Getah virus (GETV) has become a growing potential threat to the global livestock industry and public health. However, little is known about the viral pathogenesis and immune escape mechanisms, leading to ineffective control measures.
In this study, the antiviral activity of exogenous interferons (IFNs) was assessed by using western blotting (WB), real-time quantitative PCR (RT-qPCR) and indirect immunofluorescence assay (IFA). The comparative transcriptomics among mock- and GETV-infected (MOI = 0.1) ST cells with or without IFN-γ was performed by RNA-seq, and then the transcriptome profiling of GETV-infected ST cells and key pathways and putative factors involved in inhibitory effect of IFN-γ on GETV replication were analyzed by bioinformatics methods and RT-qPCR.
The results showed that treatment with IFN-γ could suppress GETV replication, and the inhibitory effect lasted for at least 48 h, while the exogenous IFN-α/ω and IFN-λ3 treatments failed to inhibit the viral infection and early replication
These findings revealed that GETV possessed the capability of viral immune escape and indicated that IFN-γ aided in the prevention and control of GETV, implying the potential molecular mechanism of suppression of GETV by IFN-γ, all of which warrant emphasis or further clarification.