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Rhizobium-driven symbiotic nitrogen-fixation in legumes not only benefits 
the growth but also enhances the stress tolerance of plants. Isolating and 
characterizing efficient, drought-tolerant rhizobia is a central goal for improving 
crop yields in arid regions. Here, we  phylogenetically and biochemically 
characterized a novel strain of Rhizobium (‘QHCD11’) sampled from the root 
nodules of faba beans growing in an arid agricultural area in Qinghai-Tibet. 
We further tested the drought tolerance of the strain as well as of ‘Qingcan 14’ 
faba bean seedlings inoculated with it. Biochemical characterization involved 
bromothymol blue (BTB) tests, carbon metabolic profiling (Biolog GENIII), DNA–
DNA hybridization (dDDH) assays, average nucleotide identity (ANI) analyses, and 
16S rRNA sequencing. The result indicated that strain ‘QHCD11’ likely belongs 
to the Rhizobium indicum species. Drought stress tolerance was assessed by 
exposure to polyethylene glycol (PEG-6000) at concentrations of 0, 10, 15, and 
20%. Increasing concentrations of PEG-6000 tended to result in decreased 
growth of ‘QHCD11’, although the strain performed better at 20% PEG 6000 than 
at 15%. Inoculation of drought-stressed faba bean seedlings with strain ‘QHCD11’ 
improved root vitality, chlorophyll content, antioxidant enzyme activities, and 
plant height. We  suggest that inoculation of faba beans with ‘QHCD11’ is an 
environmentally sound strategy for mitigating crop drought stress in arid and 
semi-arid regions. In addition, the results presents here will benefit future studies 
into faba bean-rhizobia symbioses under drought stress.
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Introduction

Nitrogen (N) is arguably one of the most important in all of the essential plant nutrients. 
Globally, the nitrogen cycle transforms approximately 3 × 109 tons of gaseous N2 into plant- 
available forms annually. Importantly, approximately 60% of the total N conversion results from 
biochemical activities (Hardarson, 2003; Mabrouk and Belhadj, 2010). Rhizobium, a genus of 
Gram-negative soil bacteria, can develop symbiotic relationships with leguminous plants in the 
form of root nodules, they fix atmospheric nitrogen (Remigi et al., 2016; Stefan et al., 2018). As 
one of the most important contributors to total biological nitrogen fixation, Rhizobium-legume 
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symbioses contribute more than 50% of the nitrogen available in 
agricultural soils (Herridge et al., 2008). Not only does this symbiotic 
relationship enhance nitrogen fixation capacity, but it also improves 
legume productivity and yield (Jida and Assefa, 2012; Laranjo et al., 
2014; Alinia et al., 2022).

Rhizobium collected from the nodules and roots of legumes may 
be  promising biofertilizers for use in improving crop growth, 
nodulation, nitrogen fixation, and resistance to stress and disease. 
Several studies indicate that naturally- occurring populations of 
rhizobia from certain geographic regions exhibit greater nodulation 
competency than many commercial strains (Gaci et al., 2021; Tuan Vo 
et al., 2021). The isolation and characterization of native rhizobial 
populations is likely to provide valuable biological resources for the 
enhancement of crop productivity (Humaira and Bano, 2011). Several 
studies have subjected native rhizobial populations isolated from 
legume crops to molecular identification through the use of genomic 
sequence-based digital DNA–DNA hybridization (dDDH), average 
nucleotide identity (ANI) analysis, and 16S rRNA sequencing (Deng 
et  al., 2022; Zaw et  al., 2022). It is clear from these studies that 
phylogenetic analysis is a stable and dependable method for the 
description and classification of species.

Unfavorable environmental conditions can compromise the 
legume-Rhizobium relationship, including drought and excessively 
high temperatures. Because of this, it is crucial to study legume-
Rhizobium symbioses under such conditions. Studies suggest that host 
plants are often less tolerant of environmental stress than their 
microbial partners (Jebara et al., 2001; Mnasri et al., 2007; Vriezen 
et al., 2007). Inoculating seeds with Rhizobium has been shown to 
enhance the environmental stress tolerance of plants (Franzini et al., 
2013; Zeenat et al., 2021). Such increased resistance likely results from 
a combination of decreased generation of reactive oxygen species 
(ROS), improvement of leaf water status, facilitation of water uptake, 
mitigation of ionic imbalance, and more efficient nutrient acquisition. 
Furthermore, utilizing highly efficient and stress-tolerant rhizobial 
inocula can further enhance the yield of legume crops in unfavorable 
environments (Peoples et al., 2009; Denton et al., 2017; Kanonge-
Mafaune et al., 2018). Rhizobia appear to boost the stress resilience 
and growth of host plants through several mechanisms, including 
inducing the biosynthesis of osmolytes such as ectoines, polyamines, 
proline, and glycine betaine to guard cells from osmotic stress- and 
desiccation-related damage; promoting the activity of both enzymatic 
and non-enzymatic antioxidants; and increasing photosynthetic 
activity and biomass accumulation (Reina-Bueno et  al., 2012; 
Wdowiak-Wróbel et al., 2013; Lunn et al., 2014; Ding, 2022). Taken 
together, it is clear that rhizobia can support plant health in 
unfavorable conditions. This ability may be  crucial for enhancing 
legume cultivation on marginal land and in semi-arid and arid regions.

