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Comprehensive analysis of the 
microbiome and metabolome in 
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patients with and without diabetes 
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Introduction: Pyogenic liver abscess (PLA) patients combined with diabetes 
mellitus (DM) tend to have more severe clinical manifestations than without DM. 
The mechanism responsible for this phenomenon is not entirely clear. The current 
study therefore aimed to comprehensively analyze the microbiome composition 
and metabolome in pus from PLA patients with and without DM, to determine the 
potential reasons for these differences.

Methods: Clinical data from 290 PLA patients were collected retrospectively. 
We analyzed the pus microbiota using 16S rDNA sequencing in 62 PLA patients. 
In addition, the pus metabolomes of 38 pus samples were characterized by 
untargeted metabolomics analysis. Correlation analyses of microbiota, metabolites 
and laboratory findings were performed to identify significant associations.

Results: PLA patients with DM had more severe clinical manifestations than PLA 
patients without DM. There were 17 discriminating genera between the two groups 
at the genus level, among which Klebsiella was the most discriminating taxa. The 
ABC transporters was the most significant differential metabolic pathway predicted 
by PICRUSt2. Untargeted metabolomics analysis showed that concentrations of 
various metabolites were significantly different between the two groups and seven 
metabolites were enriched in the ABC transporters pathway. Phosphoric acid, 
taurine, and orthophosphate in the ABC transporters pathway were negatively 
correlated with the relative abundance of Klebsiella and the blood glucose level.

Discussion: The results showed that the relative abundance of Klebsiella 
in the pus cavity of PLA patients with DM was higher than those without DM, 
accompanied by changes of various metabolites and metabolic pathways, which 
may be associated with more severe clinical manifestations.
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Introduction

Pyogenic liver abscess (PLA) is a common intraperitoneal infection with several risk factors, 
such as diabetes mellitus (DM) and underlying hepatobiliary or pancreatic disease (Chadwick 
et  al., 2018; Mukthinuthalapati et  al., 2020). Although the mortality rate has improved, a 
significant percentage of PLA patients develop complications including extrahepatic migratory 
infection (EMI), abscess rupture and so on (Mavilia et al., 2016). DM is a predisposing factor 
for PLA (Thomsen et al., 2007; Mavilia et al., 2016); PLA patients with DM tend to have a higher 
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prevalence of metastatic infection, bacteremia, multi-organ 
dysfunction syndrome and intensive care unit (ICU) admission (Foo 
et  al., 2010; Tian et  al., 2012). The mechanism underlying this 
phenomenon is not fully understood, so it is important to better 
understand the relevant mechanism, which can be used to develop 
preventive and treatment strategies.

Pathogenic microorganisms and their virulence levels are 
important factors affecting the prognosis of PLA (Liu et al., 2018). The 
gut microbiota play an important role in maintaining intestinal 
homeostasis and inducing the development of the intestinal immune 
system (Bouskra et al., 2008; Sonnenberg and Artis, 2012). Intestinal 
microorganisms entering the liver through the portal vein is one of the 
main causes of PLA (Lardière-Deguelte et  al., 2015). Studies have 
reported a significant association between changes in the composition 
profile of gut microbiota and the development of DM (Gurung et al., 
2020; Iatcu et  al., 2021). In addition, studies have focused on the 
associations between metabolites and diabetes (Tang et al., 2019; Qi 
et al., 2022). Therefore, we speculated that the microbiome composition 
and metabolites in the pus cavity of PLA patients with DM were 
different from those of PLA patients without DM. A combination of 
16SrDNA sequencing used for pathogen identification and untargeted 
metabolomics analyses for metabolite identification provided technical 
support to verify our hypothesis (Moon et al., 2021; Yu et al., 2021).

