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The present work aimed to identify probiotic candidates from Lithuanian 
homemade fermented food samples. A total of 23 lactic acid bacteria were 
isolated from different fermented food samples. Among these, only 12 showed 
resistance to low pH, tolerance to pepsin, bile salts, and pancreatin. The 12 strains 
also exhibited antimicrobial activity against Staphylococcus aureus ATCC 29213, 
Salmonella Typhimurium ATCC 14028, Streptococcus pyogenes ATCC 12384, 
Streptococcus pyogenes ATCC 19615, and Klebsiella pneumoniae ATCC 13883. 
Cell-free supernatants of isolate 3A and 55w showed the strongest antioxidant 
activity of 26.37  μg/mL and 26.06  μg/mL, respectively. Isolate 11w exhibited the 
strongest auto-aggregation ability of 79.96% as well as the strongest adhesion 
to HCT116 colon cells (25.671  ±  0.43%). The selected strains were tested for their 
synbiotic relation in the presence of a prebiotic. The selected candidates showed 
high proliferation in the presence of 4% as compared to 2% galactooligosaccharides. 
Among the strains tested for tryptophan production ability, isolate 11w produced 
the highest L-tryptophan levels of 16.63  ±  2.25  μm, exhibiting psychobiotic ability in 
the presence of a prebiotic. The safety of these strains was studied by ascertaining 
their antibiotic susceptibility, mucin degradation, gelatin hydrolysis, and hemolytic 
activity. In all, isolates 40C and 11w demonstrated the most desirable probiotic 
potentials and were identified by 16S RNA and later confirmed by whole genome 
sequencing as Lacticaseibacillus paracasei 11w, and Lactiplantibacillus plantarum 
40C: following with the harboring plasmid investigation. Out of all the 23 selected 
strains, only Lacticaseibacillus paracasei 11w showed the potential and desirable 
probiotic properties.
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Introduction

The demand for functional foods has increased in recent years due 
to consumers’ interest in their therapeutic applications. The main 
types of functional foods include probiotics, prebiotics, and synbiotics 
(which are a mixture of probiotics and prebiotics) (Topolska et al., 
2021). The demand for different strains of probiotics has led to 
consumer awareness of the health benefits and therapeutic effects of 
modulating the gut microbiota, leading to the amelioration of 
neurological diseases and metabolic disorders (Amoah et al., 2022). 
These health benefits are due to the direct effects of the microbes on 
the host and their fermentation products in the gut. Because these 
fermented by-products of microbes remain in the gut after 
consumption, they play a significant role in the functioning of the 
body and may have direct health benefits for the host.

The Food and Agriculture Organization and the World Health 
Organization define probiotics as live microorganisms that confer 
health benefits on their hosts when ingested in an adequate 
concentration (Salminen et al., 2021). Over the last decades, studies 
on probiotics have expanded tremendously. Numerous in vivo studies 
have found that, when adequately administered, probiotics modulate 
the gut microbiota by promoting the growth of beneficial 
microorganisms in the gastrointestinal tract (GIT) (Vadopalas 
et al., 2020).

Most strains of lactic acid bacteria (LAB) are commonly used as 
probiotics in foods (Zapaśnik et al., 2022). LAB are a group of bacteria 
that include genera such as Lactobacillus, Lactococcus, Pediococcus, 
Enterococcus, and Streptococcus, are Gram-positive cocci or rods, and 
are acid-tolerant, non-respiring but aerotolerant bacteria 
(Shokryazdan et al., 2017). They are naturally present in fermented 
foods, composts (Tran et  al., 2019), GIT (Marchwińska and 
Gwiazdowska, 2021), vaginal tract (Silva et al., 2022), plant surfaces 
(Yu et al., 2020), and silages (Bohn et al., 2017).

Probiotic fermentation often produces by-products with diverse 
health-promoting effects, including protection against infectious 
agents (Bartkiene et al., 2020; Mileriene et al., 2023), anti-allergenic 
effects (Liang et al., 2022), immunomodulatory effects (Kober et al., 
2022), anti-obesity effects (Liu et al., 2022), antidiabetic effects (Wang 
et al., 2022; Daliri et al., 2023a), antioxidant effects (Hoffmann et al., 
2021), enhancement of the bioavailability of vitamins/minerals 
(Ballini et al., 2019), anti-anxiety effects (Lalonde and Strazielle, 2022), 
and attenuation of Alzheimer’s disease (Megur et al., 2021).

In recent years, many probiotic candidates have been isolated 
from traditionally fermented foods and their potential effects on 
health have been well documented. For instance, Pediococcus 
acidilactici SDL 1402 and Weissella cibaria SCCB 2306 isolated from 
Korean fermented soybean paste were shown to survive simulated 
gastrointestinal conditions, inhibit pathogenic bacteria, and showed 
good gut colonization potentials (Oh et al., 2018). The bacteria were 
found to have no virulent factors and displayed significant cholesterol-
reducing potentials in vivo (Daliri et  al., 2022). Similarly, 
Lacticaseibacillus paracasei L2 isolated from Lben (a Tunisian 
traditionally fermented dairy product) displayed an excellent gut 

colonization potential, strong pathogen inhibiting ability, and 
produced antioxidant metabolites during fermentation (M’hamed 
et al., 2023). Traditionally fermented foods, therefore, remain a good 
source of probiotic candidates since most of their commensal LAB are 
generally regarded as safe or qualified presumption of safety 
(Koutsoumanis et al., 2021; Grujović et al., 2022).

The criteria for the selection of probiotic strains are considered 
important before their use in animal and/or human studies. The 
most important feature of a probiotic is its potential health effect 
and safety. Desirable properties of probiotics include their ability to 
survive in the GIT, their antimicrobial activity against pathogenic 
microorganisms, and their antioxidant properties (Reuben et al., 
2020). Furthermore, the binding ability of LAB to HCT116 colon 
cells has been used as a criterion for assessing the potential gut 
colonization ability of probiotic candidates in some studies 
(M’hamed et al., 2023). In addition, their ability to grow in the 
presence of prebiotics to produce essential metabolites such as 
tryptophan are considered desirable traits (Kepert et al., 2017). For 
this reason, the present study aimed to isolate probiotic bacteria 
from Lithuanian fermented pear, cherry tomato, cucumber, and 
orange. The isolates were screened for their resistance to simulated 
gastrointestinal conditions. Strains that survived in-vitro 
gastrointestinal conditions were tested for their functional 
properties and the selected strains were tested for their safety. 
Probiotic candidates were identified using whole 
genome sequencing.

Materials and methods

Sample collection, bacteria isolation, and 
selection

Strains were isolated from various fermented foods collected at 
Halės Turgus market (Halle Market, Vilnius, Lithuania). The 
fermented foods were traditional Lithuanian fermented cherry 
tomatoes, pears, oranges, and cucumbers. Each sample paste (1 g) was 
transferred aseptically into separate test tubes containing 9 mL of 
sterile peptone water (0.1%) (Sigma- Aldrich, Poznań, Poland). 
Aliquots of 10 μL from appropriate 105 CFU/mL dilution were 
pentagonally streaked on the pre-solidified de Man, Rogosa, and 
Sharpe (MRS) agar (Oxoid, Wesel, Germany) and incubated at 37°C 
for 48–72 h under aerobic conditions. Representative colonies of LAB 
were randomly picked and were purified by repeated streak plating 
on MRS agar until pure colonies were obtained. The pure colonies 
were maintained on MRS agar plates and subcultured every 5 weeks 
until imperative for characterization. Cell morphology and colonial 
characterization were observed on MRS agar. These isolates were 
stored and preserved in a −80°C deep freezer (Froilabo, Livingston, 
United Kingdom) at the Department of Microbiology, Faculty of Life 
Sciences Centre, Vilnius University, Vilnius, Lithuania.