Qinghai is situated in northwestern China, in the northeastern 
section of the Qinghai-Tibet Plateau, and has an average altitude of 
more than 3,000 m. Seventy percent of the agricultural production of 
Qinghai occurs in semi-arid and arid regions (Li et al., 2018). Faba 
bean (Vicia faba L.; Fabaceae) has proven adaptable to the varied 
climates of this region, and is utilized as a grain, vegetable, and fodder 
crop. In addition, this leguminous crop enhances the sustainability of 

local cropping systems by contributing nitrogen to agricultural fields 
through biological fixation (Amede et al., 1999; Khan et al., 2007). At 
present, faba bean is the primary legume crop grown across the 
Qinghai-Tibet Plateau, and is a major contributor to economic and 
ecological development in the region. Unfortunately, faba bean is 
considerably less drought tolerant than other legumes such as 
chickpea, pea, and common bean (McDonald and Paulsen, 1997; 
Amede and Schubert, 2003; Sharma et al., 2017).

Here, we  sought to determine the phylogenetic status and 
symbiotic efficacy of the Rhizobium strain ‘QHCD11’, which was 
isolated from an arid agricultural area in Qinghai-Tibet. We analyzed 
the morphological, physiological, biochemical, and genetic 
characteristics of Rhizobium strain ‘QHCD11’, as well as assessed its 
ability to colonize and enhance the drought resistance and growth of 
faba beans. The results of this study help to illuminate the complex 
relationship between rhizobia and legumes under stressful 
environmental conditions. We  suggest that Rhizobium strain 
‘QHCD11’ may be  further developed into a useful inoculant for 
improving the drought tolerance of faba beans.

Materials and methods

Root nodule

The root nodule was obtained from an arid agriculture area in 
Haidong City, Minhe County, Qinghai Province, China (36.0607° N, 
102.4520° E). The field soil pH was 8.1, with 16.65 g kg−1 organic 
matter (OM), 1.20 g kg−1 total N, 82 mg kg−1 alkaline N, 2.11 g kg−1 total 
phosphorus (P; P2O5), 24.6 mg kg−1 available P, 20.65 g kg−1 total 
potassium (K; K2O), 178 mg kg−1 available K, and 0.62 g kg−1 total salt. 
A single healthy plant at flowering stage was uprooted along with 
nodules and transported to the laboratory. The nodules was chose to 
isolate of red color (leghemoglobins).

Isolation of rhizobial cultures

Faba bean root nodules were isolated in accordance with the 
method of Vincent (1970). The Rhizobium isolate was grown on yeast 
mannitol agar (YMA) plates at 28°C. The pure culture was preserved 
in 10% (v/v) glycerol stock for subsequent analyses. All morphological, 
biochemical, and molecular studies were carried out as described 
previously (Li et al., 2021). The reference Rhizobium leguminosarum 
strain ‘ACCC15854’ was obtained from the Agriculture Culture 
Collection of China (ACCC; Beijing, China).

BTB test of Rhizobium ‘QHCD11’

To determine the alkali and acid production of the pure culture 
isolates, they were streaked onto fresh YMA plates (pH 6.8) containing 
30 μg L−1 bromothymol blue (BTB) (Sharma et al., 2010). In a slight 
alteration of the original method, all plates were incubated for 3–5 d 
at 28°C, and the plates were evaluated each day. When acidic 
compounds are produced, the plate color changes from green to 
yellow, and when alkaline compounds are produced, the plate color 
changes from green to blue.

Abbreviations: ANI, Average nucleotide identity; dDDH, Digital DNA–DNA 

hybridization; NJ, Neighbor-joining; YMA, Yeast mannitol agar.
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Biochemical evaluation of Rhizobium 
‘QHCD11’

To evaluate the biochemical and metabolic profile of Rhizobium 
strain ‘QHCD11’, we studied the biochemical parameters associated 
with carbon metabolism. A Biolog GEN III MIDI system (BIOLOG, 
CA, United  States) was used to test whether Rhizobium strain 
‘QHCD11’ could utilize 95 different carbon sources, according to the 
manufacturer’s instructions. Briefly, the isolate was cultured for 24 h 
in YM broth. The cells were then purified twice by 3 min of 
centrifugation at 8000 rpm. Subsequently, the cells were resuspended 
in sterilized water and adjusted to 108 cells ml−1. Both experimental 
and control samples were prepared according to the manufacturer’s 
standard protocol. Positive (+) tests were indicated by a color change 
to purple, and a negative (−) tests were indicated by a lack of 
color change.