Materials and methods

Study population

The Ethics Committee of Shengjing Hospital of China Medical 
University approved this study (2022PS1067K) and written informed 
consent was obtained from all patients involved in the study for the 
publication of any potentially identifiable data included in this article. 
We retrieved the records of patients with a diagnosis of PLA from 
January 2017 to December 2021 from the electronic medical database 
at our institution (n = 290). According to the presence or absence of 
DM, these patients were divided into DM group (n = 189) and 
Non-DM group (n = 101).

Demographic information, laboratory findings, underlying 
diseases, hospital length of stay (LOS), the incidence of intensive care 
unit (ICU) admission and extrahepatic migratory infection (EMI) 
were obtained from medical records. Diagnostic criteria for PLA, DM, 
EMI, biliary tract disease and digestive system cancer were as 
previously described (Chang et  al., 2015; Ren et  al., 2020; Wang 
et al., 2022).

Pus sample collection

From January 2020 to December 2021, a total of 62 pus samples 
were prospective and continuously collected for conventional culture 
and 16S rDNA sequencing. According to the presence or absence of 
DM, these samples were divided into DM group (n = 38) and Non-DM 
group (n = 24). Of these, 38 pus samples (DM group, n = 22; Non-DM 
group, n = 16) were collected for untargeted metabolomics analysis. 
All collected pus samples were analyzed and no samples were 
artificially removed. The workflow of this study is shown in Figure 1.

The inclusion criteria were: (a) presence of a focal lesion or lesions 
in the liver on contrast enhanced CT images; (b) frank pus aspirated 

from the abscess cavity through diagnostic, and/or surgical drainage 
procedures; and (c) positive microbiological culture results from liver 
abscess and/or blood cultures.

The methods used for abscess drainage and pus collection were as 
described in a previous study (Song et al., 2014). All percutaneous 
procedures which strictly follows the principle of asepsis were performed 
under ultrasound guidance. Eighteen gage P.T.C Chiba needles of 
varying lengths were used to puncture the abscesses. The aspirated 
isolates including cultures were sent for microbiological analysis, 16S 
rDNA gene sequencing and untargeted metabolomics analysis. Under 
fluoroscopic guidance, 2–4 mL of undiluted contrast media was instilled 
into the abscess cavity through the 18G needle and then a 0.035-inch 
wire was inserted into the abscess cavity. After serial dilatation, an 8.5F 
pigtail catheter was inserted into the abscess. After collection, pus 
samples were stored at −80°C in a biological sample bank until used for 
16S rDNA sequencing and untargeted metabolomics analysis.

16S rDNA sequencing

The full details regarding microbiome methodology are provided 
in the Supporting Information. The 16S rDNA sequencing was 
performed to characterize the pus microbiome composition. Length-
heterogeneity PCR fingerprinting was routinely used to rapidly survey 
our samples and standardize the community amplification. We then 
characterized the microbial taxa associated with the pus microbiome 
using Multitag Sequencing of samples. Statistical data analysis was 
performed based on the feature table and feature sequence obtained 
as described in the Supporting Information. The full analysis script is 
available in the Supporting Information. Alpha and beta diversity 
analyses were calculated using QIIME2 and all the graphs were 
constructed using the R package (R Foundation for Statistical 
Computing, Vienna, Austria). PICRUSt was used for inferred 
metagenomic analyses as previously described (Puri et  al., 2018). 
Significant difference analysis was performed to compare the 
differential species at the genus level between the two groups (p < 0.05). 
Enrichment analysis of abundant taxa or functions between the two 

FIGURE 1

Workflow of the analysis.
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groups was performed using the linear discriminant analysis effect 
size (LEfSe) with a threshold logarithmic linear discriminant analysis 
(LDA) score set at 3.0. BugBase was used to predict the bacterial 
phenotype (Meyer et al., 2008; Liao et al., 2022).