Cell culture

The human colonic cell lines HCT-116 were obtained from the 
Department of Biological Models, Vilnius University, Lithuania. The 
cells were routinely cultured in Dulbecco’s modified Eagle’s minimal 

Abbreviations: LAB, Lactic acid bacteria; GIT, Gastrointestinal tract; CFS, Cell-free 

culture supernatants; CFU, Colony forming units; TSB, Tryptone soya broth; GOS, 

Galactooligosaccharides.
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essential medium (DMEM; Sigma- Aldrich, Poznań, Poland) 
supplemented with 10% (v/v) heat-inactivated (30 min, 56°C) fetal 
bovine serum (Sigma- Aldrich, Poznań, Poland). The cells in a medium 
were also supplemented with a 1% (v/v) penicillin–streptomycin 
solution to a final concentration of 100 U mL−1 penicillin and 
100 μg mL−1 streptomycin. The incubation was at 37°C in an atmosphere 
of 5% CO2 and 95% air. The cells were nourished with complete DMEM 
every alternate day until the cells reached 70–80% confluency.

Screening of probiotic properties of 
isolated bacteria

Resistance to low pH
The resistance of LAB to low pH was studied according to a 

previously described method (Oh et  al., 2018), with little 
modifications. Briefly, LAB cultures incubated at 37°C for 24 h were 
centrifuged at 10,000 g for 10 min. The pellets were suspended in 
sterile PBS (Sigma- Aldrich, Poznań, Poland) and adjusted to a pH of 
2.0 using 1 M HCl. The mixture was then incubated at 37°C for 4 h. 
Aliquots of the mixture were taken at time 0 and after 4 h. The samples 
were serially diluted in peptone water and the viable cells were 
determined by the spread plate method using MRS agar. The plates 
were incubated at 37°C for 24 h and the percentage survival of the 
bacteria was calculated as follows:

 
% Survival

CFU of viable cells survived

CFU of initial viabl
=

∗
∗ ee cells inoculated







×100

*CFU = Colony forming units.

Resistance to pepsin
To test the viability in the presence of pepsin, simulated gastric 

juice was prepared by suspending 3 mg/mL pepsin (Sigma- Aldrich, 
Poznań, Poland) in sterile peptone water (w/v) and adjusted to pH 2.0. 
The fluid was inoculated with active cultures at an inoculum size of 
1% (v/v) and incubated at 37°C for 4 h. The viable cells were 
determined before (T1) and after incubation (T2) by the spread plate 
method (Tokatl et al., 2015). The percentage survival of the bacteria 
was calculated according to resistance to low pH.

 
% Survival

CFU of viable cells survived

CFU of initial viabl
=

∗
∗ ee cells inoculated







×100

*CFU = Colony forming units.

Resistance to bile salts and pancreatin
Resistance to intestinal juices was tested as reported (Manovina 

et al., 2022). Briefly, 0.3% (w/v) bile salt (Sigma- Aldrich, Poznań, 
Poland) and 1 mg/mL pancreatin (Sigma- Aldrich, Poznań, Poland) 
were dissolved in sterile peptone water (w/v) adjusted to pH 8 cell-free 
culture supernatants. The fluid was inoculated with 1% (v/v) LAB 
cultures and incubated at 37°C for 6 h. The viable cells were 
determined before and after incubation by the spread plate method. 
The percentage survival of the bacteria was calculated according to the 
equation below.

 
% Survival

CFU of viable cells survived

CFU of initial viabl
=

∗
∗ ee cells inoculated







×100

*CFU = Colony forming units.

Assessment of functional properties

Probiotic antimicrobial activity
Antibacterial activity was determined using the agar well diffusion 

test as previously described (Edith Marius et al., 2018). Staphylococcus 
aureus ATCC 29213, Salmonella Typhimurium ATCC 14028, 
Streptococcus pyogenes ATCC 12384, Streptococcus pyogenes ATCC 
19615, and Klebsiella pneumoniae ATCC 13883 were obtained from 
the Department of Microbiology, Vilnius University and were used as 
indicator strains for the detection of antimicrobial activity. The LAB 
were cultured in 3 mL MRS broth medium and incubated for 24 h at 
37°C. The MRS broth tubes were subsequently centrifuged (10000 rpm 
for 10 min) to prepare cell-free culture supernatants (CFS). The pH 
values of the supernatants were adjusted to approximately 7 by the 
addition of NaOH. A suspension of 100 μL of 107 CFU/mL of each 
pathogenic strain was then prepared and spread onto the nutrient 
agar, into which 5-mm-deep wells had been dug. Approximately 
100 μL of CFS was poured into each well, and nutrient agar plates were 
incubated for 24 h at 37°C. Finally, the inhibition zone diameter was 
measured in millimeters (mm) (Xu et al., 2020).

Trolox equivalent antioxidant capacity
The scavenging effect of the CFS on a 1,1-Diphenyl2-picryl-

hydrazyl (DPPH) radical was assessed as described in a previous study 
(Liao et al., 2012). Briefly, the scavenging ratio of the sample and 
Trolox (Abcam, Cambridge, United Kingdom) on DPPH (Abcam, 
Cambridge, UK) at the same time was tested, and then a suitable 
concentration range of the Trolox and its scavenging percentage was 
found. Then, a linear regression equation between the Trolox 
concentration and its scavenging percentage was built, and the Trolox 
equivalent antioxidant capacity (TEAC) was calculated through the 
equation. A higher TEAC value meant higher DPPH scavenging 
activity. Meanwhile, the scavenging percentage on the DPPH radical 
of the sample solution was tested following the treatment of the Trolox 
solution. The scavenging effect on the DPPH radical of the samples 
could be calculated as the Trolox equivalent’s antioxidant capacity 
from the calibration curve: y 0.0298x 0.9995= − + .

In vitro gut colonization potential

Auto-aggregation ability was determined by the method described 
previously with slight modification (Botta et al., 2014; Li et al., 2020). 
The overnight selected LAB culture was centrifuged at 10000 rpm for 
10 min to harvest the cell pellets. Pellets were washed thrice with 
phosphate-buffered saline (PBS; pH 7.4), re-suspended in PBS, and 
the initial absorbance was noted at 600 nm. The bacterial suspension 
was incubated at 37°C for 24 h, and the final absorbance of the 
supernatant was measured at 600 nm at three different times: 4 h, 12 h, 
and 24 h. The percentage of cellular auto-aggregation was measured 
by the formula:
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% Auto aggregation

ODinitial ODfinal

ODinitial
- =

−





×100

In vitro percent adhesion on HCT116 cells

The concentration of cells in a monolayer was determined by 
trypsinizing the adhered cells with 3 mL of 0.25% trypsin– EDTA 
solution for 5–10 min at 37°C. The final cell count in suspension was 
measured with the help of a hemocytometer (Sigma- Aldrich, Poznań, 
Poland). For adhesion assay, HCT116 cells were seeded separately in each 
well of standard 12-well tissue culture plates at a concentration of 1×106 
cells/mL and incubated for ~48 h or more, until a complete monolayer 
was obtained. Change of medium was performed every 24–48 h. The 
spent medium was completely removed 24 h before adhesion assay and 
cells were fed with DMEM lacking antibiotics. The LAB isolates for 
adhesion assay were propagated in MRS broth and cultures obtained after 
18 h of growth at 37°C were centrifuged at 6000 × g for 10 min. The pellet 
was washed once with PBS (pH 7.4). The cell density was adjusted 
approximately to the desired levels by measuring the absorbance at 
600 nm. The exact number of viable bacteria used in the assay was 
determined by plate counting on MRS agar.