16S rRNA gene sequencing

To amplify the 16S rRNA gene cluster, the 16S-27F 
(5’-GTTTGATCM- TGGCTCAG-3′) and 16S-1492R 
(5’-TACGGYTACCTTGTTACGACTT-3′) primers were used, as 
described by Chelius and Triplett (2001). Each 25 μL PCR reaction 
mixture contained 3 μL of DNA template, 1 μL each of 16S rRNA 
reverse and forward primers, 12.5 μL of PCR mix, and 7.5 μL of 
double-distilled water (DDW). The Ezbiocloud database1 was used to 
search the partial 16S rRNA gene. A neighbor-joining (NJ) tree was 
constructed, using 1,000 bootstrap replications, in in MEGA 7.0. 
Kimura’s two-parameter model was utilized to determine distances 
(Kimura, 1980).

Genomic characteristics of Rhizobium 
‘QHCD11’

After the removal of connector sequences, the sequencing data 
were assembled to construct contigs and scaffolds using A5-MiSeq 
and SPAdes. The assemblies were evaluated and compared, and base 
correction was performed, using Pilon. Subsequent to filtration, 
PGCGAP was utilized to assemble the high-quality paired-end reads 
(Liu et al., 2021). Genomic reannotation was performed with Prokka 
(Seemann, 2014). Using the draft genome, the RAST server was 
utilized to determine the G + C content (Brettin et al., 2015). Both the 
ANI and dDDH were utilized to determine the taxonomic status of 
the novel isolate. JSpecies WS2 was used to obtain ANI values and the 
Genome-to-Genome Distance Calculator (GGDC)3 was used to 
obtain dDDH values.

Drought tolerance of Rhizobium ‘QHCD11’

The drought tolerance of Rhizobium ‘QHCD11’ was assessed by 
culturing the isolate in YMA liquid culture medium supplemented 

1 http://www.ezbiocloud.net/eztaxon/

2 http://jspecies.ribohost.com/jspeciesws/#home

3 http://ggdc.dsmz.de/distcalc2.php

with polyethylene glycol (PEG-6000) at 0, 10, 15%, or 20% (w/v). Each 
liquid culture vial was inoculated with 0.1 mL of standard bacterial 
suspension and each experiment was replicated three times. The tubes 
were incubated for 72 h at 28 ± 2°C in an orbital shaker at 160 rpm. 
Growth was assessed using a spectrophotometer to observe the optical 
densities at 600 nm (OD600nm), with PEG-free YMA liquid culture 
medium used as the blank. For comparison, the R. leguminosarum 
reference strain ‘ACCC15854’ was also tested.

