Results and DiscussionThe results showed that PT13 had a predation diameter greater than 15 mm against typical soil microorganisms such as Aeromonas, Bacillus, Brevibacterium, Fictibacillus, Glutamicibacter, Herbaspirillum, and Leifsonia and had an outstanding lysis effect but a significant preference (p < 0.05). Absolute high-throughput sequencing results showed that PT13 predation drove the microcosmic system composed of 16 bacterial genera, with a significant decrease in the Shannon index by 11.8% (CK = 2.04, D = 1.80) and a significant increase in the Simpson index by 45.0% (CK = 0.20, D = 0.29). The results of principal coordinate analysis (PCoA) showed that myxobacterial addition significantly disturbed the microcosmic microbial community structure (ANOSIM, p < 0.05). LEfSe analysis showed that the relative and absolute abundances (copy numbers) of Bacillus, Pedobacter, Staphylococcus, Streptomyces and Fictibacillus decreased significantly very likely due to myxobacterial predation (p < 0.05). However, the predatory effect of PT13 also increased the relative or absolute abundances of some species, such as Sphingobacterium, Paenarthrobacter, Microbacterium, and Leifsonia. It can be concluded that PT13 has a broad-spectrum lysis spectrum but poor cleavage ability for Streptomyces, and the interaction between complex microorganisms limits the predation effect of PT13 on some prey bacteria. This in turn allows some prey to coexist with myxobacteria. This paper will lay a theoretical foundation for the regulation of soil microecology dominated by myxobacteria.