The adhesion of LAB isolates was measured as described 
previously with few modifications (Sharma and Kanwar, 2017). The 
HCT 116 cells in a monolayer were washed twice with 3 mL of PBS 
(pH 7.6). The 2 mL of DMEM without serum and antibiotics was 
added to each well and incubated at 37°C for 40 min before inoculation 
of bacteria. Different LAB isolates with a concentration of 
approximately 1 × 107 CFU suspended in 1 mL DMEM without serum 
and antibiotics were used to inoculate each well of tissue culture 
plates. The plates were incubated at 37°C in an atmosphere of 5% CO2 
and 95% air for 3 h. After incubation, the monolayer was washed five 
times with sterile PBS (pH 7.6) to remove non-adherent bacteria.

The monolayer was washed five times with sterile PBS (pH 7.4) to 
remove non-adherent bacteria. To enumerate the viable adhered 
bacteria, the cells from the monolayer were detached by trypsinization. 
Each well was treated with 1 mL of 0.25% trypsin–EDTA solution and 
incubated for 15 min at room temperature. The suspension of lysed 
cells and LAB was serially diluted with saline solution and plated on 
MRS agar. The enumeration was done after 48 h of incubation at 37°C 
in an anaerobic atmosphere. The adhesion was expressed as the 
percentage of the number of adhered bacteria to the total bacteria 
used for the experiment and calculated as:

 
Percent adhesion = ×

B
B

1

0
100

where B0 and B1 CFU/mL are the initial and final count of 
bacteria, respectively.

Influence of galactooligosaccharides on 
strain growth

Prebiotic influence on LAB growth was tested as described 
previously with slight modifications (Wang et al., 2019). Briefly, LAB 
cultures incubated at 37°C for 24 h were administered in the MRS 

broth containing prebiotic 2% Galactooligosaccharides (GOS) and 4% 
GOS, i.e., the lowest concentration that elicited a significant increase 
in the growth of LAB (data not shown). The LAB growth was noted at 
every 4 h interval at 37°C by measuring absorbance at 600 nm. The 
optical densities were measured using a spectrometer (Eppendorf Bio 
spectrometer®, Hamburg, Germany). The initial optical density value 
of the media was deducted from the final value for each test sample.

Tryptophan-producing ability of LAB

The tryptophan production by LAB was monitored as previously 
described (Vaitekūnas et al., 2020). In the prebiotic-supplemented 
LAB CFS samples, concentrations of tryptophan were determined by 
high-performance liquid chromatography-mass spectrometry 
(HPLC-MS). First, the samples were mixed with an equal volume of 
acetonitrile and centrifuged for 10 min at 10,000 rpm. The samples 
were analyzed using the Shimadzu Prominence HPLC system 
(Shimadzu, Kyoto, Japan) equipped with a photodiode array (PDA) 
detector (Shimadzu, Kyoto, Japan) and LCMS-2020 mass spectrometer 
(Shimadzu, Kyoto, Japan) with an electrospray ionization (ESI) source. 
The chromatographic separation was conducted using a YMC Pack 
Pro C18 column (3 × 150 mm; YMC, Kyoto, Japan) at 40°C and a 
mobile phase that consisted of 0.1% formic acid water solution 
(solvent A) and acetonitrile (solvent B) delivered in the 5–95% 
gradient elution mode. Mass scans were measured from m/z 50 up to 
m/z 2,000 at a 350°C interface temperature, 250°C desolvation line 
(DL) temperature, ±4,500 V interface voltage, and neutral DL/Qarray, 
using N2 as nebulizing and drying gas. Mass spectrometry data were 
acquired in both positive and negative ionization modes. The data 
were analyzed using LabSolutions software (Shimadzu, Kyoto, Japan).

DNA extraction and molecular 
identification

Genomic DNA was isolated from sediment samples using the 
ZymoBIOMICS™ DNA Miniprep Kit (Zymo Research, Seattle, 
United States) according to the manufacturer’s recommendations. The 
concentration of extracted DNA was evaluated using an Eppendorf 
bio photometer (Eppendorf, Hamburg, Germany) (Lastauskienė et al., 
2021). The molecular identification of LAB strains was conducted by 
16S RNA and later confirmed by whole genome sequencing analysis. 
For 16S RNA sequencing, the strains were sent to Microgen, 
Netherlands, and for the whole genome sequencing the strains were 
sent to Cosmos, USA. Each sequence amplicon was BLAST® analyzed 
and aligned with the National Center for Biotechnology Information 
(NCBI) Sequence comparison database1 to determine the sequence 
identity and GenBank accession number. A phylogenetic tree was 
constructed after para-wise alignment applying CLUSTAL W, using 
sequences obtained from the NCBI Gene Bank. The presentation of a 
neighbor-joining tree, which was further tested by bootstrap analysis 
with 1,000 replicates using MEGA 11.0 software, was performed to 
identify the LAB isolates.

1 www.ncbi.nlm.nih.gov
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Safety analysis of LAB

Determination of antibiotic susceptibility
The susceptibility of the LAB to antibiotics was tested as reported 

previously (Wang et al., 2021). All the antibiotics were purchased from 
Carl Roth, Karlsruhe, Germany. The LAB were tested against 30 μg 
kanamycin (Kan), 25 μg streptomycin (Str), 10 μg gentamicin (Gen), 30 μg 
vancomycin (Van), 15 μg erythromycin (Ery), 30 μg chloramphenicol 
(Chl), 30 μg tetracycline (Tet), 2 μg clindamycin (Cli), 10 μg ampicillin 
(Amp), and 10 μg penicillin (Pen) using the disc diffusion method. The 
concentration of antibiotics was selected according to the EFSA guidelines 
(Aquilina et al., 2012). The agar plates were examined for the presence or 
absence of zones of inhibitions after incubation at 37°C for 24 h.

Hemolytic ability test

Hemolytic activity was performed as described in a previous study 
(Zhang et al., 2022). Overnight cultures of selected LAB were streaked 
on 5% defibrinated sheep blood agar plates and incubated at 37°C for 
48 h. After incubation, the plates were observed for α-hemolysis (dark 
and greenish zones), β-hemolysis (lightened –yellow or transparent 
zones), and γ-hemolysis (no change or no zones).

