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Objectives: Inflammatory bowel disease (IBD) is a chronic lifelong inflammatory

disease. Probiotics such as Bifidobacterium longum are considered to be

beneficial to the recovery of intestinal inflammation by interaction with gut

microbiota. Our goals were to define the e�ect of the exclusive use of

BAA2573 on dextran sulfate sodium (DSS)-induced colitis, including improvement

of symptoms, alleviation of histopathological damage, and modulation of

gut microbiota.

Methods: In the present study, we pretreatedC57BL/6JmicewithBifidobacterium

longum BAA2573, one of the main components in an over-the-counter

(OTC) probiotic mixture BIFOTO capsule, before modeling with DSS. 16S

rDNA sequencing and liquid chromatography–tandem mass spectrometry

(LC-MS/MS)-based non-targeted metabolomic profiling were performed with the

collected feces.

Results: We found that pretreatment of Bifidobacterium longum BAA2573 given

by gavage significantly improved symptoms and histopathological damage in

DSS-induced colitis mice. After the BAA2573 intervention, 57 genera and 39

metabolites were significantly altered. Pathway enrichment analysis demonstrated

that starch and sucrose metabolism, vitamin B6 metabolism, and sphingolipid

metabolismmay contribute to ameliorating colitis. Moreover, we revealed that the

gut microbiome and metabolites were interrelated in the BAA2573 intervention

group, while Alistipes was the core genus.

Conclusion: Our study demonstrates the impact of BAA2573 on the gut

microbiota and reveals a possible novel adjuvant therapy for IBD patients.

KEYWORDS

bifidobacterium longum, DSS-induced colitis, gut microbiota, metabolites, inflammatory

bowel disease, probiotics

1. Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of gastrointestinal

tissues that is prone to recurrent attacks. IBD includes two main types, namely ulcerative

colitis (UC) and Crohn’s disease (CD) (Flynn and Eisenstein, 2019). Severe cases suffer from

intestinal perforation, intestinal fistula, perianal abscess, arthritis, or other extraintestinal
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manifestations (Rogler et al., 2021). Moreover, most IBD patients

also face the risk of a weakened immune system and even bowel

cancer (Keller et al., 2019). The incidence and prevalence of IBD,

especially pediatric inflammatory bowel disease (PIBD) in newly

industrialized countries, especially some of them in Asia, have

increased sharply in recent years (Ng et al., 2017; Kuenzig et al.,

2022). The pathogenesis of IBD is closely related to host genetic

susceptibility, intestinal flora, environmental factors, and immune

disorders (Li et al., 2015; Gao et al., 2021). Currently, there is no

cure for IBD, but treatment can help manage symptoms and reduce

inflammation. However, the long-term efficacy and side effects of

current drugs are unpredictable since they could be affected by

several factors such as disease severity and individual response to

treatment, leading to serious economic burden and social pressure

on patients, families, and society. New targets for the prevention

and treatment of IBD are urgently needed (D’Haens et al., 2022).

Intestinal microbiota, the so-called the biological barrier to

the intestine, which participates in the physiological activities of

the host by maintaining immune balance and producing beneficial

metabolites, is closely related to the onset of IBD (Li et al., 2015;

Hu et al., 2022). Studies have found that the composition and

metabolites of intestinal flora in IBD patients are disordered,

resulting in further damage to the intestinal barrier (Lin et al.,

2023), decreased expression of tight junction proteins (Shi et al.,

2019) and antimicrobial peptides (Gubatan et al., 2021; Liu Z. et al.,

2022), and dysfunction of the intestinal immune response (Dong F.

et al., 2022). Probiotics are widely used in the adjuvant treatment of

diseases because of their high safety and good intestinal tolerance.

Among them, Bifidobacterium longum is one of the most abundant

microorganisms in the gut of infants and adults, which even can

be transformed from mom to offspring by breastfeeding (Qi et al.,

2022a). Therefore, it is critical for the development of the immune

system and is the preferred choice of probiotics (Qi et al., 2022b).