Inoculation of faba beans with Rhizobium

Faba bean‘Qingcan 14’ seeds were provided by the Qinghai 
Academy of Agriculture and Forestry Science (Xining City, Qinghai 
Provence, China). The surfaces of healthy, uniform seeds were 
sterilized using 1% sodium hypochlorite and washed at least three 
times with sterilized water. The seeds were subsequently germinated 
in darkness at 28°C in a petri dish carrying wet filter paper. The stored 
strain QHCD11 with 10% glycerol was streaked onto Yeast Mannitol 
Agar (YMA) plates and incubated at 28°C for 3 to 5 days until good 
growth was observed. A standard curve describing the relationship 
between cell number and optical density at 600 nm (OD600nm), was 
developed for strain QHCD11 to enable the application of a standard 
CFU mL−1 across experiments. Moreover, population counts 
(CFU mL−1) were determined by dilution plating. One milliliter of 
rhizobial suspension (≈108 CFU mL−1) was used to inoculate each test 
tube containing 20 mL of YMB media. When the radicle reached 
0.5–1.0 cm, seedlings were soaked in a Rhizobium standard suspension 
(108  CFU mL−1) for 30 min and then planted in sterile containers 
containing quartz sand. To the base of each 5-day-old seedling was 
added an additional 2 mL of inoculum (108 CFU mL−1). Each week, 
seedlings were provided with 20 mL of sterilized water and 20 mL of 
N-free McKnight’s nutrient solution. The experiment treatments 
consisted of four different treatments, no inoculation plants under 
well-watered conditions (NN-CK), no inoculation drought-stressed 
plants (NN-DS), inoculation plants under well-watered conditions 
(NA-CK), and inoculation plants under drought stress (NA-DS). 
Three replicates and three pots per replicate were designated for each 
treatment, making a total of 36 pots. All plants were grown in a 
greenhouse with natural daylight from 9 March to 9 Jun. The average 
day/night temperature was 26/20°C, air relative humidity was 70–80%. 
The plants were irrigated with distilled water every 1–2 days, and 
supplied with ½-strength Hoagland’s nutrient solution every 30 days 
(approximately 200 mL per pot). Drought stress was applied during 
faba bean flowerings stage and was subjected to withdrawing water for 
3 days. Physiological index measurements were performed on plants 
after being subjected to drought stress for 3 days. As a positive control, 
additional seedlings were inoculated with the R. leguminosarum 
reference strain ‘ACCC15854’, while uninoculated seedlings were used 
as negative controls. All treatments were arranged in a randomized 
block design, and included uninoculated seedlings under well-watered 
conditions (NN-CK), uninoculated seedlings under drought 
conditions (NN-DS), inoculated seedlings under well-watered 
conditions (NA-CK), and inoculated seedlings under drought 
conditions (NA-DS). Each treatment consisted of three replicates, 
each replicate consisted of three pots, and a total of 36 pots were used 
for the experiment. All seedlings were cultivated in a climate-
controlled chamber with 70–80% relative humidity and an average 
night/day temperature of 20/25°C. All morphological, physiological, 
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and biochemical studies were carried out during the blooming stage. 
The tested indices included root mitochondrial respiration 
[triphenyltetrazolium chloride (TTC) method], superoxide dismutase 
(SOD) activity, proline (PRO) content, leaf relative water content 
(RWC), chlorophyll content (SPAD), root length, fresh root nodule 
weight, number of root nodules, and plant height. The root 
mitochondrial respiration (TTC), superoxide dismutase (SOD) and 
proline (PRO) content were determined using a TTC Assay Kit, a SOD 
Assay Kit and a PRO Assay Kit, respectively (Nanjing Jiancheng 
Bioengineering Institute, China). SPAD was evaluated with a SPAD- 
502 meter (Konica Minolta, Japan). As described by Mayak et  al. 
(2004), RWC (%) was calculated as [(FW-DW)/ (FTW-DW)] × 100, 
where FTW is the fully turgid weight, DW the dry weight, and FW is 
the fresh weight.

Statistical analysis

Statistically significant differences were determined using the 
standard error (SE) of at least three replicates with SPSS 17.0 (SPSS, 
IL, United States).

Results

Characterization of Rhizobium isolated 
from faba bean plants

The isolate was purified by repeated plate streaking, and cultured 
on YMA plates at 28°C for 3 d in darkness. Morphologically, the 
isolates were described as 3–5 mm diameter, mucilaginous, opaque, 
shiny white colonies with a wet surface, which produced copious 
amounts of sticky exopolysaccharides. Microscopically, the bacteria 
were Gram-negative, rot-shaped, and red in color, which matches the 
general description of Rhizobium. The YMA-BTB-based acid/alkali 
production test indicated that the isolate was producing acidic 
compounds (green to yellow plate color transition) in medium. These 
result suggested that the isolate was a species of Rhizobium.

Phylogenetic analysis and genomic 
characteristics of the Rhizobium isolate

The complete nucleotide sequence (1,477 bp) of the 16S rRNA 
gene was evaluated. An EzBioCloud sequence search revealed that 
strain ‘QHCD11’ shared 99.93% similarity were the Rhizobium type 
strains R. leguminosarum ‘USDA 2370’T, R. anhuiense ‘CCBAU 
23252’T, R. laguerreae ‘FB206’T, R. ruizarguesonis ‘UMP1133’T, and 
R. indicum ‘JKLM12A2’T (Table 1). The constructed NJ phylogenetic 
tree indicated that Rhizobium ‘QHCD11’ formed a phyletic group with 
R. changzhiense ‘WYCCWR 11279’T (MH778807) (Figure 1). Our 
results were largely in agreement with previous studies suggesting that 
variation between Rhizobial strains may be more common at the 
species level, with diversity observed genus-wide.

The draft genome of Rhizobium ‘QHCD11’ was 7.50 Mbp in size 
and the G + C content was 60.9%. The ANI value of Rhizobium 
‘QHCD11’ was 95.62%, which was the same as that of R. indicum 
‘FA23’T (Table 2). To confirm the taxonomic status, dDDH values were 

also compared between strains (Tindall et al. 2010). The dDDH value 
of Rhizobium ‘QHCD11’ was 69.7%, indicating that it is a species of 
R. indicum ‘MCC 3961’T (Table 3). Furthermore, in the phylogenomic 
tree, strain ‘QHCD11’ clustered with R. indicum ‘MCC 3961’T 
(Figure 2).

