensiling in all 
treatments except for CAP, LP + CAP and LB, in which the pHs were 
greater (p < 0.05) than for CK. Li M. et al. (2019) concluded that CAP 
led to an increase in buffering energy and, thus, a rise in pH in the 
silage, which could explain the results in the present study. 
L. plantarum, which is regarded as the most commonly used 
homofermentative LAB, has the ability to reduce pH rapidly (Muck 
et al., 2018; Bai et al., 2022). L. buchneri could improve the aerobic 
stability of silage (Magnusson and Schnürer, 2001), and when 
combined with L. plantarum, reduced the pH at the initial stage of 
fermentation. Consequently, the pH of the LP + LB treatment was 
lesser than the LP and LB treatments.

After 30 days of ensiling, the LB and LP + LB treatments increased 
acetic acid content, and after 60 days of ensiling all treatments had 
greater (p < 0.05) lactic acid content than CK. The LP treatment had 
the lowest pH and highest lactic acid content of all treatments. It is 
likely that lactic acid has a lower pH than other organic acids and plays 
a vital role during fermentation (Jaipolsaen et al., 2021). In this study, 
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TABLE 1 Nutritional quality of hybrid Pennisetum silage after 30 and 60 days of ensiling.

Ensiling 
days

Treatments SEM P

CK LP LB LP + LB PA LP + PA CAP LP + CAP D T D × T

Dry matter (g/kg FW)

30 201.0b 196.5a 202.5Ab 206.5Ac 220.5Ad 265.0Bg 224.5e 248.5Bf

3.404 <0.001 <0.001 <0.001
60 207.0b 193.5a 206.1Bb 219.0Bd 239.5Bf 211.0Ac 224.5e 221.5Ade

Crude protein (g/kg DM)

30 94.6Ba 113.0b 110.1b 119.6Bbc 126.6cd 134.6Bd 123.8Bc 123.5Bc

2.008 <0.001 <0.001 0.009
60 82.5Aa 103.2b 109.3bc 108.7Abc 123.0d 114.4Acd 101.5Ab 100.2Ab

Water-soluble carbohydrates (g/kg DM)

30 21.6Bb 25.1Bc 24.4Bc 24.1Bc 38.8Bd 42.1Be 18.8Ba 20.0Bab

1.502 <0.001 <0.001 <0.001
60 13.7Ae 11.5Ad 10.8Ad 9.0Ac 23.8Ag 21.7Af 4.0Ab 6.3Aa

Neutral detergent fiber (g/kg DM)

30 633.5Bd 604.0cd 606.0cd 548.5b 582.2bc 504.9a 613.6cd 581.8bc

6.131 <0.001 0.001 0.262
60 570.5Aab 572.2ab 586.1b 544.3ab 521.9a 514.4a 560.7ab 557.5ab

Acid detergent fiber (g/kg DM)

30 393.6Bb 363.3Bb 388.7Bb 327.4a 362.5Bab 330.0a 383.6Bb 352.2ab

4.798 0.004 <0.001 0.058
60 342.6Aab 359.1b 343.1Aab 321.6ab 300.6Aa 315.1ab 313.4Aab 350.5b

FW, fresh weight; DM, dry matter; CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; 
CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate. D = ensilage days effect; T = treatment effect; D × T = the interaction between ensiling days and treatments. Means of 
treatment within a row followed by different lowercase superscripts differ from each other (p < 0.05). Means of ensiling time within a column followed by different uppercase superscripts differ 
from each other (p < 0.05).

TABLE 2 Fermentation characteristics of hybrid Pennisetum silage after 30 and 60 days of ensiling.

Ensiling 
days

Treatments SEM P

CK LP LB LP + LB PA LP + PA CAP LP + CAP D T D × T

pH

30 4.14Ad 4.10Ad 4.36Be 3.88c 3.60Bb 3.46a 4.62Af 4.68Ag

0.068 0.045 0.465 0.046
60 4.30Bd 4.19Bc 4.18Ac 3.87b 3.49Aa 3.49a 4.89Be 4.90Be

Lactic acid (g/kg DM)

30 8.02Ab 10.31Ad 8.86Ac 13.37e 14.03Af 10.13Ad 8.03Ab 6.85Aa

0.438 <0.001 <0.001 <0.001
60 8.64Ba 11.74Bc 16.58Be 13.07d 17.18Bf 12.95Bd 10.75Bb 8.92Bb

Acetic acid (g/kg DM)

30 0.39Bb 0.52Bc 0.69Be 0.62Bd 0.02a 0.02Aa 0.42Bb 0.39Ab

0.030 0.091 0.271 0.002
60 0.17Ac 0.26Ad 0.33Af 0.34Af 0.01a 0.14Bb 0.29Ae 0.51Bg