Studies have shown that Bifidobacterium longum can reduce the

expression of inflammatory cytokine (Chen et al., 2016; Singh

et al., 2020), balance intestinal immunity (Roselli et al., 2009;

Yao et al., 2011), bring down reactive oxygen species (ROS) level

(Wang et al., 2021), repair and strengthen the intestinal mucosal

barrier, and regulate gut microbiota (Ni et al., 2023), consequently

alleviating the symptoms of acute colitis and improving IBD

clinically (Miele et al., 2009). Even in infants, Bifidobacterium

longum supplementation causes few gastrointestinal side effects

or dysfunctions of the liver and kidneys (Manzano et al., 2017).

Different types of probiotics have different effects (Rodríguez-

Nogales et al., 2018; Zhao et al., 2022). The mechanism of certain

Bifidobacterium longum in the treatment of IBD needs to be

further explored.

BIFOTO capsule is an over-the-counter (OTC) probiotic

mixture and is mainly used to treat gastrointestinal dysfunction

caused by intestinal flora imbalance. Bifidobacterium longum

BAA2573 (BAA2573), Lactobacillus acidophilus, and Enterococcus

faecalis are the main components (Editorial Board of Chinese

Journal of Digestion, 2022). Previous studies have demonstrated

that the probiotic cocktail BIFICO could inhibit the inflammatory

response in H. pylori-induced gastritis (Yu et al., 2015), ameliorate

colitis-associated cancer in mice (Song et al., 2018), enhance the

curative effect and reduce adverse reactions of mesalazine for UC

patients (Jiang et al., 2020), and reduce the recurrence rate of UC

(Chen M. Y. et al., 2019), but the properties of the single strain

remain unknown.

Studies have shown that DSS-induced colitis was a rapid and

practical model for the study of IBD (Eichele and Kharbanda,

2017). DSS in drinking water would directly act on the colon and

rectum, damage intestinal epithelial cells, destroy the intestinal

barrier, and induce acute colitis (Wirtz et al., 2017; Katsandegwaza

et al., 2022). In the present study, we selected BAA2573 for

further investigation due to its wide application and few side

effects. We investigated symptoms, histopathological damage,

compositional changes and interplay in the commensal microbiota,

and metabolites of the mouse colon to better understand the

effectiveness and the underlying mechanism in the treatment of

DSS-induced colitis. This study demonstrates the potential impact

of BAA2573 on colitis and provides theoretical support for the

application of this probiotic strain in IBD.

2. Materials and methods

2.1. Animal experiments

The experimental procedure was approved by the Ethics

Committee ofWuxi Children’s Hospital (WXCH2022-10-073), and

all operations met the National Institutes of Health guidelines. We

purchased 6-week-old wild-type C57BL/6J mice from Changzhou

Cavens Laboratory Animal Co. Ltd. through BioMart (Changzhou,

China) and kept them in the animal room ofWuxi People’s Hospital

(room temperature: 20 ± 2◦C, 12-h−12-h day and night cycle).

After 7 days of adaptive feeding with normal diet and water, mice

were randomly divided into three groups (n= 8 per group): control

group (CON), 3% DSS group (DSS, molecular weight: 35,000–

50,000, purchased from MP Biomedicals), and Bifidobacterium

longum intervention group (B+DSS, BAA2573 was purchased

from Shanghai Sine Company). The modeling process is shown in

Figure 1. Referring to previous animal experiments (Dong J. et al.,

2022), the B+DSS group was given 0.2ml of bacterial solution

at 10 a.m. daily by oral gavage (about 1 × 1010 CFU/kg), while

the DSS group was given 0.2ml of normal saline. The weight and

stool characteristics were recorded daily to evaluate whether the

model was established. On day 12, all mice were sacrificed by

cervical dislocation after anesthesia. The whole colon tissue was

photographed under sterile conditions to record the length. A total

volume of 1ml of intestinal contents were retained by lavaging

with normal saline and then stored at −80◦C for examination.