Untargeted metabolomics analysis

The full details regarding untargeted metabolomics analysis are 
provided in the Supporting Information. Here, we briefly describe the 
sample analysis. Partial Least-Squares Discriminant Analysis 
(PLS-DA) was conducted using metaX to discriminate the different 
variables between groups and the variable importance for the 
projection (VIP) value was calculated. A VIP cut-off value of 1.0 was 
used to select important features. A volcano plot was used to compare 
differential metabolites between the two groups. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis was performed 
on significantly different metabolites (satisfying ratio ≥ 2 or ratio ≤ 0.5; 
a value of p ≤ 0.05; VIP > 1). All graphs were constructed using the R 
package (R Foundation for Statistical Computing).

Statistical analyses

Continuous variables were expressed as the mean ± standard 
deviation or median (interquartile range). Categorical variables were 
expressed as absolute numbers with frequencies (%). Differences 
between continuous data were analyzed using Student’s t-test or the 
Mann–Whitney U-test. Differences between categorical data were 
analyzed using the chi-squared test or Fisher’s exact test, as 
appropriate. All statistical analyses were performed using SPSS 
statistical software for Windows, version 25.0 (IBM, Armonk, NY, 
United States). Two-tailed p-values < 0.05 were considered statistically 
significant. Correlation heatmaps with signs were performed using the 
OmicStudio tools. Scatter plots were constructed using Prism 8 
software (GraphPad, San Diego, CA, United States).

Results

Clinical characteristics of participants

A total of 290 PLA patients (DM, n = 189; non-DM, n = 101) were 
studied (Table  1). As expected, there are a number of laboratory 
findings of PLA patients in both DM and non-DM groups falling 
outside the reference range. For example, leukocyte, neutrophils 
(NEUT),NEUT% and so on. Compared with the non-DM group, PLA 
patients with DM had a higher C-reactive protein (CRP, an 
inflammatory marker)level, higher EMI incidence and longer LOS, 
which showed that PLA patients with DM have more severe 
clinical manifestations.

Pus microbiota analysis

To determine the effects of DM on the pus microbiome 
composition in PLA patients, pus samples of 62 consecutive PLA 
patients (DM, n = 38; non-DM, n = 24) were performed using 16S 

rDNA sequencing. The clinical data of these 62 patients are shown in 
Table 2. As expected, compared with non-DM patients, PLA patients 
with DM had a higher CRP level. Although there was a statistical 
difference in platelets (PLT) in Table 2, the PLT in both groups were 
all within the reference range and had no clinical significance. Besides, 
there was no statistical difference in PLT in Table  1. Therefore, 
we  speculate that the statistical difference in PLT in Table  2 may 
be due to the small sample size.

Supplementary Table S1 shows that 16SrDNA sequencing was 
able to detect the microbiome composition in conventionally cultured 
negative samples and was able to detect more bacteria in samples that 
were conventionally cultured as a single strain.

Alpha and beta diversities of the pus 
microbiota

Alpha diversity represents the species evenness and richness 
within the microbiota, while beta diversity represents the shared 
diversity within the microbiota at different ecological distances (Yang 
et al., 2022). The Chao 1 index describing species richness revealed no 
significant difference (DM vs. non-DM; p = 0.12) (Figure  2A). In 
addition, the Shannon diversity index did not show significant 
difference between the DM vs. non-DM patients; p = 0.89 (Figure 2B). 
We then evaluated the beta diversity of the two groups. Using Bray 
Curtis PCoA, we  found some differences in species classifications 
between DM and non-DM patients (Figure 2C), but there was no 
statistical difference. We  then conducted a correlation analysis 
between Chao1, Simpson, Shannon and Pielou-e indices of α diversity 
and clinical data, which suggested (Supplementary Table S2) that the 
Simpson and Pielou-e indices were negatively correlated with 
glycosylated hemoglobin HbA1c levels (Figures 2D,E).