Chemotaxonomic characteristics of the 
Rhizobium isolate

We analyzed the fatty acid content of Rhizobium ‘QHCD11’ and 
found that the cells contain C16:0 (7.58%), C19:0 cyclo ω8c (6.18%), 
C18:0 (4.54%), C18:0 3OH (2.61%), 12:0 aldehyde (summed feature 
2, 11.37%), and 16:1 ω7c/16:1 ω6c (summed feature 3, 1.14%) 
(Figure 3). Similar fatty acid profiles were observed in the Rhizobium 
reference strains.

Drought stress tolerance of the Rhizobium 
isolate

The drought tolerance of Rhizobium ‘QHCD11’ was evaluated by 
culturing the cells in YMA liquid culture media containing 0, 10, 15%, 
or 20% PEG-6000. The growth of the isolate, as determined 
spectrophotometrically based on OD600nm, was compared with 
R. leguminosarum reference strain ‘ACCC15854’ (Table 4). Increasing 
concentrations of PEG 6000 tended to result in decreased population 
size and optical density. Interestingly, Rhizobium ‘QHCD11’ 
performed better at 20% PEG 6000 than at 15% PEG 6000 (Figure 4), 
with the turbidity rising from 63.53 to 68.63%. Overall, Rhizobium 
‘QHCD11’ was found to have superior drought tolerance. Research 
suggests that drought tolerant Rhizobium can improved the drought 
tolerance of host plants, so Rhizobium ‘QHCD11’ was selected for 
further studies of inoculation efficiency and growth improvement in 
faba bean under drought stress.

Inoculation on faba bean growth under 
drought stress

Inoculation of plants with beneficial microbes has been shown to 
ameliorate abiotic stress (Egamberdieva et al., 2016). Here, we studied 
the biochemical, physiological, and morphological effects of 
inoculation with Rhizobium ‘QHCD11’ on ‘Qingcan 14’ faba bean 
seedlings subjected to drought stress. The results were compared with 
an uninoculated negative control and a positive control inoculated 
with R. leguminosarum reference strain ‘ACCC15854’ (Table 5).

Overall, inoculated faba beans (NA) exhibited substantially 
different characteristics than uninoculated faba beans (NN), with 
NA seedlings exhibiting improved drought resistance compared to 
NN seedlings. Unstressed inoculated seedlings exhibited the 
maximum for all tested parameters. Compared with matched 
controls, uninoculated faba bean seedlings were 13.8% shorter, had 
59.52% fewer root nodules, and had 31.67% shorter roots (p ≤ 0.05). 
Unstressed Rhizobium ‘QHCD11’- inoculated seedlings were taller 
(85.3 cm) than unstressed uninoculated seedlings (78.0 cm). 
Drought-stressed Rhizobium ‘QHCD11’-inoculated seedlings had 
a greater number of root nodules (30.33) and a higher fresh root 
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nodule weight (0.51 g) than uninoculated seedlings (11.33 and 
0.21 g, respectively).

Physiological analyses revealed that drought stress not only 
hindered the biosynthesis of chlorophyll, but also accelerated the 
decomposition of existing chlorophyll. Rhizobium inoculation 
improved the SPAD value under both well-watered (+32.31%) and 
drought-stressed (+41.69%) conditions. Leaf RWC is an indicator of 
water status and reflects the balance between water supply and 
transpiration rate. Inoculation with Rhizobium ‘QHCD11’ significantly 
increased RWC by 81.05% under drought-stressed conditions and 
48.05% under well-watered conditions.

Drought stress increased the proline content of faba bean 
seedlings, with Rhizobium ‘QHCD11’- inoculated seedlings 
exhibiting the greatest increase in proline. Compared to 
uninoculated seedlings, rhizobial inoculation resulted in a 38.14% 
increase in proline content under drought-stressed conditions. 
Furthermore, drought stress upregulated the activity of the 
enzymatic antioxidant SOD compared to well-watered conditions. 
Compared to un-inoculated seedlings, rhizobial inoculation 
increased SOD activity by 27.26% under well-watered conditions 
and a 33.76% increase in SOD activity under drought-stressed 
conditions. In water-limited environments, root health and vitality 
are predictors of survival (Zhang et al., 2022; Yu et al., 2023). The 
TTC test is an indicator of plant vitality broadly. Inoculated 
seedlings had significantly higher root vitality than uninoculated 
seedlings, especially Rhizobium ‘QHCD11’ -inoculated seedlings. 
Drought stress reduced root vitality, which was ameliorated with 
rhizobial inoculation. Increased root viability in inoculated plants 

is likely to have contributed to the increased drought tolerance of 
inoculated faba bean seedlings.