Mucin degradation test

The mucin degradation ability of the LAB was assessed using a 
previously reported method with slight modification (Daliri et al., 2022) 
Briefly, the LAB strains were grown in MRS broth supplemented with 
both 0.5% (w/v) glucose and 0.5% (w/v) mucin. After inoculation, the 
cultures were incubated at 37°C for 48 h under aerobic conditions. The 
bacterial growth was estimated every 6 h by measuring absorbance at 
600 nm. E. coli ATCC 25922 was used as positive control and grown in 
Tryptic soy broth (Carl Roth, Karlsruhe, Germany) containing 0.5% (w/v) 
glucose supplemented with or without 0.5% (w/v) mucin (Sigma- Aldrich, 
Poznań, Poland) and cultured at 37°C for 48 h under aerobic conditions. 
The optical densities were measured using a spectrometer (Eppendorf Bio 
spectrometer®, Hamburg, Germany). The initial optical density value of 
the media was deducted from the final value for each test sample.

Gelatin degradation test

The gelatin degradation ability of the LAB was investigated using 
MRS media containing 3% (w/v) gelatin (Sigma- Aldrich, Poznań, 
Poland) according to the method reported by Daliri et al. (2022). 
Staphylococcus aureus ATCC 6538 was used as a reference for quality 
control and was grown on tryptone soya broth (TSB) containing 3% 
(w/v) gelatin. Gelatin degrading ability was evaluated by the presence 
of a clear zone around the bacteria colony.

Search for antimicrobial resistance genes, 
virulence factors, and plasmid

The bacteria genomes were screened against two antimicrobial 
resistance gene databases: the ResFinder server 4.1 (https://cge.food.
dtu.dk/services/ResFinder/ accessed on 27.02.2023) and ResFinderFG 

2.0 server (https://cge.food.dtu.dk/services/ResFinderFG/ accessed on 
27.02.2023). Search for virulent factors was performed using the 
VirulenceFinder-2.0 server (https://cge.food.dtu.dk/cgi-bin/webface.
fcgi?jobid=63FCC7FC00005B2B4068D7E0;wait= assessed on 
27.02.2023). Plasmids were searched from the genome data by 
screening the contigs against the PlasmidFinder server 2.1 (https://
cge.food.dtu.dk/services/PlasmidFinder/ assessed on 27.02.2023).

Statistical analysis

All the experiments were performed in triplicate. Results were 
statistically analyzed by one-way ANOVA and two-way ANOVA and 
expressed as mean ± standard deviation calculated at a 95% confidence 
level. Tukey’s test was employed to examine differences between 
means at p < 0.05. All statistical analyses were performed using 
GraphPad Prism version 8.4.3 (GraphPad Software Inc., Boston, 
United States).

Results

Isolation of LAB

In this study, 23 pure bacterial colonies were obtained from 
various fermented food samples from Hales Turgus Market (Vilnius, 
Lithuania). These colonies were isolated from fermented pear (6 
isolates), fermented cherry tomato (5 isolates), fermented Lithuanian 
cucumber, (6 isolates), and fermented orange (6 isolates)
(Supplementary Table S1). These isolates were stored in the probiotic 
library provided by the Department of Microbiology, Faculty of Life 
Sciences Centre, Vilnius University, Vilnius, Lithuania.

Screening of probiotic properties of 
isolated bacteria

Resistance to Low pH
During the process of digestion, the stomach lining produces 

gastric acid with a pH between 1 and 3, which is very acidic. This low 
pH plays a key role in the digestion of proteins by activating digestive 
enzymes, which together break down the long chains of amino acids 
of proteins. Hence in our study, we subjected the strains to pH 2 to 
observe their survival ability in in vitro conditions. Out of 23 isolates, 
only 18 strains showed survival abilities >50%. Among the strains 
that were tested, 55w, 18B, 2 T, and 9 s showed the highest survival 
abilities of 97.58, 96.02, 95.37, and 90.03%, respectively. The strains 
showing <50% survival abilities (LAB 57B, 42 T, and 29A) were 
excluded from further analysis since the drastic reduction in their 
survival ability could indicate fewer chances of surviving further 
harsh gastrointestinal conditions (Figure 1). However, the 18 strains 
showing resistance to low pH were tested for their tolerance to pepsin.

Tolerance to pepsin

Pepsin is a digestive enzyme that breaks down proteins into 
smaller peptides. It is produced in the stomach lining and is one of the 
main digestive enzymes present in the digestive systems of humans 

https://doi.org/10.3389/fmicb.2023.1213370
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://cge.food.dtu.dk/services/ResFinder/
https://cge.food.dtu.dk/services/ResFinder/
https://cge.food.dtu.dk/services/ResFinderFG/
https://cge.food.dtu.dk/cgi-bin/webface.fcgi?jobid=63FCC7FC00005B2B4068D7E0;wait=
https://cge.food.dtu.dk/cgi-bin/webface.fcgi?jobid=63FCC7FC00005B2B4068D7E0;wait=
https://cge.food.dtu.dk/services/PlasmidFinder/
https://cge.food.dtu.dk/services/PlasmidFinder/


Megur et al. 10.3389/fmicb.2023.1213370

Frontiers in Microbiology 06 frontiersin.org

and many other animals. However, pepsin is activated at a low pH, and 
we tested the survival ability of isolates in the presence of pepsin at pH 
2. In all, 18 LAB isolates were tested for their tolerance to pepsin. 
According to our results, four bacterial isolates showed pepsin 
resistance above 90% in the order 18B (97.58%) > 55w (94.99%) > 33E 
(93.74%) > 3A (90.75%), while 35 s (18.11%) showed the least survival 
ability (< 20%) (Figure 2). The least resistance to pepsin was observed 
by five strains, 35 s (18.11%) < 10w (45.83%) <30b (46.35%) <62 W 
(46.63%) < 68B (46.77%), with the least survival abilities (<50%) being 
therefore excluded from subsequent experiments.

Resistance to bile salts and pancreatin

Bile salts are steroid acids produced in the liver and stored in the 
gallbladder that help in the digestion of fats. The Pancreatin enzyme 
is produced by the pancreas and is important for digesting fats, 
proteins, and sugars. In this study, 13 LAB isolates showed varying 
levels of resistance to bile salts and 1 mg/mL pancreatin after 6 h of 
exposure (Figure 3). A total of six LAB strains, 25E (95.40%) > 9 s 
(95.37%) > 2 T (94.20%) > 3A (92.07%) > 55w (90.90%) > 40C 
(90.83%), were found to be  highly tolerant (>90%) to simulated 
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FIGURE 1

Acid resistance of lactic acid bacteria in phosphate-saline buffer (pH 2). Values are expressed as mean  ±  standard deviation (n  =  3). Bars with the same 
lower-case letters are not significantly different, whereas those with different lower-case letters are significantly different (p  <  0.05). The dotted line 
represents the minimum percentage survival requirement of the individual isolates.
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Resistance of lactic acid bacteria to pepsin (pH  =  2). Values are expressed as mean  ±  standard deviation (n  =  3). Bars with the same lower-case letters 
are not significant, whereas those with different lower-case letters are significantly different (p  <  0.05). The dotted line represents the minimal 
requirement of survival of the individual isolates.
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intestinal fluid after 6 h of incubation (Figure 3). Strains 9 s and 25E 
showed high tolerance to bile salts and pancreatin and their 
percentage rates of survival were 95.37 and 95.40%, respectively. 
Meanwhile, strain 11 t showed the lowest survival ability of 32.60%. 
In all, 12 strains showed at least 50% resistance against bile salts and 
pancreatin (Figure  3). Hence, these 12 strains were subjected to 
functional characterization.

Functional characterization of selected 
probiotic candidates

Antimicrobial activity
Probiotics produce metabolites that can be useful for the host. 