Alterations in pus microbiome composition 
due to DM

To determine the effects of DM, we first compared the microbial 
taxa in DM vs non-DM patients. Compared with non-DM patients, at 
the genus level, DM patients showed significantly greater relative 
abundance of Klebsiella (Figure 2F). Additionally, DM patients showed 
lesser levels of the genera, Acidovorax, Enterococcus, Bacteroides, 
Citrobacter and Streptococcus, when compared with the 
non-DM group.

Microbiome signatures for PLA patients 
with DM were distinct from non-DM 
patients

The statistical results of LEfSe included two parts, namely, a 
histogram of the LDA value distribution and a cladogram. The 
histogram of LDA values (Figure  3A) showed that there were 39 
differentially abundant taxa at different taxonomic levels, of which 24 
were from the DM group and 15 were from the non-DM group. The 
genus Klebsiella had the largest LDA score. The cladogram (Figure 3B) 
showed that the relative abundance of genus Klebsiella was greater in 
DM patients, when compared with non-DM patients.
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Taxa relative abundance in the DM and non-DM groups for the 
discriminating genera is shown in Figure  3C. There were 17 
discriminating genera between the two groups at the genus level, 
among which Klebsiella was the most discriminating taxa.

Correlation analysis between pus 
microbiome composition and laboratory 
findings

To determine the functional relationships of microbiome 
composition and laboratory findings, we  performed correlation 
analysis between the relative abundance of the top 10 microbiota at 
the genus level and using laboratory findings (Figure 3D). The results 
showed that the relative abundance of Klebsiella was positively 
correlated with blood glucose and CRP levels, which suggested that 
the relative abundance of Klebsiella was related to a high glucose 
environment and severe inflammatory reaction. The relative 
abundance of Acidovorax and Faecalibacterium was negatively 
correlated with CRP levels, but there was no correlation with blood 
glucose levels.

Functional prediction using BugBase and 
PICRUSt2

As shown by the potential predictions of phenotypic functions in 
the bacterial community in PLA, nine potential microbial phenotypes 

were detected. We observed a significantly higher representation of 
those containing mobile elements bacteria, facultatively anaerobic 
bacteria, potential pathogenic bacteria, bacteria related to biofilm 
formation and stress-tolerant bacteria in the DM group, when 
compared with the non-DM group (Table 3).

PICRUSt2 was used for functional profiling of the microbial 
community by using the KEGG database. Finally, we identified 38 
KEGG pathways at level 3, which were significantly changed in 
percentage means between the two groups (p < 0.01). The top  30 
pathway names sorted by p-values are included in Figure 4, with the 
most significant differential metabolic pathway involving 
ABC transporters.

Pus metabolic differences between PLA 
patients with and without DM

To further identify metabolomic changes in PLA patients with 
DM, we performed a non-targeted metabolomics study of 38 pus 
samples (DM, n = 22; non-DM, n = 16). PLS-DA, which has good 
discrimination ability, was used to analyze the metabolic profiles 
based on class information (Yu et  al., 2021). The PLS-DA model 
showed that there was separation between the two groups (Figure 5A).

A volcano plot (Figure  5B) was constructed to show trends in 
differentially abundant metabolites between the two groups. Using KEGG 
enrichment analysis (Supplementary Figure S1), seven main pathways 
(Cellular Processes, Drug Development, Environmental Information 
Processing, Genetic Information Processing, Human Diseases 

TABLE 1 Clinical characteristics of 290 pyogenic liver abscess patients.