The colonic tissue was fixed in 4% paraformaldehyde or stored at

−80◦C for examination. The disease activity index (DAI) score was

calculated daily by weight loss, stool consistency, and stool bleeding

to assess the severity of colitis in each group.

2.2. Histopathological analysis

We embedded 4% paraformaldehyde-fixed colonic tissue in

paraffin, prepared it in a 5-µm section, and then stained it

with hematoxylin and eosin (H&E) according to the product
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FIGURE 1

Experimental design and procedure. CON group: normal diet and

water; DSS group: colitis model (3% DSS in drink water from day 6)

+ normal saline (0.2 ml/day); B+DSS group: colitis model (3% DSS in

drink water from day 6) + Bifidobacterium longum BAA2573 (∼1 ×

1010 CFU/kg/day).

manual (purchased from Biyuntian, catalog number C0105S). Two

pathologists finished double-blind scoring to assess tissue damage.

The scoring criteria were referred to three parts: (a) epithelial

impairment, (b) ulcer, and (c) inflammatory cell infiltration. For

score (a): normal: 0; goblet cell reduction in less than one-third

area: 1; goblet cell reduction in more than one-third area: 2; loss

of crypt: 3; polypoid regeneration: 4. For score (b):0: 0; 1: 1; 2: 2;

3: 3; and over 3: 4. For score (c): normal: 0; around the crypts: 1;

infiltration to the muscularis mucosa: 2; widespread infiltration of

muscularis mucosa or withmucosal thickening: 3; infiltration to the

submucosa: 4.

2.3. 16S rDNA sequencing

To determine pretreatment with Bifidobacterium longum

BAA2573-induced gut microbiota alterations, DNA from fecal

samples was extracted by hexadecyltrimethylammonium bromide

(CTAB). In polymerase chain reaction (PCR) amplification,

universal primers 515F (5′- GTGYCAGCMGCCGCGGTAA-3′)

and 806R (5′- GGACTACHVGGGTWTCTAAT-3′) were used to

target 16S rRNA gene V4 hypervariable regions. The purification

of PCR products was performed by AMPure XP beads (Beckman

Coulter Genomics, Danvers, MA, USA) and quantification

by Qubit (Invitrogen, USA). The size and quantity of the

amplicon library were assessed on Agilent 2100 Bioanalyzer

(Agilent, USA) and with the Library Quantification Kit for

Illumina (Kapa Biosciences, Woburn, MA, USA), respectively.

The libraries were sequenced on the NovaSeq PE250 platform.

After being primer-truncated, the raw paired-end reads were

assigned to samples and merged using FLASH. To obtain the

high-quality clean tags, the filtration was performed using fqtrim

(v0.94) and Vsearch software (v2.3.4) successively. Next, clean

data were dereplicated and denoised into amplicon sequence

variation (ASVs) using Divisive Amplicon Denoising Algorithm

(DADA2) before alpha and beta diversity analyses (Callahan et al.,

2016).

2.4. Liquid chromatography–tandem mass
spectrometry (LC-MS/MS)-based
non-targeted metabolomic profiling

Metabolic extracts were obtained from stool samples. Then,

LC-MS/MS analyses were performed using the UHPLC system

(Vanquish, Thermo Fisher Scientific) with an ultra-performance

liquid chromatography ethylene bridged hybrid (UPLC BEH)

Amide column (2.1mm × 100mm, 1.7µm) coupled to Orbitrap

Exploris 120 mass spectrometer (Orbitrap MS, Thermo Fisher

Scientific). The mobile phase consisted of 25 mmol/L ammonium

acetate and 25 ammonia hydroxide in water (pH = 9.75) (A)

and acetonitrile (B). The Orbitrap Exploris 120 mass spectrometer

was used for its ability to acquire MS/MS spectra on information-

dependent acquisition (IDA) mode in the control of the acquisition

software (Xcalibur, Thermo Fisher Scientific). In this mode, the

acquisition software continuously evaluates the full scan MS

spectrum. Next, raw data were converted to the mzXML format

using ProteoWizard and processed by an in-house program, which

was developed based on R package XCMS (V.3.2). Subsequently,

processes (Alseekh et al., 2021), such as peak detection, extraction,

alignment, and integration, were performed by this in-house

program. Then, metabolite annotation was finished using an in-

house MS2 database. The cutoff for annotation was set at 0.3.