Bacteriocin is a metabolite that hinders and/or suppresses the 
growth of pathogenic bacteria in the gut. To investigate their 
antimicrobial property, five pathogenic bacteria (S. aureus 
ATCC2913, S. typhimurium ATCC 14028, S. pyogens ATCC 12384, 
S. pyogens ATCC 19615, and K. pneumoniae ATCC 13883) were 
treated with the CFS of the selected LAB CFS. Only CFS from 
strains 18B, 25E, 48C, and 66 W inhibited these pathogens at 
varying degrees (Table 1). Strains 2 t, 11w, and 33E inhibited the 
growth of only two pathogenic microorganisms. Isolate 18B, 25E, 
and 48C hindered the growth of at least four pathogenic 
microorganisms, whereas 66 W showed an antagonistic ability to all 
the pathogens tested. Therefore, all 12 strains were subjected to 
further studies.

Trolox equivalent antioxidant 
concentration

The antioxidant property of the probiotic bacteria can have an 
important role in anti-aging functions and in scavenging free 
radicals from the body. For this reason, TEAC values were evaluated 
for LAB CFS. The highest TEAC was exhibited by isolates 3A and 
55w with TEAC of 26.37 μg/mL and 26.06 μg/mL, respectively. The 
least TEAC was shown by isolate 40C with a TEAC of 9.57 μg/mL 
(Figure 4). Even though these isolates showed different antioxidant 
abilities, they were all tested for their potential gut 
colonization abilities.

Bacterial colonization ability

Auto-aggregation of probiotic strains appeared to be necessary 
for adhesion to intestinal epithelial cells. Among the LAB tested, 11w 
showed the highest auto-aggregation ability of 79.96% after 24 h. 
Compared to all the probiotic candidates 11w, 40C, and 55w showed 
aggregation of 79.96, 76.63, and 76.76%, respectively, after 24 h, 
whereas 3A (24.26%) showed the least <25% after 24 h. Four strains, 
2 T, 3A, 9 s, and 25E, showed the least aggregative potential of 26.63, 
24.26, 25.18, and 36.37% (<50%), respectively, after 24 h and were 
excluded. Eight strains that exhibited an aggregative property of 
over 50% were further evaluated for their adhesion ability on 
HCT116 cells (Figure 5).

1A 2T 3A 9s 11w 11t 18C 25E 33C 40C 48C 55w 66W
0

10

20

30

40

50

60

70

80

90

100

Lactic acid bacteria isolates

Pe
rc
en
ta
ge
su
rv
iv
al
in
bi
le
sa
lt
an
d
pa
nc
re
at
in
(%

)

a ai

b
bc

bd bcdh
bcj bcjl cjklm

g gk

e

f

FIGURE 3

Viability of lactic acid bacteria in the presence of simulated intestinal fluid (0.3% (w/v) bile salt and 1 mg/mL pancreatin in peptone water, pH 7.2). Values 
are expressed in mean ± standard deviation (n  =  3). Bars with the same lower-case letters are not significantly different, whereas those with different 
lower-case letters are significantly different (p  <  0.05). The dotted line represents the minimal requirement of survival of the individual isolates.
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Bacterial adhesion to HCT116 cells

The HCT116 cell model (a human-cloned colon adenocarcinoma 
cell) structure and function are very similar to those of the highly 
differentiated intestinal epithelial cells. They possess the same microvilli, 
tight connection, and cell polarity, which can be utilized to simulate the 
function of intestinal epithelial cells in vitro. Therefore, we chose this 
cell model to identify the adhesion characteristics of LAB. Nine LAB 
isolates adhered to HCT116 cells. Adhesion levels of these LAB isolates 
to HCT116 cells varied from <10 to >25%. LAB 11w showed the best 
adhesion ability of 25.671 ± 0.43% compared to isolate 1A, which had 
the least adhesion ability of 9.26 ± 0.97% (Figure 6). Among the eight 
isolates, 1A, 18B, and 55w showed adhesion percentages <12%. For this 
reason, they were excluded from further studies.

Influence on growth in the presence of 
galactooligosaccharides

Prebiotic administration increases the growth of beneficial 
bacteria and promotes the growth of probiotics. GOS is a very well-
known prebiotic that has been employed in therapeutic uses and 
administered with probiotics to improve the health of animals/
humans. In our study, all the LAB strains showed significant growth 
in the presence of GOS. Increased growth was observed in a 
concentration-dependent manner. The OD values of each isolate 
differ from others, indicating that growth is strain specific. Isolates 11 
w, 33E, 40C, 48C, and 66 W showed an increase in growth when 
supplemented with 2% GOS, and their growth escalated after the 
concentration was increased to 4% (Figure 7).

TABLE 1 The inhibitory ability of probiotic candidates against various pathogenic bacteria.

Culture Staphylococcus 
aureus  

ATCC 29213

Salmonella 
Typhimurium 
ATCC 14028

Streptococcus 
pyogenes  

ATCC 12384

Streptococcus 
pyogenes  

ATCC 19615

Klebsiella 
pneumoniae 
ATCC 13883

1A 10.75 ± 0.5 12.00 ± 0.81 – 15.25 ± 0.56 –

2 T – 13.75 ± 0.5 – – 18.00 ± 0.81

3A 12.75 ± 0.5 13.25 ± 0.5 12.75 ± 0.5 – –

9 s 11.75 ± 0.5 12.75 ± 0.5 11.75 ± 0.5 – –

11w 14.25 ± 0.5 – – – 16.5 ± 1

18B 14.25 ± 0.5 – 15.62 ± 0.75 17.25 ± 1.25 18.75 ± 1.5

25E 16.75 ± 0.5 14.25 ± 0.5 15.25 ± 0.5 17.5 ± 0.57 17.5 ± 0.57

33E – – – 12.75 ± 0.5 18.5 ± 1.29

40C 11.5 ± 0.57 11.5 ± 0.57 – – –

48C 14.75 ± 0.5 15.25 ± 0.5 – 18.00 ± 0.81 19.5 ± 0.57

55w – 15.25 ± 0.5 12.25 ± 0.5 – 18.5 ± 0.57

66 W 11.25 ± 0.5 14.5 ± 0.057 11.25 ± 0.5 13.25 ± 0.95 19.5 ± 0.57

Results are expressed as the zone of inhibition in mm. The results are expressed as the means ± standard deviations of three independent replicates (n = 3). (−) indicates no zone of inhibition.
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FIGURE 4

Trolox equivalent antioxidant concentration of 13 LAB CFS. Results are expressed as mean of triplicate values ± standard deviation (n = 3). Bars with the 
same lower-case letters are not significantly different, whereas those with different lower-case letters are significantly different (p < 0.05).
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Tryptophan production by LAB

Tryptophan is an essential amino acid that cannot be produced by 
humans but is produced by bacteria harboring in the gut. This 
metabolite is known to influence the psychology of mammals by 
inducing quality sleep, mood enhancement, strengthening pain 
tolerance, and having anti-depression and anti-anxiety effects. The 
bacteria were tested in the presence of glucose and 4% GOS. LAB 
isolate 11w produced 16.63 ± 2.25 μM of tryptophan and 40C produced 
2.64 ± 0.5 μM when supplemented with 4% GOS, when compared to 
glucose in their media in 4% GOS supplementation (Table 2).