Propionic acid (g/kg DM)

30 2.07Ac 1.67a 1.82Ab 2.32Ad 2.33Bd 2.09Ac 1.82Ab 2.57Ae

0.075 <0.001 <0.001 <0.001
60 2.17Bc 1.61a 2.11Bc 2.48Be 1.77Ab 2.25Bd 3.10Bf 3.64Bg

Butyric acid (g/kg DM)

30 0.38Ad 0.19c 0.39Bd 0.44Be 0.04a 0.03b 0.12Ab 0.37Bd

0.022 <0.001 <0.001 <0.001
60 0.50Be 0.16b 0.21Ac 0.22Ac 0.03a 0.01a 0.30Bd 0.29Ad

Ammonia nitrogen/total nitrogen

30 40.8c 31.3Ab 30.0Ab 27.3Ab 3.4Aa 3.4Aa 39.8Ac 38.2Ac

2.811 <0.001 <0.001 <0.001
60 43.9c 38.5Bb 39.5Bb 36.7Bb 7.1Ba 6.2Ba 64.1Bd 70.2Be

CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, 
L. plantarum and calcium propionate. D = ensilage days effect; T = treatment effect; D × T = the interaction between ensilage days and treatment. Means of additive treatment within a row 
followed by different lowercase superscripts differ from each other (p < 0.05). Means of ensiling time within a column followed by different uppercase superscripts differ from each other 
(p < 0.05).
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the concentration of lactic acid at 30 days was greater (p < 0.05) than 
at 60 days of ensiling in all treatments, except for the PA treatment. 
Concomitantly, there was a decrease in acetic acid content, which 
implied that homolatic fermentation dominated. Li et  al. (2018) 
concluded that the addition of L. plantarum enhanced the quality of 
alfalfa silage. At 30 days of ensiling, the LP + LB, PA, and LP + CAP 
treatments had greater (p < 0.05), but the LP, LB and CAP treatments 
(p < 0.05) had lesser concentrations of propionic acid than CK. The 
increase in propionic acid content was likely a result of lactic acid 
being consumed by L. buchneri (Li et al., 2018). With the prolongation 
of the ensiling period, the content of propionic acid in the CAP 
treatment increased (p < 0.05), which could be  attributed to the 
dissociation of corresponding organic acid salts (Dai et al., 2022), as 
was reported by Wen et al. (2017). Kung et al. (2018) reported that 
butyric acid below 5 g/kg DM was optimal for high quality 
fermentation, and the butyric acid content of all treatments in the 
present study met this criterium. After an increase in the ensiling 
period, the content of butyric acid was lesser (p < 0.05) in the LP, PA, 
LP + PA and CAP treatments than in CK. The production of silage 
undergoes dynamic enzymatic and microbial processes of which the 
degradation of proteins is one of the most crucial stages (Wang 
S. et al., 2022). In the present study, the NH3-N:TN ratios in the PA 
and LP + PA treatments were lesser (p < 0.05) than in the other 
treatments, probably because the lower pH inhibited the activity of the 
protease (Tian H. et al., 2022). In addition, the NH3-N:TN ratios in 
the LP, LB and LP + LB treatments were lesser (p < 0.05) than in 
CK. L. plantarum inhibits protein degradation through its effect on 
enzymes and microorganisms (Xian et al., 2022), whereas, L. buchneri, 
through its bacteriostatic effect, reduces the degradation of protein by 
undesirable microorganisms. The combination of L. buchneri and 
L. plantarum had a synergistic effect in reducing the degradation 
of protein.

3.3. Correlations and principal component 
analysis of silage indices of hybrid 
Pennisetum

After 30 days of ensiling, CP was correlated positively (p < 0.05) with 
DM content, but negatively (p < 0.05) with NDF and ADF contents 
(Figure 1A). After 60 days of ensiling, CP content was correlated positively 
(p < 0.05) with lactic acid content and negatively (p < 0.001) with butyric 
acid content (Figure 1B). The WSC content was correlated negatively with 
acetic acid content (p < 0.05), pH (p < 0.01) and the NH3-N:TN ratio 
(p < 0.001). Moreover, the WSC content was correlated negatively with pH 
as a result of the lactic acid produced by LAB, with WSC as a substrate 
(Filya, 2003). Lactic acid plays the major role in reducing the pH of silage 
(Fu et al., 2022). After 30 days of ensiling, there was a positive correlation 
(p < 0.05) between pH and the NH3-N:TN ratio, and this correlation was 
stronger after 60 days of ensiling. Generally, NH3-N accumulates 
continuously during fermentation (Dong et  al., 2022a). When LAB 
dominated in the late stages of ensiling, lactic acid was produced by the 
fermentation of plant biomass and the pH was reduced to a level that 
inhibited the activity of ammonia nitrogen producing bacteria (Fan et al., 
2022). This could explain the correlation between pH and the NH3-
N:TN ratio.