2.5. Statistical analysis

Data of weight, DAI score, and histopathological score were

expressed as mean ± SD. Differences between the three groups

were calculated using the one-way ANOVA (Tukey’s tests). Alpha

(α) diversity and beta (β) diversity were calculated with QIIME2.

Feature abundance was normalized using the relative abundance of

each sample. α diversity was applied to analyzing the complexity

of species diversity for a sample through Chao 1 and Shannon

indexes. Differences between groups were calculated using the

Kruskal–Wallis test. β-diversity analysis is performed by principal

coordinate analysis (PCoA). The relative abundances at the phylum

or genus level between every two groups were analyzed via

Student’s t-test. LDA effect size (LefSe) analysis was used to

compare the microbial compositions between the DSS and B+DSS

groups (LefSe >3). To find significantly changed metabolites

between groups, we used supervised orthogonal projections to

latent structures discriminate analysis (OPLS-DA) in this study.

Meanwhile, 200 times permutations and the permutation test

were further conducted to check the robustness and predictive

ability of the OPLS-DA model. Furthermore, the value of

variable importance in the projection (VIP) of the first principal

component in OPLS-DA analysis was achieved. Significantly

altered metabolites referred to those with VIP>1, P < 0.05, fold

change (FC)>2 or <0.2 (Student’s t-test). Kyoto Encyclopedia

of Genes and Genomes (KEGG) along with the MetaboAnalyst

database was applied to pathway enrichment analysis. The Pearson

correlation coefficient was used to evaluate the correlation between

differentially abundant metabolites and microbiota (r > 0.4). A P-

value of < 0.05 was considered to be statistically significant. The

graphs were drawn by the R package (v3.5.2). The statistical analysis
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was generated with GraphPad Prism 9.3 software (GraphPad Inc.,

La Jolla, CA, USA).

3. Results

3.1. Bifidobacterium longum BAA2573
significantly improved symptoms and
histopathological damage in DSS-induced
colitis mice

Weight loss, DAI scores, and colon length reflect the severity

of damage in DSS-induced colitis. Compared to the initial weight

at day 0, mice in the DSS group exhibited significant weight loss

relative to another two groups (Figure 2A), while mice in the

B+DSS group showed a mild decline after modeling, indicating

that pretreatment with BAA2573 significantly alleviated weight loss

caused by DSS (p < 0.05).

Similarly, DSS treatment remarkably increased the DAI scores,

and pretreatment with BAA2573 reduced DAI scores after DSS

modeling (Figure 2B). After 6 days of DSS exposure, the colons

in the DSS group were significantly shortened. BAA2573 exhibited

a distinct effect in increasing the length of the colon (p < 0.05)

(Figure 2C). The photographs of the colon tissue are shown in

Supplementary Figure 1. Taken together, these data indicated that

pretreatment of Bifidobacterium longum BAA2573 significantly

improved colitis-related parameters.

We further evaluated the effect of BAA2573 on alleviating

DSS-induced colitis by the histological score of colon sections. As

shown in Figure 2Da, the colon section of the DSS group exhibited

extensive colonic damages, including neutrophilic infiltrates,

absence of crypt structures, and even transmural inflammation,

while none of these pathological features were found in the CON

group. Compared with the DSS group, administration of BAA2573

resulted in fewer neutrophil infiltrations, preserved crypt structures

in the colon sections, and decreased the histological scores with

significant differences (P < 0.05) (Figure 2Db).