Molecular identification of probiotic 
candidates

The identification of LABs was done by 16S RNA sequencing and 
later confirmed by whole genome sequencing. Table 3 presents the 
identification and accession number belonging to the closest neighbor 
of the tested isolates. These isolates, which showed the closest match to 
the reference sequence in the NCBI GeneBank, were identified as 
Lacticaseibacillus paracasei (11w), Lactiplantibacillus paraplantarum 
(33E), Lactiplantibacillus plantarum (40C), Lactiplantibacillus plantarum 
(48C), and Lactiplantibacillus paraplantarum (66 W) (Figure 8).
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The ability of LAB to adhere to the HCT-116 cell lines. Results are expressed as mean of triplicate values ± standard deviation (n  =  3). Bars with the same 
lower-case letters are not significant, whereas those with different lower-case letters are significantly different (p  <  0.05).
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FIGURE 5

Auto-aggregation abilities of probiotic candidates after 20  h incubation at 37°C. Each value represents the mean  ±  standard deviation of three 
independent readings (n  =  3). *Significant differences at p  <  0.05, and ***significant difference at p  <  0.001.

https://doi.org/10.3389/fmicb.2023.1213370
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Megur et al. 10.3389/fmicb.2023.1213370

Frontiers in Microbiology 10 frontiersin.org

Safety analysis of probiotic candidates

Antibiotic susceptibility of probiotic candidates
All six LAB tested in this study were resistant to vancomycin, 

streptomycin, and kanamycin, whereas they were susceptible to 
chloramphenicol except for isolate 48C (Table  4). Most of the strains 
showed resistance to gentamycin except for isolate 48C (L. plantarum 48C). 
Of the eight antibiotics tested on L. plantarum 48C, it showed resistance to 
only three antibiotics and was susceptible to five. Due to its poor resistance 
to antibiotics, we did not include it in the subsequent safety steps.

FIGURE 7

The growth curves of LAB isolates were measured at 600  nm with 2% GOS and 4% GOS. Growth curve of (A) 11w supplemented with 2% GOS 
compared with 11w with 4% GOS, (B) growth curve of 33E supplemented with 2% GOS compared with 33E 4% GOS, (C) growth curve of 40C 
supplemented with 2% GOS compared with 40C 4% GOS, (D) growth curve of 48C supplemented with 2% GOS compared with 4% GOS, and (E) the 
growth curve of 66  W supplemented with 2% GOS compared with 66  W 4% GOS. Each value represents the mean  ±  standard deviation of three 
independent readings (n  =  3  ±  SD). *Significant differences at p  <  0.05, **significant difference at p  <  0.01, and ***significant difference at p  <  0.001.

TABLE 2 Tryptophan production by LAB CFS by HPLC-MS in 4% GOS.

LAB isolates TSB  +  Glucose (μM) TSB  +  4% 
GOS(μM)

11w 9.95 ± 0.24 16.63 ± 2.25

33E ND ND

40C ND 2.64 ± 0.56

48C ND ND

66 W ND ND

Values are expressed in mean ± standard deviation (n = 2). ND indicates no tryptophan production.
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FIGURE 8

Neighbor-joining phylogenetic tree of LAB isolates based on 16S rRNA gene sequences. Bootstrap values based on 1,000 replications are listed as 
percentages at branch points. The scale bar represents a 0.02% divergence.

TABLE 3 Species identification of LAB isolates by 16S rRNA sequencing.

Arbitrary name Strain Source Closest Homolog Similarity (%) Closest homolog 
Gene Bank 
Accession 

Number (NCBI)

11w
Lacticaseibacillus paracasei 

11w

Fermented pear Lacticaseibacillus paracasei 

strain R094
99.71% NR_025880.1

33

Lactiplantibacillus 

paraplantarum 33E

Fermented cherry 

tomato

Lactiplantibacillus 

paraplantarum strain DSM 

10667

99.56% NR_025447.1

40C
Lactiplantibacillus plantarum 

40C

Fermented cherry 

tomato

Lactiplantibacillus plantarum 

strain JCM1149
99.56% NR_117813.1

48C
Lactiplantibacillus plantarum 

48C

Fermented cherry 

tomato

Lactiplantibacillus plantarum 

strain CIP 103151
99.71% NR_104573.1

66 W

Lactiplantibacillus 

paraplantarum 66 W

Fermented cucumber Lactiplantibacillus 

paraplantarum strain DSM 

10667

99.85% NR_025447.1
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TABLE 4 Susceptibility of LAB isolates to eight antibiotics (R, Resistant; S, Susceptible).

Cultures Van Strep Kana Gent Novo Ampi Erth Chlora

11w R R R R S S S S

33E R R R R R S R S

40C R R R R R S R R

48C R R R S S S S S

66 W R R R R S R S S

Van, vancomycin; Strep, streptomycin; Kana, kanamycin; Gent, gentamycin; Novo, Novobiocin; Ampi, Ampicillin; Erth, Erythromycin; Chlora, chloramphenicol.

FIGURE 9

Mucin degradation ability of probiotic candidates. (A) growth curve of 11w (Lacticaseibacillus paracasei 11w) supplemented with 0.5% mucin compared 
with 11w without mucin, (B) growth curve of 33E (Lactiplantibacillus paraplantarum 33E) supplemented with 0.5% mucin compared with 33E without 
mucin, (C) growth curve of 40C (Lactiplantibacillus plantarum 40C) supplemented with 0.5% mucin compared with 40C without mucin, and (D) the 
growth curve of 66  W (Lactiplantibacillus paraplantarum 66  W) supplemented with 0.5% mucin compared with 66  W without mucin, (E) growth curve 
of E. coli ATCC 3515 supplemented with 0.5% mucin compared with E. coli ATCC 3515 without mucin. *Significant differences at p  <  0.05, **significant 
difference at p  <  0.01, and ***significant difference at p  <  0.001.
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Mucin degradation

As shown in Figure  9, the addition of mucin to TSB media 
extended the exponential phase of E. coli ATCC 35150 compared to 
when mucin was absent. Meanwhile, mucin supplementation did not 
increase the growth of any of the LAB strains.

Hemolytic activity

There was a hemolytic zone (β-hemolysis) around the S. aureus 
colony on blood agar. Two isolates, 33E (L. paraplantarum 33E) and 
66 W (L. paraplantarum 66 W), showed mild hemolysis (α-hemolysis), 
i.e., greenish color due to surrounding the colonies. This indicates that 
33E and 66 W exhibit subtle hemolysis of the erythrocytes. While the 
colonies of two isolates, 11w and 40C, had no zone effect (γ-hemolysis), 
indicating that they had no hemolytic activity. Only 11w and 40C 
proceeded to the subsequent safety steps of the study.

Gelatin hydrolysis

Gelatin is a natural biomacromolecule derived from collagen in 
animal skin, bones, and connective tissues. Gelatinase is an enzyme 
produced by several bacteria that is capable of degrading gelatin. 
Figure  10 shows that none of the LAB isolates degraded gelatin. 
Meanwhile, only S. aureus ATCC 29213 (positive control) showed 
gelatin degrading ability, as it showed a clear zone of inhibition around 
the colony. Three isolates did not have the property of breaking down 
gelatin, thus, they were considered safe.