Principal component analysis (PCA) not only reduces the loss of 
original information, but also simplifies multiple related indicators 

into independent components, and, subsequently, assesses the 
indicators based on the difference in principal component scores 
(Gallo et al., 2013). In the present study, the PCA of 11 indicators of 
hybrid Pennisetum silage ensiled for different time lengths was carried 
out. The results of the PCA after 30 days of ensiling are presented in 
Tables 3, 4. The cumulative contribution of three extracted principal 
components, based on the characteristic value >1, reached 86.7%, that 
is, 86.7% of the original index was retained. The positive load value of 
the NH3-N:TN ratio and the negative load value of WSC were the 
greatest in the first principal component in their corresponding 
eigenvector, indicating that the WSC content could limit the silage 
quality of hybrid Pennisetum. In the second principal component, the 
positive load value of DM content and the negative load value of lactic 
acid were the greatest, indicating that the content of lactic acid was the 
chief factor limiting the quality of hybrid Pennisetum silage. The 
butyric acid content positive load value and the NDF negative load 
value were the greatest in the third principal component, which meant 
that the NDF content held a dominant position in limiting the quality 
of hybrid Pennisetum silage. The first principal component was 
correlated positively with NH3-N:TN, NDF, ADF and pH, and 
negatively with CP and WSC. The second principal component was 
correlated positively with DM, pH and propionic acid, and negatively 
with lactic acid and WSC, and the third principal component was 
correlated positively with organic acids such as butyric acid. After 
60 days of ensiling, the cumulative contribution rate of the three 
extracted principal components, based on the characteristic value >1, 
reached 89.7% (Tables 3, 4). Similar to ensiling for 30 days, WSC, ADF 
and butyric acid were the main limiting factors of the principal 
components after ensiling for 60 days.

We concluded that the lower composite scores indicated better 
silage quality according to the composite of each original index and 
the proportion of principal components. Therefore, the top three 
treatments were LP + PA, PA, and LP + LB.

3.4. pH and microbial abundances of hybrid 
Pennisetum after aerobic exposure

The changes in pH and relative abundances of microorganisms 
during aerobic exposure after 60 days of ensiling are presented in 
Table  5. The resistance against spoilage varies greatly among 
silages, and different additives are used to prevent aerobic 
spoilage (Puntillo et  al., 2020; Ferrero et  al., 2021). With an 
increase in aerobic exposure, the pH increased (p < 0.05) in all 
treatments, except for the PA and LP + PA treatments. When the 
pH of the silage increases by 0.5 after aerobic exposure, it could 
be  regarded as aerobic deterioration (Mu et  al., 2021). In the 
current study, the pH of only the PA and LP + PA treatments did 
not increase by 0.5 after 6 days of aerobic exposure. The pH of the 
CAP and LP + CAP treatments were always greater (p < 0.05) than 
that of CK during aerobic exposure. During aerobic exposure, the 
abundance of LAB in the CK, LP, LB and LP + LB treatments 
displayed an increasing trend between days 0 and 6 and then a 
decreasing trend between days 6 and 9 (p < 0.05), while the 
abundance of LAB in the PA, LP + PA, CAP and LP + CAP 
treatments displayed an increasing trend (p < 0.05). When the 
number of yeasts exceeded 5 log10 cfu/g FW, the silage was prone 
to aerobic spoilage (Chen et al., 2016). In this study, the number 
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of yeasts in each treatment, except for the organic acid treatment, 
exceeded this number at 6 days of aerobic exposure, indicating a 
trend of aerobic spoilage (Wang et  al., 2014). The activity of 

aerobic microorganisms increased after the silage was exposed to 
air, and they used lactic acid, sugars and amino acids to produce 
heat continuously, resulting in aerobic putrefaction (Hu et al., 
2009; Zhou et al., 2019). In this study, PA and LP + PA inhibited 
the proliferation of aerobic microorganisms, while the abundance 
of aerobic bacteria in the other treatments exhibited an increasing 

FIGURE 1

Heatmap of Pearson correlations between nutritional quality and fermentation parameters after 30 days (A) and 60 days (B) of ensiling hybrid 
Pennisetum. *p < 0.05, **p < 0.01, ***p < 0.001. DM, dry matter; CP, crude protein; WSC, water-soluble carbohydrates; NDF, neutral detergent fiber; ADF, 
acid detergent fiber; NH3-N:TN, ammonia nitrogen:total nitrogen ratio; LA, lactic acid; AA, acetic acid; PA, propionic acid; BA, butyric acid.