3.2. Bifidobacterium longum BAA2573
alleviated gut microbiota imbalance in
DSS-induced colitis mice

Sequencing of 16S rDNA genes was performed to delineate

changes in the gut microbiota composition. A total of 2039, 497,

and 954 microbe ASVs were detected in the CON, DSS, and

B+DSS groups, respectively (Figure 3A). A rarefaction curve based

on the observed species specified that the sequencing data were

sufficient to detect all species in the samples (Figure 3B). α-diversity

analysis demonstrated that mice in the B+DSS group exhibited

increased intestinal flora richness and diversity compared with

the DSS group (Figure 3C). β-diversity represents the similarity

of microbial composition among different groups, which showed

that the similarity between the DSS group and the B+DSS group

was observed only in a few samples (Figure 3D). A great difference

in microbial composition between the CON group and the DSS

group was observed with α- and β-diversity analyses, indicating

that treatment with DSS disrupted homeostasis of the intestinal

flora (Figures 3C, D).

The relative abundance of microbiota at the phylum levels

was calculated in each group (Figure 4A). Compared with the DSS

group, Bacteroidetes and Patescibacteria increased, and Firmicutes,

Proteobacteria, and Actinobacteriota decreased after BAA2573

administration. A further subdivision at the genus level suggested

a marked increase in Klebsiella (P = 0.006) and Veillonella (P =

0.016) and a decrease in Candidatus_Saccharimonas (P = 0.026),

Dubosiella (P = 0.036), Lachnospiraceae_NK4A136_group (P =

0.006), Lachnospiraceae_UCG-006 (P = 0.003), and Alistipes (P

= 0.006) in the DSS group, and this dysbiosis was altered by

BAA2573 (Figure 4B). A total of 57 genera were identified as

significantly discriminative in the abundance between the B+DSS

and DSS groups. To further determine the specific predominant

bacteria associated with the pretreatment of BAA2573, LDA

effect size (LefSe) analysis was used to compare the microbial

compositions between the DSS and B+DSS groups. Among them,

g_Lactobacillus, g_Veillonella, and g_Klebsiella were the main

taxa enriched in the DSS group, while o_Clostridia_UCG_014,

g_Lachnospiraceae_NK4A136_group, g_Alistipes, g_Dubosiella,

and g_Oscillibacter were more abundant in the B+DSS group

(Figure 4C).

3.3. Bifidobacterium longum BAA2573
altered abundant metabolites in
DSS-induced colitis mice

LC-MS/MS-based non-targeted metabolomic profiling with

collected stool samples from three groups was performed to

investigate the differences in metabolic extracts. Univariate

and multivariate analyses were used to screen out differential

metabolites. The OPLS-DA model indicated the metabolic

differences among the three groups (Figure 5A). The permutation

test showed that the OPLS-DA model was not overfitting and had

good validity (Supplementary Figure 2A). Volcano plots show the

results of comparisons of metabolites between the CON and DSS

groups (Supplementary Figure 2B) and the DSS and B+DSS groups

(Figure 5B); meanwhile, altered expression levels were visualized

with different colors.

With the inclusion criteria of VIP >1, FC ≥2 or <0.2, and

P<0.05, 234, 140, 39 differentially abundant metabolites between

the DSS and CON groups, between the B+DSS and CON groups,

between the DSS and B+DSS groups were identified, respectively.

Pathway analysis of these metabolites revealed that several

pathways were affected in DSS-induced colitis, ranging from

purine metabolism (aminoacyl-tRNA biosynthesis) to amino acid

metabolism (such as alanine, aspartate, and glutamate metabolism,

and arginine metabolism) (Supplementary Figure 3). These

pathways were reported to contribute to intestinal inflammation in

mice (Xie et al., 2021; Zhu et al., 2021). Among the 39 differentially

abundant metabolites between the DSS and B+DSS groups, the

trend of relative concentrations of 30 in the three groups showed

“V” or “reverse-V” shape change (Figure 5D), indicating the effect

of BAA2573 treatment. Therefore, we paid our attention mainly

in the 39 metabolites (Figure 5C). Half of the 39 metabolites were

lipids or organic oxygen compounds (Supplementary Table 1).
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FIGURE 2