Investigation for plasmids in LAB

Plasmids can be  transferred from one bacterium to another 
through the conjugation process. The antibiotic resistance of one 
bacterium can be acquired by pathogenic bacteria. Therefore, for 
this reason, plasmids were searched from the genome data by 
screening the contigs against the PlasmidFinder server 2.1 (https://
cge.food.dtu.dk/services/PlasmidFinder/ assessed on 27.02.2023). 
Isolate 11w showed intrinsic resistance to the antibiotics 
(Supplementary Figure S1), whereas 40C harbored plasmid 
(Supplementary Figure S2).

Discussion

The human gastrointestinal tract has several enzymes and pH 
conditions that may inhibit microbial survival (Smith, 2003; Singh 
et al., 2022). Hence, probiotics must therefore survive these harsh 
conditions to elicit their health potential. In the current study, 
different probiotic LAB strains were isolated from Lithuanian 
fermented foods, and 23 morphologically different isolates were 
screened in vitro for survival in gastrointestinal conditions. 
Interestingly, after consumption, probiotics first encounter lysozymes 
in saliva, following through the hostile environment of the stomach 
and then to the intestine (Conway et al., 1987). Since the pH of gastric 
juice is between 1.5 and 3.5, it is necessary to test the survival ability 
of probiotic candidates in low-pH environments and pepsin (Ruiz-
Pulido and Medina, 2021). Low pH values in the gastric juice impair 
the cell membrane and the cell wall of the bacteria; influencing the 
membrane pathway, leading to undesirable metabolic processes, 

FIGURE 10

Gelatin degradation ability of LAB. Bacteria with gelatinase activity exhibited by positive control; Staphylococcus aureus ATCC 29213 shows clear zones 
around the bacteria colony, whereas the negative control Lactobacillus casei has no zone formation. 11w  =  Lacticaseibacillus paracasei 11w, and 
40C  =  Lactiplantibacillus plantarum 40C. Staphylococcus aureus ATCC 6538 was used as a positive control. (+) indicates positive results and (−) 
indicates negative results.
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energy depletion, and finally cell death (Sengupta et  al., 2013). 
Survival under acid conditions is executed by adapting to low pH 
through a mechanism called acid tolerance response (Wendel, 2022). 
In this study, L. paracasei 11w showed a strong survival rate of 67.61% 
in low pH and this is similar to an earlier study that reported that 
L. paracasei T40 isolated from Tenate cheese has strong resistance to 
low pH because it has a system that automatically transports protons 
and lactic acid to the cell exterior (Falfán-Cortés et al., 2022). Indeed, 
the acid tolerance of the bacterium could be attributed to the high 
number of membrane-bound H + -ATPase they possess (Guan and 
Liu, 2020). These H + -ATPases play critical roles in maintaining 
intracellular pH and hence protect the cells from acid damage (Guan 
and Liu, 2020). The survival ability of different LAB at low pH 
depends on their phenotype characteristics and environmental 
conditions (Ko et al., 2022). The resistance to low pH of these LAB is 
very important as they can survive and proliferate in harsh 
gastrointestinal conditions.

In addition to the low pH, probiotics must survive the harsh 
proteolytic ability of pepsin in the stomach. In the present study, 13 out 
of 23 isolates showed strong tolerance towards pepsin and low 
pH. Earlier studies showed that LAB such as L. paracasei and 
P. pentosaceus are resistant to pepsin (Mantzourani et al., 2019). The 
ability of LAB to survive in GIT could be  due to the developed 
mechanisms to survive in acidic conditions by producing alkaline 
compounds in the cell cytoplasm, altering their cell envelopes, 
inducing stimulation of H + -ATPase, and/ or ingestion of protons 
inside cells (Ayyash et al., 2021). After exiting the stomach, probiotics 
enter the duodenum where they encounter bile salts and pancreatin. 
Pancreatin is a combination of digestive enzymes that is essential for 
digesting fats, proteins, and sugars, whereas, bile is a digestive fluid that 
solubilizes lipid and lipid-soluble vitamins for digestion (Begley et al., 
2005; Prete et al., 2020). A criterion for probiotic bacteria selection is 
the ability to tolerate the presence of pancreatic enzymes in the gut. In 
our study, isolate L. plantarum 40C showed tolerance to pancreatin and 
this result is in agreement with earlier studies, which demonstrated 
that L. plantarum SAM2 was resistant to pancreatin (EL-Sayed et al., 
2022). A high bile acid concentration is injurious to the microbiota and 
studies have shown that Lactobacillus plantarum growth can 
be retarded by bile (Prete et al., 2020). In this study, however, 12 strains 
showed resistance to a mixture of bile salts and pancreatin after 6 h of 
exposure (Figure 3). Different LAB have particular genes, such as the 
ulaA and ulaB genes (found in L. plantarum S83), which help them to 
tolerate different bile salt conditions. However, resistance to bile salts 
is strain-specific (Ruiz et al., 2013).

The antibacterial property of LAB is complex and multifarious, 
and they do this mainly by exhibiting antagonism against pathogen 
growth and binding (Hu et al., 2019). It was observed that LAB 25E 
showed a strong inhibition against Staphylococcus aureus and 
Streptococcus pyogenes (Gram-positive bacteria), as well as 
S. typhimurium and K. pneumoniae ATCC 13883 (Gram-negative 
bacteria). It has been suggested that the inhibitory effects of potential 
probiotic strains against Gram-positive pathogenic bacteria are more 
promising than Gram-negative pathogenic bacteria (Shahverdi et al., 
2023). Pathogen inhibition by probiotics is usually done via the 
production of antimicrobial compounds (Śliżewska et al., 2021) such 
as organic acids (mainly acetic acid and lactic acid), hydrogen 
peroxide, and/ or bacteriocin (Zare and Lashani, 2018). Furthermore, 
the suppression of pathogenic bacteria by LAB can also be influenced 
by numerous chemical, physical, and nutritional environmental 

factors (Hung et  al., 2021). Our findings are similar to those of 
previous studies that showed that CFS of L. plantatrum (Leslie et al., 
2021) had antimicrobial activity against Gram-positive and Gram-
negative bacteria. Similarly, numerous studies propose health benefits 
postulated by the intake of viable LAB strains, which were correlated 
with their antimicrobial potential such as modulation of microbiota, 
suppression and prevention of pathogens (Liu et  al., 2021), and 
immune modulation of the human host (Cristofori et al., 2021).

TEAC helps to evaluate the antioxidant capacity of food, 
beverage, and nutritional supplements using Trolox as standard 
(Maksimović and Dragišić Maksimović, 2017; Xiao et al., 2020). In 
a recent study on corn milk fermented by 20 isolates of 
Limosilactobacillus fermentum, L. fermentum L15 exhibited the 
strongest TEAC of 0.348 ± 0.005 mmol/L (Xu et al., 2022). In this 
study, the CFS of the LAB samples were analyzed, and the results of 
the TEAC confirm the free radical scavenging ability of each isolate 
(Figure 4). Two isolates, 3A and 55w, had the strongest antioxidant 
capacities of 26.37 μg/mL and 26.06 μg/mL, respectively, which 
indicates that the LAB released antioxidant compounds in their 
supernatants during growth (Lu et al., 2021).