TABLE 3 Index coefficient and contribution rate of hybrid Pennisetum 
silage.

Item Principal 
component (30d)

Principal 
component (60d)

PC1 PC2 PC3 PC1 PC2 PC3

Dry matter −0.264 0.526 −0.164 −0.143 0.577 −0.136

Crude protein −0.313 0.267 −0.092 −0.314 0.197 0.476

Water-soluble 

carbohydrates
−0.365 −0.209 −0.078

−0.345 −0.150 −0.243

Neutral detergent 

fiber
0.338 −0.175 −0.279

0.294 −0.302 0.235

Acid detergent 

fiber
0.328 −0.192 −0.245

0.268 −0.399 0.223

pH 0.319 0.370 −0.154 0.357 0.181 0.043

NH3-N:TN 0.369 0.213 0.003 0.370 0.178 0.085

Lactic acid −0.218 −0.464 0.357 −0.294 −0.035 0.468

Acetic acid 0.318 −0.039 0.323 0.308 0.155 0.441

Propionic acid −0.132 0.359 0.467 0.236 0.511 0.013

Butyric acid 0.271 0.112 0.589 0.319 −0.064 −0.410

Eigenvalue 6.375 1.823 1.339 6.618 2.105 1.145

Variance 

contribution rate 

(%)

57.95 16.57 12.17 60.16 19.14 10.41

Cumulative 

contribution rate 

(%)

57.95 74.53 86.70 60.16 79.30 89.71

NH3-N:TN, Ammonia nitrogen/total nitrogen.

TABLE 4 Principal component score, comprehensive score and ranking 
of hybrid Pennisetum silage.

Days Treatment F1 F2 F3 F Ranking

30

LP + PA −4.70 0.69 −0.50 −3.08 1

PA −2.85 −1.40 −0.27 −2.21 2

LP + LB −0.25 −0.33 2.44 0.10 3

LP 1.03 −1.25 −0.56 0.37 4

CAP 1.44 0.68 −1.61 0.87 5

LP + CAP 0.75 2.75 0.44 1.08 6

LB 2.06 −0.57 0.10 1.28 7

CK 2.53 −0.57 −0.05 1.58 8

60

PA −4.50 0.85 −0.26 −2.57 1

LP + PA −3.01 −0.07 −0.36 −1.86 2

LP + LB −0.23 0.61 0.33 0.01 3

LP 0.63 −2.22 0.68 0.03 4

LB 0.31 −1.07 1.58 0.15 5

CK 1.85 −1.42 −2.12 0.62 6

CAP 1.83 1.74 −0.27 1.41 7

LP + CAP 3.11 1.58 0.42 2.22 8

F1, score of the first principal component; F2, score of the second principal component; F3, 
score of the third principal component; F, comprehensive score of principal components; 
CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; 
PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; 
LP + CAP, L. plantarum and calcium propionate.
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trend. The counts of yeast and aerobic bacteria in the PA 
treatment during aerobic exposure were lower (p < 0.05) than in 
other treatments, while the pH remained stable, and was lower 
(p < 0.05) than in other treatments on day 9, which improved the 
aerobic stability of the silage. The LB treatment failed to inhibit 
the proliferation of yeast, resulting in an increase (p < 0.05) in pH 
during aerobic exposure. It is likely that the undesirable 
microorganisms used the high content of residual lactic acid as a 
substrate after aerobic exposure (Rabelo et al., 2019).

3.5. Microbial diversity

After sequencing and quality control, a total of 1,044,312 
optimized sequences were obtained. According to the 3% 
difference, a total of 1985 OTUs were obtained by OTU clustering. 
In total, 88 OTUs were shared by 8 processing units, accounting 
for 4.43% of all OTUs (Figure 2). CK, LP, LB, LP + LB, PA, LP + PA, 
CAP and LP + CAP had 11, 1, 2, 3, 63, 102, 5 and 16 OTUs, 
respectively. Alpha-diversity reflects the microbial abundance and 
species diversity of a single sample (Xian et al., 2022). Chao1 and 
ACE diversities are commonly used to measure species richness, 
while Shannon and Simpson indices are used to measure species 
diversity (Dong et al., 2020). Compared to CK, except for the LB 