Bifidobacterium longum BAA2573 improved symptoms and histopathological damage in DSS-induced colitis mice. (A, B) The body weight and DAI

score of the mice were assessed throughout the experiment. (C) The colon length of each group was measured. (D) (a) The distal colon was stained

with H&E (neutrophilic infiltrates, absence of crypt structures, and even transmural inflammation in the DSS group; less neutrophil infiltrations and

preserved crypt structures in the B+DSS group). (b) Histopathological score. The data are expressed as the means ± SDs (CON group n = 6, DSS

group n = 6, B+DSS group n =6). The * symbol indicates any group compared with the DSS group; **P < 0.01. The # symbol indicates any group

compared with the CON group; ####P < 0.0001.

KEGG pathway enrichment analysis was performed using

these differentially abundant metabolites (Figure 5E). Starch

and sucrose metabolism, vitamin B6 metabolism, sphingolipid

metabolism, galactose metabolism, amino acid (glycine, serine,

threonine, arginine, proline, and tyrosine) metabolism, and

purine metabolism were the primary enriched pathways. Eight

differentially abundant metabolites involved in the top eight

pathways were further illustrated (Supplementary Figures 2C, D).

Compared with the DSS group, the levels of trehalose, isomaltose,

melezitose, and 4-Pyridoxic acid were significantly downregulated

(P < 0.05). In contrast, the levels of sphingosine, creatine,

L-trans-4-Methyl-2-pyrrolidinecarboxylic acid (L4M2P), and uric

acid were significantly upregulated.

3.4. Bifidobacterium longum BAA2573
a�ected the microbiota–metabolite
interactions in DSS-induced colitis mice

To further identify the microbiota–metabolite

interactions related to BAA2573 pretreatment, Pearson’s

correlation analysis was performed using 57 genera and

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1211259
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lin et al. 10.3389/fmicb.2023.1211259

FIGURE 3

BAA2573 changes the structure of gut microbiota in DSS-induced colitis (n = 8). (A) A Venn diagram of ASVs in each group. (B) Rarefaction curve. (C)

α-diversity analysis, including Shannon index and Chao 1 index. A P-value was marked directly in the figure. (D) β-diversity analysis was performed by

principal coordinate analysis (PCoA).

39 metabolites, and the main interplays are shown in a

heatmap (Supplementary Figure 4). g_Alistipes was negatively

correlated with eight metabolites (genistin, glycitin, daidzin,

isovitexin, 2′-o-methyladenosine, erinacine P, cosmosiin,

and glucosylisomaltol) and positively correlated with

three metabolites [PC(20:5(5Z,8Z,11Z,14Z,17Z)/15:0), 4-

(trimethylammonio)butanoate, and 3-methoxytyramine]. In

addition, g_Veillonella and g_Lachnospiraceae_NK4A136_group

both correlated positively with four metabolites. g_Dubosiella was

positively correlated with five metabolites. These correlations are

described in detail in Figure 6 (r > 0.4, P < 0.05). Correlation

analysis revealed that g_Alistipes was likely to be the core genus,

given its association with several substances. Notably, 2′-o-

methyladenosine, cosmosiin, daidzin, erinacine P, and glycitin

were related to different flora in opposite ways, highlighting

the complexity of the gut microbiome. Other genera, including

g_Eubacrerium, were also associated with metabolites and may be

identified as potential biomarkers.

4. Discussion

In the present study, we collected fecal specimens to

perform 16S rDNA sequencing and non-targeted metabolomic

profiling after modeling and intervention, which could directly

reflect the interplay between BAA2573 and gut flora. On

comparison with the DSS group, we found that pretreatment with

BAA2573 could alter microbial and metabolomic characterization

in DSS-induced colitis (Figure 4) and reverse the dysbiosis

of the gut commensal microorganisms, which manifested by

the downregulation of harmful and opportunistic pathogens,

such as Klebsiella and Veillonella, and the upregulation of
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FIGURE 4

BAA2753 changes the composition of gut microbiota in DSS-induced colitis (n = 8). (A) Relative abundance of taxa at the phylum levels. (B) Relative

abundance of taxa at the gene levels. (C) Linear discriminant analysis (LDA) score for predominant microbiota between the DSS and B+DSS groups.