Discussion

Crop yield can be severely impacted by abiotic stress, such as high 
temperatures, alkalinity, high salt, and drought. Both naturally 
occurring and inoculated microbes have proven efficacious in allaying 
abiotic stress in crops and other plants. Specifically, Rhizobium 
inoculants enhance plant abiotic stress resistance by decreasing the 
generation of ROS, improving leaf water status, facilitating water 
uptake, and maintaining ionic balance (Thrall et al., 2008). Native 
rhizobia collected from targeted host plants and coexisting leguminous 
plants can serve as resources for the development of new and 
improved crop inocula. Here, we  characterized a rhizobial isolate 
collected from the roots of a faba bean plant growing in the arid 
Haidong City region in Qinghai Province, China. The isolate, 
‘QHCD11’, exhibited a fast growth rate, acid production, and a 
morphological appearance in line with other members of the 
genus Rhizobium.

The ‘QHCD11’ 16S rRNA sequence was 1,477 bp long, and the 
draft genome was 7.50 Mbp in size, with a G + C content of 60.9%. 
Analysis of sequence identity indicated that the strain shared 99.93% 
similarity with R. laguerreae ‘FB206’T, R. leguminosarum ‘USDA 
2370’T, R. anhuiense ‘CCBAU 23252’T, R. ruizarguesonis ‘UMP1133’T, 
and R. indicum ‘JKLM12A2’T. NJ phylogenetic analysis revealed that 
‘QHCD11’ formed a phyletic group with R. changzhiense ‘WYCCWR 

TABLE 1 16S rRNA gene sequence comparative analysis.

Rank Species Strain Name Accession #
Pairwise 

Similarity (%)
Mismatch/

Total nt

1 R. leguminosarum USDA 2370 MRDL01000029 99.93 1/1338

2 R. laguerreae FB206 MRDM01000018 99.93 1/1338

3 R. anhuiense CCBAU 23252 KF111868 99.93 1/1338

4 R. ruizarguesonis UMP1133 MG904297 99.93 1/1338

5 R.indicum JKLM12A2 CP054021 99.93 1/1337

6 R. sophorae CCBAU03386 KJ831229 99.92 1/1297

7 R. acidisoli FH13 KJ921033 99.92 1/1291

8 R. hidalgonense FH14 KJ921034 99.92 1/1291

9 R. changzhiense WYCCWR11279 MH778807 99.83 2/1210

10 R.esperanzae CNPSo 668 KC293513 99.60 5/1236

11 R. phaseoli ATCC 14482 EF141340 99.25 10/1338

12 R. pisi DSM 30132 RJJT01000050 99.25 10/1338

13 R. ecuadorense CNPSO 671 LFIO01000095 99.25 10/1338

14 R. fabae CCBAU 33202 DQ835306 99.24 10/1312

15 R. chutanense C5 KJ438829 99.23 10/1297

16 R. sophoriradicis CCBAU 03470 RQIH01000042 99.10 12/1338

17 R. aethiopicum HBR26 jgi.1052919 99.10 12/1338

18 R. bangladeshense BLR175 JN648931 99.03 13/1338

19 R. binae BLR195 JN648932 99.03 13/1338

20 R. aegyptiacum 1010 JQ670243 99.03 13/1338
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11279’T (MH778807). Furthermore, phylogenomic analysis indicated 
that ‘QHCD11’ clustered with R. indicum ‘MCC3961’T. Our results 
were largely in agreement with previous studies suggesting that 
variation between Rhizobial strains may be more common at the 
species level, with diversity observed genus-wide. The ANI 
comparison value of strain ‘QHCD11’ to the closely-related R. indicum 
‘FA23’T was 95.62%, which is greater than the ≥95% threshold to 
discriminate between different species of microbes (Chun et al., 2018). 

To confirm the taxonomic status, genome sequence-based DDH was 
also utilized. The DDH value was 69.7%, close to the DDH threshold 
value of 70% (Meier-Kolthoff et  al., 2013), indicating that strain 
‘QHCD11’ belonged to the R. indicum ‘MCC 3961’T species. Strain 
‘QHCD11’ was found to contain a fatty acid array similar to Rhizobium 
reference strains, including18:1 ω7c (summed feature 8, 60.19%), 16:1 
ω7c/16:1 ω6c (summed feature 3, 1.14%), 12:0 aldehyde (summed 
feature 2, 11.37%), C18:0 3OH (2.61%), C18:0 (4.54%), C19:0 cyclo 
ω8c (6.18%), and C16:0 (7.58%). These results clearly demarcate 
‘QHCD11’ as a species of R. indicum (Richter and Rosselló-Móra, 
2009). The Biolog GENIII bacterial identification system showed that 
strain ‘QHCD11’ was able to utilize several carbon sources, including 
tetrazolium blue, tetrazolium violet, acidum chinicum, 
glucuronamide, glucopyrone, L-glutamic acid, L-arginine, glycyl-L-
proline, D-fructose-6-PO4, D-glucose-6-PO4, myo-phaseomannite, 
L-trehalose, D-galactose, N-Acetyl-D-galactosamine, N-Acetyl-β-D-
mannosamine, D-meliodisaccharide, and D-honey trisaccharide. 
Based on these results, strain ‘QHCD11’ was preliminarily identified 
as belonging to the fast-growing genus Rhizobium.