treatment, the ACE index of all treatments increased, with the 
LP + CAP treatment being higher than the other treatments 
(Figure 3). The microbial community within the crop formed in 
the field, and when the stable environment was disrupted, the 
microorganisms that were not adapted to the fermentation system 
were eliminated, and the more adaptable microorganisms 
dominated in the new environment (Dong et al., 2022b). In this 
study, the Simpson index of LP was greater (p < 0.05) than the 
other treatments, while the Chao 1 index was greater (p < 0.05) 
and the ACE were lesser (p < 0.05) in the LP treatment than 
CK. Compared to CK, Shannon indices of LP and LB and the 
Simpson index of LP + CAP were lesser (p < 0.05), while the 
Shannon index of LP + CAP and the Simpson indices of LP, LB and 
LP + LB were greater (p < 0.05) than CK. The Shannon indices of 
LP + LB, LP + PA and LP + CAP were greater but the indices were 
lesser (p < 0.05) than the LP treatment (p < 0.05). The change in 
alpha diversity among silages was caused by the dynamic response 
of microorganisms (Feng et al., 2022). The composition and 
function of bacteria could differ during the period of ensiling 
(Sepehri and Sarrafzadeh, 2019).

The PCoA based on the Bray–Curtis dissimilarity displayed 
distinct clusters among the eight silages (Figure 4). Further analysis 
through ANOSIM revealed that the results were reliable (R = 0.73, 
p = 0.001). According to PCoA, CK and LP + LB were clustered in the 

TABLE 5 Changes of pH and microbial quantity of hybrid Pennisetum silage during aerobic exposure.

Item and 
ensiling 
days

Treatments SEM P

CK LP LB LP + LB PA LP + PA CAP LP + CAP D T D × T

pH

0 4.30Af 4.18Ad 4.16Ac 4.28Ae 3.48Ab 3.44Aa 4.86Ag 4.89Ah

0.176 <0.001 <0.001 <0.001
3 5.12Bd 5.59Be 4.86Bc 4.66Bb 3.91Ca 3.89Ca 6.19Bg 5.87Bf

6 7.14Cd 7.71Cf 7.26Ce 7.04Cc 3.86Bb 3.81Ba 8.16Ch 7.93Cg

9 7.75Dc 7.88Dd 7.87Dd 8.09De 4.67Da 6.21Db 8.67Dg 8.44Df

Lactic acid bacteria (log10 cfu/g FW)

0 2.12Aa 3.63Ac 3.18Ab 3.74Ac 2.19Aa 2.20Aa 4.64Ad 4.59Ad

0.192 <0.001 <0.001 <0.001
3 2.36Ba 5.67Bf 3.79Bc 3.98Ad 2.88Bb 2.40Aa 5.06Be 5.21Be

6 7.00Cc 7.06Ccd 7.53Dg 7.38Cf 3.21Ca 7.08Bd 6.70Cb 7.18Ce

9 6.22Dc 5.90Bb 6.68Cd 6.77Bd 3.78Da 7.08Be 6.71Cd 7.46Df

Yeast (log10 cfu/g FW)

0 3.42Ad 4.16Ae 3.28Ad 3.41Bd 0.11Aa 0.52Ab 2.49Ac 4.48Af

0.223 <0.001 <0.001 <0.001
3 3.86Bc 5.77Be 3.62Ac 2.63Ab 2.36Ba 2.68Bb 5.09Bd 5.03Bd

6 7.16Cc 7.25Ccd 7.45Be 7.31Dd 3.04Ca 2.93Ba 6.37Cb 7.28Ccd

9 8.10Df 8.31Df 7.18Be 6.23Cc 4.52Da 4.98Cb 6.77Dd 7.16Ce

Aerobic bacteria (log10 cfu/g FW)

0 4.31Ac 4.24Ac 3.77Ab 4.18Bc 2.26Aa 2.09Aa 4.46Acd 4.60Ad

0.204 <0.001 <0.001 <0.001
3 4.97Be 5.76Bf 3.81Ab 3.77Ab 4.79Bd 3.19Ba 4.35Ac 4.74Bd

6 7.33Ccd 7.66Ce 7.37Bd 7.24Cc 5.79Cb 3.52Ca 7.62Be 7.89Cf

9 8.86Dd 8.85Dd 8.31Cc 8.33Dc 5.84Cb 5.70Da 8.26Cc 8.35Dc

CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, 
L. plantarum and calcium propionate. D = ensilage days effect; T = treatment effect; D × T = the interaction between ensilage days and treatment. Means of additive treatment within a row 
followed by different lowercase superscripts differ from each other (p < 0.05). Means of ensiling time within a column followed by different uppercase superscripts differ from each other 
(p < 0.05).
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second and third quadrants, LP and LB in the third quadrant, PA and 
LP + PA mainly in the fourth quadrant, and CAP and LP + CAP 
mainly in the second quadrant. In addition, PA and LP + PA were 
separated from the other treatments, indicating that there were 
differences in the composition of species; whereas, CK was relatively 
close to LP, LB, and LP + LB, indicating that the composition of species 
was similar among these treatments. These results demonstrated that 
different additive treatments had significant effects on the bacterial 
community of hybrid Pennisetum silage (Tian J. et al., 2022).