Characteristic Reference ranges DM n = 189 (%) Non-DM n = 101 (%) p-value

Age (year) – 57.57 ± 13.06 58.29 ± 14.53 0.603

Laboratory findings

Leukocyte (109/L) 3.5–9.5 11.90 ± 5.59 12.43 ± 4.78 0.281

NEUT (109/L) 1.9–7.2 10.17 ± 6.34 10.20 ± 4.57 0.521

LY (109/L) 1.1–2.7 1.35 ± 2.65 1.29 ± 0.67 0.186

NEUT (%) 42.3–71.5 95.83 ± 198.68 80.66 ± 8.85 0.359

LY (%) 16.8–43.4 21.42 ± 139.12 11.43 ± 6.55 0.600

PLT (109/L) 135–350 246.79 ± 145.28 225.09 ± 123.22 0.248

PT (s) 9.4–12.5 14.25 ± 3.91 13.89 ± 2.86 0.086

INR 0.8–1.2 1.27 ± 0.34 1.63 ± 4.04 0.172

DD (μg/L) 0–252 2727.20 ± 8840.82 1961.56 ± 3805.93 0.511

ALB (g/L) 35–53 30.30 ± 6.16 29.95 ± 4.83 0.878

ALT (U/L) 0–40 83.92 ± 133.13 61.84 ± 53.58 0.250

AST (U/L) 5–34 69.88 ± 118.22 47.45 ± 46.94 0.434

TBIL (μmol/L) 3.4–20.5 16.10 ± 12.66 23.38 ± 41.00 0.159

CRP (mg/L) 0–6 178.70 ± 105.86 149.24 ± 89.22 0.041

Hospital LOS (days) – 13.71 ± 8.73 12.93 ± 12.06 0.026

EMI – 42 (22.22) 10 (9.90) 0.009

ICU admission – 8 (4.23) 3 (2.97) 0.753

Death – 3 (1.59) 1 (0.99) 1.000

NEUT, neutrophils; LY, lymphocytes; PLT, platelets; PT, prothrombin time; INR, international standardized ratio; DD, D-dimer; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate 
transaminase; TBIL, total bilirubin; CRP, C-reactive protein; LOS, length of stay; EMI, extrahepatic migratory infection; ICU, intensive care unit. Bold value indicates p value <0.05.
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Metabolism and Organismal Systems) were identified, with the most 
abundant being Metabolism. In this pathway, we  found that the 
differential metabolites enriched in the DM group were mainly involved 
in amino acid biosynthesis and metabolism, lipid metabolism, glucose 
metabolism and polycyclic aromatic hydrocarbon degradation.

In the environmental information processing pathway, we found 
the ABC transporters pathway showed differences between the two 
groups, which was consistent with the 16SrDNA prediction. Based on 
variable importance in the projection values >1 in the loading plot, 
FC ≥ 2 or FC ≤ 0.5, and p < 0.05 with KEGG annotations, seven 
differentially accumulated metabolites were identified in the ABC 
transporters pathway, of which four metabolites (2′-deoxyuridine, 
2′-deoxyinosine, 3-dehydroxycarnitine, and inosine) were enriched 
and three metabolites (phosphoric acid, taurine, and orthophosphate) 
were depleted (Supplementary Table S3; Figure 5C).

Correlation analysis between differential 
metabolites in the ABC transporters 
pathway and pus microbiota composition

To identify functional relationships of pus microbiota and 
differentially accumulated metabolites in the ABC transporters 
pathway, we  performed correlation analysis based on Pearson’s 

correlation coefficients. The top 10 relative abundance microbiota at 
the genus level and the above seven differentially-accumulated 
metabolites in the ABC transporters pathway were included for 
analysis, which showed that the metabolites was correlated with pus 
microbiota. The heatmap of the correlation is shown in Figure 5D. The 
results showed that phosphoric acid, taurine, and orthophosphate 
were positively correlated with Acidovorax, Caulobacter, Citrobacter, 
and Pseudomonas, while they were negatively correlated with 
Klebsiella. The 2′-deoxyuridine, 2′-deoxyinosine, and 
3-dehydroxycarnitine were negatively correlated with Acidovorax 
and Caulobacter.