Leguminous are important components of natural ecosystems and 
agricultural systems, and their microsymbionts of legumes have been 
intensively characterized (Han et al., 2010; Furseth et al., 2012; Zaw 
et al., 2021). Abiotic stresses are stress conditions to plants arising from 
the environment, it not only affected plants but also affect microbes. 
Many studies have shown that strains with drought tolerance can 
be screened out in arid environment, and inoculation of rhizobia can 
improve the growth of crops under abiotic stress conditions, increases 

FIGURE 1

Neighbor-joining (NJ) phylogenetic analysis of Rhizobium ‘QHCD11’ near-full- length 16S rRNA gene sequences. Branch points show bootstrap values 
>50%. Scale  =  0.0005 nucleotide substitutions per position.

TABLE 2 ANI analysis (%).

11 1 2 3 4 5 6 7 8

11 100 91.66 93 94.35 93.64 89.18 88.06 95.62 88.33

100 91.6 90.99 91.4 89.35 88.25 91.23 88.43

100 92.52 93.51 89.19 88.12 93.08 88.29

100 93 89.05 87.98 94.56 88.22

100 89.26 88.15 93.72 88.33

100 88.55 90 89.28

100 88.36 89.73

100 89.13

100

1. R. anhuiense ‘CCBAU 23252’T; 2. R. leguminosarum ‘USDA 2370’T; 3. R. laguerreae 
‘FB206’T; 4. R. ruizarguesonis ‘GB30’T; 5. R. hidalgonense ‘FH14’T; 6. R. esperanzae ‘CNPSo 
668’T; 7. R. indicum ‘FA23’T; 8. R. phaseoli ‘ATCC 14482’T. The meaning of the bold values is 
which the ANI value of Rhizobium ‘QHCD11’ was 95.62%, which was the same as that of 
R. indicum ‘FA23’T in table.
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crop yield and stress resistance (Enebe and Babalola, 2018; Bouhnik 
et al., 2022). Strain QHCD11 was identified by 16 s rRNA and whole 
genome sequencing as Rhizobium indicum species. Rahi et al. (2020) 
study found that Rhizobium indicum sp. nov., were characterized using 
16S rRNA, atpD and recA genes, they were isolated from root nodules 
of pea (Pisum sativum) cultivated in the Indian trans-Himalayas. Earlier 
studies have reported that Rhizobium confers defence, enhances nodule 
number and promotes growth biomarkers in mung bean and Vicia faba 
(Ahmad et al., 2013; Benidire et al., 2017) under salt stress. Hussain et al. 
(2016) found a significant increase in the photosynthesis of maize plant 
as a result of inoculation with Rhizobium phaseoli under drought stress 
and confer tolerance to abiotic stresses. In this study, we isolated a strain 
from root nodueles of faba bean growing in the arid Qinghai province 
of China. We evaluated the drought tolerance of strain ‘QHCD11’ by 
subjecting the microbial culture to different concentrations of 
PEG-6000, and comparing the results to the reference R. leguminosarum 

strain ‘ACCC15854’. It shown that strain ‘QHCD11’ exhibited better 
drought tolerance in higher PEG osmotic solution and better than 
‘ACCC15854’. Our findings are in line with the results of Bouhnik et al. 
(2022), who found the ability of the rhizobial strains isolated from the 
arid zones to grow in high concentrations of PEG-6000 could probably 
be due to adaptation to their original soils conditions.

Some researchers point out that inoculation of seeds with 
Rhizobium improved abiotic stress tolerance, it is attributed to 
produce light molecular weight organic solutes such as glycine 
betaine, proline, polyamines and ectoines, and these solutes 
protect the plant cells by stabilizing the structure and conformation 
of proteins as well as cell membranes from water stress, desiccation; 
increase photosynthetic and biomass productivity and also play 
role in the enhancement of the activity of various enzymatic and 
non-enzymatic antioxidants (Santos and Costa, 2002; Yurgel et al., 
2013). In this study, we  found that inoculation with strain 

TABLE 3 dDDH analysis (%).

Strain
Rhizobium 

indicum ‘MCC 
3961’T

Rhizobium 
laguerreae ‘DSM 

29977’T

Rhizobium 
changzhiense 

‘WYCCWR 
11279T’T

Rhizobium 
leguminosarum 

‘USDA 2370’T

Rhizobium 
sophorae 

‘CCBAU 03386’T

QHCD11 69.7 64.1 65 58.4 65.3

The meaning of the bold values is which the dDDH value of Rhizobium ‘QHCD11’ was 69.7%, indicating that it is a species of R. indicum ‘MCC 3961’T in table.