After 60 days of ensiling hybrid Pennisetum, the main 
bacterial phylum was Firmicutes, followed by Proteobacteria and 
Cyanobacteria (Figure  5A). Liu et  al. (2019) reported that 
Firmicutes and Proteobacteria were the most abundant phyla of 
barley silage at any point during the ensiling process with or 
without LAB inoculants, and continued to rise to 99% of the total 
bacteria at 60 days of ensiling. Most bacteria involved in lactic 
acid fermentation belong to Firmicutes and Proteobacteria and 
they play important roles in an anaerobic environment (Yuan 
et  al., 2020). The relative abundance of Firmicutes was lesser 
(p < 0.05) and of Proteobacteria was greater (p < 0.05) in PA and 
LP + PA than in CK, while there was no difference (p > 0.05) in 
the other treatments. The relative abundance of Cyanobacteria in 

the LP and CAP treatments was lesser (p < 0.05), and in the 
LP + PA treatment was greater (p < 0.05) than in 
CK. Cyanobacteria is often found in tropical herbage and could 
be  replaced by Lactobacillus and Enterobacteria after 
fermentation, but further studies are needed to determine their 
roles in silage production (Li et al., 2019). The relative abundance 
of Actinobacteriota in LB was lesser (p < 0.05), while of 
Actinobacteriota in CAP and LP + CAP was greater (p < 0.05) 
than in CK. When mixed with L. plantarum, the relative 
abundances of Firmicutes and Cyanobacteria in LP + PA were 
greater (p < 0.05), while the relative abundance of Proteobacteria 
was lesser (p < 0.05) than in LP. The relative abundance of 
Actinobacteriota in the LP + PA and LP + CAP treatments was 
greater (p < 0.05) than in the LP treatment. It was reported that 
Actinobacteriota had the potential of bioremediation to degrade 
pesticides and heavy metals (Alvarez et al., 2017).

The bacterial genera after 60 days of ensiling hybrid Pennisetum 
is presented in Figure 5B. Lactobacillus was the dominant genus in 
each treatment. Xu et al. (2020) reported that Lactobacillus was 
often the most important microbe in the late stages of ensiling, 
which, together with Weissella and Pediococcus, were the main 
producers of lactic acid. The relative abundance of Lactobacillus in 

FIGURE 2

Petal diagram illustrating the degree of overlap of bacterial operational taxonomic units (OTUs) in the 8 silages. CK, distilled water; LP, L. plantarum; LB, 
L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. 
plantarum and calcium propionate.
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LP (85.4%) was greater (p < 0.05), but in PA (46.8%) was lesser 
(p < 0.05) than in CK. The relative abundance of Weissella in the LP, 
LB, PA and LP + PA treatments was lesser (p < 0.05) than in CK 
(12.7%). Weissella belongs to the heterofermentative bacteria and 
consumes WSC to produce a mixture of lactic acid and acetic acid 
(Huang et al., 2021; Sun et al., 2021). The relative abundance of 
Delftia in the PA and LP + PA treatments was greater (p < 0.05) than 
in CK. Delftia is often present in soil and plants and promotes the 
growth and bioremediation of plants (Liu et al., 2018; Bhat et al., 
2022). Dong et al. (2022b) concluded that the low pH of the silage 
might be  due to an accumulation of nitrite in the silage. This 
occurred because Delftia, as a reductant of nitrate, could not reduce 
nitrite further. In the acidic environment of silage, nitrite could 
be converted into nitrogen oxides to reduce the pH of silage. The 
addition of organic acids reduced the relative abundances of 
Klebsiella, Paenibacillus, and Enterobacter in corn silage (Jiang et al., 
2020). In the present study, the relative abundances of Enterobacter 
in the PA and LP + PA treatments and of Enterobacterin in the 
LP + LB treatment were greater (p < 0.05) than in CK. Guo et al. 
(2020) reported that Enterobacter was one of the dominant bacteria 
during ensiling, especially in silage treated with LAB. However, 
Enterobacter was unwanted due to nutrient loss caused by acetic 
acid fermentation (Ni et al., 2017b), although most Enterobacter 