Correlation analysis between the 
differential metabolites in the ABC 
transporters pathway and laboratory 
findings

Figure 5E shows the correlation heatmap for the seven differential 
metabolites in the ABC transporters pathway and the laboratory 
findings. The results suggested that all these metabolites were closely 
related to fasting blood glucose (FBG). The 2′-deoxyuridine, 
2′-deoxyinosine, 3-dehydroxycarnitine and inosine were positively 
related to FBG, while phosphoric acid, taurine and orthophosphate 

TABLE 2 Clinical characteristics of 62 pyogenic liver abscess patients.

Characteristic Reference ranges DM n = 38 (%) Non-DM n = 24 (%) p-value

Age (year) – 58.84 ± 12.43 53.00 ± 13.99 0.087

Underlying diseases

Biliary tract disease – 2 (5.26%) 7 (29.17%) 0.021

Digestive system cancer – 2 (5.26%) 4 (16.67%) 0.195

Laboratory findings

Leukocyte (109/L) 3.5–9.5 12.04 ± 5.04 11.91 ± 4.13 0.983

NEUT (109/L) 1.9–7.2 10.04 ± 4.85 9.97 ± 3.84 0.851

LY (109/L) 1.1–2.7 1.06 ± 0.68 1.05 ± 0.53 0.868

NEUT% 42.3–71.5 82.36 ± 8.64 82.72 ± 7.90 0.937

LY% 16.8–43.4 9.53 ± 6.26 9.33 ± 4.77 0.729

PLT (109/L) 135–350 276.74 ± 133.96 214.63 ± 122.42 0.040

PT (s) 9.4–12.5 15.27 ± 7.72 14.23 ± 2.76 0.743

INR 0.8–1.2 1.38 ± 0.65 1.30 ± 0.25 0.708

DD (μg/L) 0–252 2606.66 ± 5459.11 1854.30 ± 2054.64 0.935

ALB (g/L) 35–53 29.10 ± 4.78 31.41 ± 5.99 0.082

ALT (U/L) 0–40 66.38 ± 73.53 69.08 ± 58.93 0.784

AST (U/L) 5–34 55.84 ± 94.11 50.42 ± 48.17 0.879

TBIL (μmol/L) 3.4–20.5 16.76 ± 11.99 19.67 ± 16.50 0.608

CRP (mg/L) 0–6 183.07 ± 83.09 135.12 ± 61.58 0.033

ALBI – −1.72 ± 0.44 −1.89 ± 0.53 0.272

Hospital LOS (days) – 12.61 ± 8.31 9.42 ± 4.72 0.165

EMI – 3 (7.89%) 2 (8.33%) 1.000

The score of ALBI = (log10 TBIL × 0.66) + (−0.085 × ALB).
NEUT, neutrophils; LY, lymphocytes; PLT, platelets; PT, prothrombin time; INR, international standardized ratio; DD, D-dimer; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate 
transaminase; TBIL, total bilirubin; CRP, C-reactive protein; ALBI, albumin-bilirubin; EMI, extrahepatic migratory infection. Bold value indicates p value <0.05.
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were negatively correlated with FBG. These metabolites were also 
related to albumin (ALB), alanine aminotransferase (ALT) and 
albumin-bilirubin (ALBI), which are closely correlated with 
liver function.

Discussion

The current study showed that PLA patients with DM had a 
higher CRP level, a higher EMI incidence and longer LOS, which is 
consistent with previous studies (Foo et al., 2010; Tian et al., 2012). 
Diabetes-induced functional defects in neutrophil responses to 
pathogenic microorganism, including impairments in phagocytosis, 
bacterial killing, neutrophil migration, cytokine production, apoptosis 
and neutrophil extracellular trap (NET) formation may contribute to 
the incidence of EMI in PLA patients, when combined with DM 
(Hodgson et al., 2015; Tay et al., 2018; Njeim et al., 2020). However, 
Lee et  al. (2018) reported that type 2 DM did not overtly affect 
neutrophil intra- and extra-cellular killing of hypervirulent Klebsiella 
pneumoniae. Thus, the mechanism of severity of PLA patients with 
diabetes still needs to be fully determined.