The ability of LAB to auto-aggregate and adhere to the colon 
has been reported as a good indicator of gut colonization (Benítez-
Cabello et  al., 2019; Zawistowska-Rojek et  al., 2022). The auto-
aggregation capacity of LAB has been associated with their ability 
to adhere to epithelial cells (Botta et al., 2014). LAB aggregation can 
form a barrier to exclude pathogenic strains from adhering to the 
GIT (Klopper et al., 2018). In this study, the auto-aggregation of the 
LAB isolates increased with fermentation time (Figure 5). This was 
similar to reports from other studies where L. plantarum CCMA 
0743 and L. paracasei CCMA 0504 showed, respectively, 
38.62% ± 2.56 and 45.36% ± 6.30 aggregation after 5 h of incubation 
(Fonseca et al., 2021). Further analysis using HCT116 cells showed 
that Lacticaseibacillus paracasei 11w had the strongest attachment 
ability relative to the other strains (Figure 6). In agreement with a 
previous study, our results showed that the ability of LAB strains to 
adhere to the HCT116 cell line was strain-specific and varied even 
within the same species (Du et al., 2022).

Earlier studies have shown that prebiotics affect the growth and 
metabolism of probiotics (Slizewska and Chlebicz-Wójcik, 2020), and 
the growth may vary depending on the concentrations of the 
prebiotic used (Delgado-Fernández et al., 2019). In the present study, 
2% and 4% GOS administration showed a proliferation in the growth 
of LAB isolates, which can be  due to different concentration 
administration of prebiotics (Figure 7). An increase in LAB growth 
in the presence of GOS has a beneficial role in the mitigation of 
different diseases and influences the maturation and protection of the 
gut barrier as well as has an effect on the overall balance of the 
immune system (Manzoor et al., 2022; Megur et al., 2022). On the 
other hand, GOS administration has been shown to increase the 
production of essential amino acids, such as tryptophan and 
histidine, in in vivo studies (Purton et al., 2021; Saleh-Ghadimi et al., 
2022). Tryptophan is an essential amino acid required for cellular 
energy, mood, immunity, and sleep regulation (Davidson et al., 2022). 
LAB-derived tryptophan metabolites are essential signals for 
maintaining gut homeostasis (Klaessens et al., 2022). In a study on 
L. plantarum ZJ316, this particular strain produced the tryptophan-
derived metabolite indole-3-lactic acid, which resulted in the 
modulation of the gut by hindering the growth of pathogenic bacteria 
(Zhou et al., 2022). In the present study, L. paracasei 11w showed the 
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production of tryptophan in the presence of glucose (9.95 ± 1.23 μM) 
as well as 4% GOS (16.63 ± 2.25 μM), and L. plantarum 40C showed 
production of 2.64 ± 0.56 μM in the presence of 4% GOS.

LAB are generally recognized as safe, but safety properties should 
be evaluated prior to administration (Ayivi et al., 2020). In this study, 
isolates that passed the screening and characterization steps were 
tested for their antibiotic resistance, hemolytic analysis, mucin 
degradation, and gelatinase activity. Susceptibility to antibiotics is an 
important criterion in selecting probiotic candidates. This is because 
of the possibility of horizontal gene transfer of antibiotic-resistant 
genes from probiotic candidates to pathogenic bacteria (Lastauskienė 
et al., 2021; Daliri et al., 2023b). In this study, all the strains were 
resistant to vancomycin, streptomycin, and kanamycin, and susceptible 
to chloramphenicol except for strain L. plantarum 40C, which showed 
resistance to chloramphenicol (Table 4). All the strains except 11w 
harbored plasmid pR18, which contains linA (a linomycin and 
ampicillin resistance gene). Meanwhile, only strain 66 showed 
resistance to ampicillin, whereas the other five strains were susceptible 
to ampicillin. It is likely that only strain 66 has an active linA gene, 
which might have resulted in its resistance to ampicillin. Therefore, no 
other antimicrobial factors were detected in the bacteria genome. The 
strains were likely intrinsically resistant to most of the antibiotics tested.

The GIT mucus layer serves as a barrier to prevent bacteria 
translocation, which could result in sepsis (Haussner et al., 2019). 
Due to this reason, the mucolytic potentials of the selected LAB were 
assessed in-vitro using E. coli ATCC 35150 (a known mucin-
degrading bacterium) as a positive control. It was observed that the 
presence of mucin in MRS media did not improve the growth of the 
tested LAB, and this implies that the bacteria could not metabolize 
mucin as a carbon source for their growth. Meanwhile, as expected, 
E. coli ATCC 35150 grew better in the presence of mucin than in TSB 
media containing limited glucose (Figure 9).

Some bacteria are known to produce enzymes that break down 
phospholipids and cause rupture of the cell membrane of red blood 
cells (Lee et al., 2023). S. aureus is known for its hemolytic abilities 
(Zhang et al., 2016). In this study, two LAB isolates showed alpha 
hemolysis. The two LAB isolates, L. paracasei 11w and L. plantarum 
40C, did not cause any lysis of the erythrocytes of sheep blood, and 
thus they have no hemolytic activities. This investigation corroborates 
well with previous findings that showed that L. paracasei and 
L. plantarum (Sun et al., 2022) were non-hemolytic.

Gelatinase is a Zn metalloproteinase secreted by pathogenic 
bacteria. Gelatinase hydrolyses gelatin (a structural protein in 
connective tissues) and it can effectively attack the host by digesting 
the protein components of tissue, so as to facilitate the spread of 
bacteria. In addition, bacteria that produce gelatinase have been 
shown to have high chances of translocation from the gut to the liver, 
spleen, heart, and mesenteric lymph nodes (Zhang et al., 2015). In the 
present study, we  tested whether any of the LAB could hydrolyze 
gelatin. Probiotics must not cause gelatin liquefaction in the host by 
producing a gelatinase enzyme. In prior studies it is demonstrated that 
Lacticaseibacillus paracasei (Martín et al., 2023) and Lactiplantibacillus 
plantarum (Kwon et al., 2021) are gelatinase-free and can be proceeded 
as potential probiotics. In comparison to our study, two isolates 
Lacticaseibacillus paracasei 11w and Lactiplantibacillus plantarum 40C 
did not demonstrate hemolysis and had no gelatinase activity 
(Figure  10). Furthermore, the L. plantarum 40C isolate harbored 

plasmid in its genome, whereas L. paracasei 11w did not harbor any 
plasmid, which makes it the only safe option among all the 23 strains 
isolates tested from different Lithuanian fermented foods.

Conclusion

Fermented foods are rich sources of LAB (probiotic bacteria), 
as demonstrated in the present study. However, it is imperative for 
their potential use that their functional potentials are studied as 
well as their safety assessments. We have demonstrated that most of 
the LAB strains isolated from Lithuanian fermented foods survived 
under simulated gastrointestinal conditions.

However, only five isolates, namely, L. paracasei 11w, 
L. plantarum 40C, L. plantarum 48C, L. paraplantarum 33C, and 
L. plantarum 66 W, displayed pathogenic bacteria inhibition, 
antioxidant potential, strong adhesion to gut epithelia, and high 
tryptophan production. After a safety assessment of the five isolates, 
only L. paracasei 11w met the safety requirements. Though 
L. paracasei 11w has demonstrated strong probiotic potential in this 
study, further studies are required to establish its health-promoting 
effects in animal models.

Results from the current study indicate that, though LAB isolated 
from fermented foods may have promising probiotic and functional 
potentials, they may pose some risks when consumed. They must, 
therefore, be subjected to strict safety assessments before use.
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