bacteria in silage were considered non-pathogenic (Santos et al., 
2016). The relative abundances of Weissella and Pediococcus in 
LP + CAP were greater (p < 0.05) than in LP, while the relative 
abundances of Delftia and norank_o__Chloroplast in LP + PA were 
greater (p < 0.05), but the relative abundance of Enterobacter in 
LP + PA and LP + CAP was lesser (p < 0.05) than in CK. The relative 
abundance of Methylobactere-methylorubrum in LP + CAP (1.42%) 
was greater (p < 0.05) than in the other treatments. Methylobactery-
methylorubrum is a gram negative, rod-shaped, strictly aerobic 
bacteria that can utilize methanol and other reduced one-carbon 
compounds via the serine pathway (Dong et al., 2022b). The high 
pH of the LP + CAP treatment after 60 days of ensiling was 
consistent with the neutrophilic property of Methylobacter-
methylorubrum (Knief et  al., 2012). Methylobacterium was the 
dominant genus in alfalfa silage (Ni et  al., 2017a; Ogunade 
et al., 2018).

LEfSe was used to analyze the different bacteria species in each 
treatment. A total of 25 species with relative abundance differences 
was identified in the 8 treatments (LDA score > 4) (Figure 5C). 
Proteobacteria and Delftia were biomarkers of the PA treatment at 
the phylum and genus levels, respectively, while Cyanobacteria and 
Enterobacter were biomarkers of the LP + PA treatment. Firmicutes 
was the most abundant phylum in the CAP treatment. In addition, 

FIGURE 3

Effects of different additives on alpha diversity of hybrid Pennisetum silage. ACE (A), Simpson (B), Shannon (C) and Chao1 (D) indexes are used to 
reflected alpha diversity. CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. 
plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate. Means with different lowercase letters differ 
from each other (p < 0.05).
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the highest abundances of each treatment at the genus level were 
as follows: Lactococcus in CK, Lactobacillus in LP, and Weissella 
and Pediococcus in LP + CAP. Previous studies reported that 
Pediococcus was generally highly abundant in silage with high pH 
(Zhao et  al., 2022; Zong et  al., 2022), and the treatment with 
LP + CAP in this study had the highest pH at 60 days of ensiling 
(Table 2).

Figures  6A,B present the second-level classification of 
microbial community metabolic functions. The metabolic pathway 
with the greatest abundance in all treatments was carbohydrate 
metabolism. This metabolism was greater in the PA and LP + PA 
treatments than in the other treatments, perhaps due to the their 
high WSC content (Table 1). In addition, the lactic acid content in 
the PA and LP + PA treatments was greater (p < 0.05) than in CK, 
which most likely was due to carbohydrate metabolism. The 
metabolism abundances of the CAP, LP + CAP, PA and LP + PA 
treatments were greater than CK (p < 0.05), which might be due to 
the response of microorganisms to long-term acid stress in silage 
(Bai et  al., 2022). The metabolic abundances of terpenoids and 
polyketides were predicted to be  relatively high in the PA and 
LP + PA treatments. Terpenoids are natural compounds, mainly in 
Chinese herbal medicine, and are reputed to possess antibacterial 
and antioxidant properties (Elshamy et al., 2016; Tian et al., 2017). 
Further predictions of the third-level metabolic pathways of 

carbohydrate metabolism are presented in Figure 6C. The PA and 
LP + PA treatments had similar metabolic functions in all 
carbohydrates, and both had greater metabolism of pyruvate, 
propanoate, butanoate, ascorbate and aldarate than CK. It was 
reported that pyruvate metabolism was related to the formation of 
organic acids such as lactic acid, α-acetolactic acid, acetic acid, and 
formic acid (Dong et al., 2022a). Pyruvate, an intermediate in the 
glycolytic pathway, is crucial in lactic acid generation by LAB 
utilizing WSC, and can interconvert sugars, fats, and amino acids 
through the acetyl CoA and tricarboxylic acid cycles. As mentioned 
above, the lactic acid contents of the PA and LP + PA treatments 
were greater than in CK, and the pH was the lowest among all 
treatments, which might be related to the up-regulation of this 
pathway. In addition, the increase in the metabolism of ascorbate 
and aldarate, C5-branched dibasic acid and inositol phosphate, and 
glyoxylate and dicarboxylate suggests the consumption of sugar 
(Yin et al., 2022).