Host immune defenses and pathogenic microorganisms affect 
the prognosis and the development of PLA. Identifying the 
differential microbiome composition differences between PLA 
patients with and without DM is therefore helpful in identifying 
potential causes. To the best of our knowledge, the current study is 
the first to use 16S rDNA sequencing to identify differences of 
microbiota composition between PLA patients with and without 
DM. Although the alpha diversity did not distinguish between the 
two groups, the results showed that the Simpson index linked with 
species richness and the Pielou-e index linked with species evenness 

were negatively correlated with the HbA1c levels, suggesting that a 
high glucose level may inhibit microbial diversity in the pus cavity. 
The influence of DM on intestinal flora abundance is still 
controversial. Some studies reported lower alpha diversity indices 
(Shannon and Chao) of gut microbiota in diabetic patients, when 
compared with healthy controls (Nuli et al., 2019; Zhao et al., 2019), 
while other studies reported increased microbial richness of gut 
microbiota in diabetic patients (Bai et al., 2022). The effect of DM 
on intestinal flora and microorganisms in pus may also differ.

Klebsiella, whose relative abundance was higher in the DM 
group, was the most discriminating genus between the two groups 
and the relative abundance of Klebsiella was positively correlated 
with blood glucose and CRP levels. Therefore, we speculate that the 
severe inflammation in the DM group was partially due to the 
higher relative abundance of Klebsiella. Previous studies reported 
that Klebsiella pneumonia liver abscess tended to have a higher 
incidence of EMI, especially in DM patients (Yoon et al., 2014; Xu 
et al., 2020). Lee et al. (2018) postulated that the mechanism may 
be  that Klebsiella pneumonia might activate platelet activity 
especially in DM patients with poor glycemic control and form a 
septic thrombosis, which can lead to seeding of microorganisms 
with metastatic infections.

Based on the prediction of BugBase, we observed a significantly 
higher representation of those containing mobile elements bacteria, 
facultatively anaerobic bacteria, potential pathogenic bacteria, 
bacteria related to biofilm formation and stress-tolerant bacteria in 
the DM group, when compared with the non-DM group. Biofilm 
formation plays an important role in antibiotic resistance and escape 
of microbes from the body’s immune surveillance system (Rather 
et  al., 2021). Stress tolerance is a characteristic that improves 
resistance toward adverse environmental abiotic and biotic stress 

FIGURE 2

Alpha diversity, beta diversity, and taxonomy community of 16SrDNA sequencing and linear correlation analysis. (A) Chao 1 index of the diabetes 
mellitus (DM) and non-DM groups. (B) Shannon diversity index of the DM and non-DM groups. (C) Beta diversity analyzed by Bray Curtis PCoA. 
(D) Scatter plot of the correlation between Simpson diversity index and HbA1c. (E) Scatter plot of the correlation between the Pielou-e diversity index 
and HbA1c. (F) Taxonomic percentages according to compositions at the genus level.
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FIGURE 3

LEfSe analysis, microbial difference analysis, and heatmap of correlation analysis. (A) Histogram of the logarithmic linear discriminant analysis (LD) value 
distribution (LDA score > 3.0; p < 0.05). A longer bar size corresponds to a larger enrichment of the group. (B) Cladogram. (C) Analysis results of microbial 
differences at the genus level in the DM and non-DM groups. (D) Heatmap of correlation analysis between the relative abundance of the top 10 
microbiota at the genus level and the laboratory findings.

TABLE 3 Bacterial phenotypes in the pus samples predicted by BugBase.