FIGURE 2

Neighbor-joining (NJ) phylogenetic analysis of Rhizobium ‘QHCD11’ whole genome sequence. Scale  =  0.01 nucleotide substitutions per position. The 
outgroup was R. esperanzae ‘CNPSo668’T.
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‘QHCD11’ initiates a wide response in various physiological 
activities like improves leaf water status, decreases the generation 
of reactive oxygen species, increase photosynthetic, enhance of the 
activity of various enzymatic antioxidants. Rhizobium inoculation 
improved the SPAD value under both drought-stressed and 

well-watered conditions. Furthermore, rhizobial inoculation can 
maintain leaf RWC by reducing dehydration-related cell damage, 
such as by increasing the proline content, as shown here. 
Enzymatic antioxidants like SOD alleviate oxidative stressed by 
converting ROS into O2 and water (Hasanuzzaman et al., 2012). 

TABLE 5 Morphophysiological indices of inoculated and uninoculated faba bean seedlings under control and drought-stressed conditions.

Treatment
Plant 

height 
(cm)

Nodules 
per 

plant

Fresh root 
nodule 

weight (g)

Fresh 
plant 

weight (g)

Root 
length 
(mm)

SPAD
RWC
(%)

PRO
(μg.g-1)

SOD
(U·mg-1)

TTC
[mg/(g.h)]

NN
CK 78.00ab 0.00 0.34cd 16.47c 42.40c 78.48ab 67.15de 535.93b 0.0028b 78.00ab

DS 67.23b 0.00 0.21d 14.13c 35.52d 59.80c 51.29e 301.30c 0.0014b 67.23b

QHCD11
CK 85.30a 40.00a 0.68a 21.60b 55.67a 86.58a 118.82b 682.00a 0.0086a 85.30a

DS 78.20ab 30.33b 0.51b 17.33c 50.11b 87.11a 151.91a 637.41a 0.0037b 78.20ab

ACCC

15854

CK 80.00ab 31.67ab 0.51b 28.64a 49.15b 82.94a 89.60cd 621.99ab 0.0081a 80.00ab

DS 72.77ab 27.00 b 0.43bc 18.08bc 43.86c 70.19b 98.48bc 650.36a 0.0027b 72.77ab

LSD

(p<0.05)
15.57 8.80 0.14 3.98 3.91 9.30 28.83 89.30 0.0024 15.57

ANOVA 4.11 15.00 22.74* 19.47 60.30* 17.33 33.19* 42.07 15.63 4.11

SPAD, SPAD values; RWC, Relative water content; PRO, Proline content; SOD, Superoxide dismutase activity; TTC, Triphenyltetrazolium chloride test; CK, Control (well-watered); DS, 
Drought stress (PEG-6000); NA, Inoculated; NN, Non-inoculated. Within the same column, different lowercase letters indicate significant differences according to the ANOVA test followed by 
the post-hoc Fisher test (LSD) with the 95% confidence interval.

FIGURE 3

The fatty acid contents of Rhizobium ‘QHCD11’.

TABLE 4 Turbidity (OD600nm) of the rhizobium strains under simulated drought conditions.

Strain
OD600nm at different PEG 6000 concentrations Relative Turbidity (%)

0 10% Decrement (%) 15% Decrement (%) 20% Decrement (%) 10% 15% 20%

QHCD11 1.56 1.07 5.77 0.99 36.47 1.07 31.37 93.90 63.53 68.63

ACCC15854 2.10 1.66 20.85 1.22 41.83 0.90 57.03 79.28 58.17 43.34
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Here, we found that inoculation with strain ‘QHCD11’ resulted in 
increased SOD activity, resulting in reduced oxidative stress and 
oxidative damage. And the same time, inoculated seedlings 
exhibited the best growth of all experimental groups under 
adequate water supply condition.

Conclusion

In the present study, we characterized a fast-growing Rhizobium 
isolate (‘QHCD11’) which can utilize a range of carbon sources. 
Based on phylogenetic, chemotaxonomic, genotypic, and phenotypic 
analyses, the ‘QHCD11’ strain putatively belongs to the R. indicum 
‘MCC 3961’T species. Strain ‘QHCD11’ exhibited superior drought 
tolerance, and inoculation with this strain conferred drought 
tolerance and growth enhancement to faba bean seedlings. 
We  suggest that Rhizobium strain ‘QHCD11’ may be  further 
developed into a useful inoculant for improving the drought tolerance 
of faba beans and, potentially, other leguminous. These data help to 
illuminate the complex relationship between rhizobia and legumes 
under stressful environmental conditions.
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