Spearman’s correlation tested the relationships between 
microbial communities at the genus level and nutrients and 
fermentation characteristics of hybrid Pennisetum silage. 
Lactococcus correlated positively with ADF (r = 0.44, p < 0.05), 
and negatively with CP (r = −0.53, p < 0.01) (Figure 7). Moreover, 
WSC correlated positively with Pseudomonas (r = 0.68, p < 0.001) 
and Delftia (r = 0.66, p < 0.001), and negatively with Pediococcus 

FIGURE 4

Principal coordinate analysis (PCoA) of microbial diversity of hybrid Pennisetum silage treated with different additives. CK, distilled water; LP, L. 
plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; 
LP + CAP, L. plantarum and calcium propionate.
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(r = −0.85, p < 0.001) and Weissella (r = −0.76, p < 0.001). WSC 
could be used by microorganisms as a substrate, so it was not 
surprising that WSC correlated negatively with microorganisms 
(Zheng et al., 2022). In addition, Enterobacter (r = −0.52, p < 0.01), 
Pantoea (r = −0.67, p < 0.001), and Microbacterium (r = −0.65, 
p < 0.001) were correlated negatively with CP. Previous studies 
had shown that certain Enterobacter were proteolytic, which 
could cause the loss of protein from silage (Yang et al., 2020). In 
this study, Weissella was correlated negatively with lactic acid 
content (r = −0.65, p < 0.001) and positively with acetic acid 
(r = 0.62, p < 0.01), propionic acid (r = 0.68, p < 0.001), butyric 
acid (r = 0.87, p < 0.001), pH (r = 0.87, p < 0.001) and NH3-N:TN 
(r = 0.76, p < 0.001). Results were consistent with those of Zheng 
et al. (2022) who reported that pH and the concentration of acetic 
acid were correlated positively with the abundance of Weissella. 
Furthermore, Pediococcus was correlated positively with NH3-
N:TN (r = 0.83, p < 0.001) and acetic acid (r = 0.86, p < 0.001). 
Several studies indicated that Pediococcus possessed probiotics 
properties (Fugaban et al., 2021; Jiang et al., 2021). According to 
Yang et al. (2019), Pediococcus plays a major role in the initial 
stage of ensiling by helping to create an anaerobic environment 
that is suitable for LAB growth. Microbacterium might reduce 
silage quality as this bacterium correlated negatively with lactic 
acid and CP and positively with pH, butyric acid and 

NH3-N:TN. Microbacterium is a gram-positive bacterium 
belonging to Actinobacteria, and is generally isolated from 
terrestrial and aquatic ecosystems (Marchant et al., 2006). It was 
reported Microbacterium had the ability to degrade hydrocarbons 
and complex polysaccharides (Cordovez et al., 2018). However, 
its specific role in silage production warrants further research.

4. Conclusion

Additives affected the quality of hybrid Pennisetum silage by 
increasing crude protein and lactic acid contents and inhibiting the 
growth of undesirable bacteria. Principal component analysis revealed 
that the silage quality of the PA, LP + PA and LB + LP treatments 
ranked as the top three of the seven treatments. The synergistic effect 
of L. plantarum combined with L. buchneri improved the quality of 
silage more so than any one of them alone. The addition of propionic 
acid was very beneficial, as it increased the relative abundance of 
Delftia, inhibited the activity of Enterobacter, maintained pH, butyric 
acid and the NH3-N:TN ratio at low levels and reduced the contents 
of NDF and ADF. In summary, L. plantarum, L. buchneri, propionic 
acid, calcium propionate and their combinations could improve the 
silage of hybrid Pennisetum, which would mitigate the shortage of feed 
for livestock.

FIGURE 5

Bacterial abundance at phylum (A) and genus (B) levels of hybrid Pennisetum silage. Linear discriminant analysis effect size (LEfSe) of hybrid 
Pennisetum silage treated with different additives (C). CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, 
propionic acid; LP + PA, L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate.
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FIGURE 6

Prediction of microbial metabolic functions of hybrid Pennisetum silage. The second-level (A,B) and third-level (C) classification of microbial 
community metabolic functions. CK, distilled water; LP, L. plantarum; LB, L. buchneri; LP + LB, L. plantarum and L. buchneri; PA, propionic acid; LP + PA, 
L. plantarum and propionic acid; CAP, calcium propionate; LP + CAP, L. plantarum and calcium propionate.
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FIGURE 7

Heatmap of Spearman correlations between nutritional composition (A), fermentation parameters (B) and bacterial abundance of hybrid Pennisetum 
silage. *p < 0.05; **p < 0.01, ***p < 0.001. NDF, neutral detergent fiber; ADF, acid detergent fiber; WSC, water-soluble carbohydrate; CP, crude protein; LA, 
lactic acid; AA, acidic acid; PA, propionic acid; BA, butyric acid; NH3-N:TN, ammonia nitrogen:total nitrogen ratio.
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