Phenotype DM (n = 38)
Relative abundance

Mean (SD)

Non-DM (n = 24)
Relative abundance

Mean (SD)

p-value

Aerobic 0.04 (0.11) 0.15 (0.27) 0.087

Anaerobic 0.03 (0.05) 0.13 (0.29) 0.723

Facultatively anaerobic 0.92 (0.16) 0.68 (0.38) 0.007

Contain mobile elements 0.92 (0.16) 0.62 (0.42) 0.006

Form biofilms 0.92 (0.17) 0.62 (0.42) 0.005

Gram negative 0.97 (0.06) 0.86 (0.27) 0.164

Gram positive 0.03 (0.06) 0.14 (0.27) 0.164

Potentially pathogenic 0.92 (0.17) 0.61 (0.43) 0.005

Stress tolerant 0.92 (0.17) 0.61 (0.43) 0.006

SD, Standard Deviation. Bold value indicates p value <0.05.
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FIGURE 5

Partial least squares–discriminate analysis PLS-DA model, volcano plot, and heatmap of correlation analysis. (A) Score plot of the PLS-DA model in the 
diabetic mellitus (DM) and non-DM groups. (B) Volcano plot of differential metabolites between the two groups. The horizontal coordinate represents 
the fold change (log2FoldChange) of metabolites in different groups, and the vertical coordinate represents the significance level of the difference 
(−log10 p value). Each point in the volcano plot represents a metabolite, in which the metabolites with significantly up-regulated expressions are 
represented by red dots, and those with significantly down-regulated expressions are represented by green dots. The dot size variable importance for 
the projection values are represented by dot size. (C) Volcano plot of differential metabolites in the ABC transporters pathway between the two groups. 
(D) Heatmap of correlation analysis between the top 10 relative abundance microbiota at the genus level and the seven differentially accumulated 
metabolites in the ABC transporters pathway. (E) Heatmap of correlation analysis between the laboratory findings and the seven differentially 
accumulated metabolites in the ABC transporters pathway.

FIGURE 4

Prediction of microbial function in diabetic mellitus (DM) and non-DM groups based on the Kyoto Encyclopedia of Genes and Genomes database. The 
ABC transporters pathway was the most significant differential metabolic pathway in the top 30 pathways shown in the figure.
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factors (Vassilev et  al., 2012). Differences in these bacterial 
phenotypes may be one of the reasons that PLA patients with DM 
have more serious clinical manifestations.

Another noteworthy finding was that the ABC transporters 
pathway was the most significant differential metabolic pathway in 
KEGG pathways predicted by PICRUSt2. The ABC transporters 
superfamily is among the largest and most broadly expressed 
protein superfamily, is found in all living organisms and is involved 
in almost every cellular, biological and physiological system 
(Mercado-Lubo and McCormick, 2010). ABC transporters in the 
accessory genomes of bacterial pathogens significantly influence 
both virulence and antimicrobial resistance (Theodoulou and Kerr, 
2015; Farzand et al., 2021). There was a large number of differential 
metabolites between the two groups, of which seven belonged to the 
ABC transporters pathway. All of these seven metabolites were 
closely related to FBG. Some of them were correlated with liver 
function and the relative abundance of microbiota, suggesting that 
these metabolites may contribute to the more severe clinical 
manifestations in the DM group. Unfortunately, there are few 
reports on the functions of these metabolites, which need further 
study in the future.

There were several limitations to this study. First, the current 
study is an exploratory study, so we did not perform a power analysis 
to estimate the sample size. Second, our study only detected the 
metabolic situation in pus samples without untargeted metabolomics 
analysis on serum samples, which can better reflect the metabolic 
situation of the body. In addition, it was difficult to determine whether 
the differential metabolites between the two groups detected in pus 
samples came from the host or microorganisms in pus. It is therefore 
necessary to collect both pus samples and blood samples in 
future research.

In conclusion, PLA patients with DM had more severe clinical 
manifestations than PLA patients without DM. The relative 
abundance of Klebsiella in the pus cavity of PLA patients with DM 
was higher than in PLA patients without DM and was accompanied 
by changes of various metabolites and metabolic pathways, which 
may be associated with the more severe clinical manifestations.
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