beneficial genera, such as Alistipes and Dubosiella. On the

contrary, the multiomics analysis marked the interaction between

microbiota and metabolites. Possible mechanisms through which

this happens might be through enhancing the enrichment

of glycerophospholipids, fatty acyls, and amino acids in the

B+DSS group and reducing the enrichment of carbohydrates,

phenylpropanoids, and polyketides. It was assumed that BAA2573

might ameliorate colitis by improving microbial imbalance and

further regulating metabolic pathways, thereby improving clinical

symptoms. Previous studies also proved that pretreatment with

diet and Bifidobacterium longum could improve acute DSS-

induced colitis rather than ongoing chronic colitis, which

highlighted the preventive therapeutic efficacy of prebiotics in

IBD (Silveira et al., 2017). Clinically, IBD is a lifelong disease

that often begins in childhood or adolescence. Early diagnosis

and prompt management will improve the prognosis for PIBD

(Oliveira and Monteiro, 2017), which is the reason we pretreated

BAA2573 1 week before modeling to emphasize its adjuvant and

preventive effects.

Previous studies had indicated that gut microbiota were deeply

involved in the pathogenesis of IBD. Franzosa et al. found that

the intestinal flora structure between the non-IBD group and

the CD group was vastly different and that the heterogeneity in

the UC group was higher (Franzosa et al., 2019). Nagalingam

et al. and Munyaka et al. collected fecal specimens from murine

colitis models and found that the microbiota abundance decreased

after DSS treatment. The relative abundance of Bacteroides was

decreased, while the relative abundance of Proteobacteria and

Firmicutes was increased in DSS-induced colitis models, which

was consistent with our experiment (Nagalingam et al., 2011;
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FIGURE 5

Pretreatment of BAA2753 altered metabolites of the colon in DSS-induced colitis. (A) Orthogonal partial least-squares discriminant analysis

(OPLS-DA) in three groups and the quality control (QC) group. (B) The overall distribution of metabolites between the B+DSS and DSS groups was

illustrated with a volcano plot. The vertical dashed lines indicate the threshold for the 2-fold abundance di�erence. The horizontal dashed line

indicates the p = 0.05 threshold. Comparisons between the two groups were performed using Student’s t-test. Metabolites with significant changes

are presented in red (upregulated) or blue (downregulated). (C) Heatmap of fecal di�erential metabolites between the B+DSS and DSS groups after

BAA2573 pretreatment. (D) K-means analysis was performed to delineate the trends in the relative concentrations of 39 metabolites in three groups.

(E) KEGG pathway enrichment analysis.
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FIGURE 6

Interactions between di�erentially abundant microbiota and metabolite in the B+DSS and DSS groups (Pearson’s correlation analysis, r > 0.4, P <

0.05).

Munyaka et al., 2016). Inhibiting the overgrowth of harmful

bacteria can significantly reduce colitis symptoms (Chen et al.,

2022; Ma et al., 2022). As a member of the Enterobacteriaceae

family in Proteobacteria phylum, Klebsiella was mostly harmful

and abundant in the DSS group. In the B+DSS group, the relative

abundance of Klebsiella decreased significantly after pretreatment

with BAA2573 (Figure 6), which was consistent with a previous

study with another Bifidobacterium subspecies (Fan et al., 2021).

Klebsiella with pathogen-associated molecular patterns (PAMPs)

could be identified by the toll-like receptor (TLR) family (like

TLR2/4) and promote intestinal inflammation (Chalifour et al.,

2004).

Especially, flora may be used as markers to predict response to

treatment or prognosis. Veillonella, the opportunistic pathogens,

is one of the few species whose abundance sharply decreased

in the Firmicutes phylum after BAA2573 intervention, indicating

that Veillonella may play a harmful role in colitis, and the

underlying mechanisms need to be further explored. The

abundance of Veillonella was significantly elevated in patients

with CD (Pittayanon et al., 2020) and exhibited a strong immune

response to serum IgG (Bourgonje et al., 2022), which may

be associated with the immune tolerance of colonized bacteria

in the gastrointestinal tract. Shaw et al. found that Veillonella

was one of the differentiated microbiota at the genus level

between therapeutic responders and non-responders in PIBD

(Shaw et al., 2016). In adult IBD patients complicated with

primary sclerosing cholangitis, the abundance of Veillonella

was significantly increased. Moreover, Veillonella also played a

differentiating role in IBD-related liver disease (Kummen et al.,

2017).

In addition to the abovementioned downregulated

species, Alistipes and Dubosiella, Candidatus_Saccharimonas,

Lachnospiraceae_NK4A136_group, and Oscillibacter had

significantly increased after BAA2573 intervention, which
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may participate in the recovery of colitis, and the results are

consistent with previous studies (Hao et al., 2021; Wan et al., 2022).

Alistipes, a relatively new member of Bacteroides, was isolated

primarily from clinical samples and participated in chronic disease

(Parker et al., 2020). Meat-based diet could increase the abundance

Alistipes (David et al., 2014), but it was negatively correlated

with serum triglyceride levels (Liu Liu X. et al., 2022). Lipid

metabolism disorders are involved in intestinal inflammation,

suggesting Alistipes was closely related to lipid metabolism and gut

health (Wu et al., 2022). In our study, Alistipes was significantly

correlated with lipids and lipid-like molecules in feces, including

Erinacine P and PC(20:5(5Z,8Z,11Z,14Z,17Z)/15:0). Therefore,

BAA2573 may increase the abundance of Alistipes and improved

colitis by modulating the lipid metabolic process. Interestingly,

Dubosiella, Lachnospiraceae_NK4A136_group, Oscillibacter, and

Alistipes belong to the phylum Firmicutes and are producers of

short-chain fatty acids (SCFAs), especially butyric acid (Parada

Venegas et al., 2019; Yuan et al., 2022). As the main energy

source of colonocytes, butyric acid has been proven to play

an indispensable role in relieving IBD symptoms by reducing

inflammation (Li et al., 2021), strengthening epithelial barrier

(Chen et al., 2018), and modulating immunity (Liu et al., 2020).

However, we did not observe a significant increase in SCFAs in

fecal specimens, probably because of the methods or samples we

used. Detection methods such as SCFA targeted profiling with

fecal specimens or serum may be needed to determine changes

in SCFAs.

In addition to the gut microbiota, metabolites also participate

in maintaining intestinal homeostasis. KEGG enrichment

analysis with differentially abundant metabolites showed that

pretreatment with BAA2573 could improve carbohydrate

metabolism, mainly the glucose metabolism pathway. The

levels of trehalose, isomaltose, and melezitose were significantly

downregulated. In correspondence to our finding, recent studies

showed that probiotics containing Bifidobacterium longum

could reduce intestinal inflammation caused by Enterotoxigenic

Escherichia coli (ETEC) by balancing enteric microorganism

and improving carbohydrate metabolism (Li et al., 2022). At

the brush edge of small intestinal epithelial cells, trehalose

is broken down into glucose, which is transported into cells

and provides energy via glycolytic reaction (d’Enfert et al.,

1999), so trehalose is consumed by the small intestine and

expressed at low levels in the colon. In the present study,

Alistipes, the butyrate-producing bacteria was significantly

negatively correlated with the abundance of trehalose (Portincasa

et al., 2022). Therefore, we speculated that BAA2573 might

promote the growth of beneficial bacteria and further consume

intestinal carbohydrates to provide energy. On the contrary,

metabolites produced by these beneficial bacteria, such as

butyrate, may contribute to ameliorating colitis. Another

investigation showed that high-sugar diet induced changes

in the microbiota of the mouse, leading to a decrease the

abundance of Bacteroides (Do et al., 2018). Therefore, Alistipes

and trehalose could be interdependent, with a mutual effect in

intestinal microecology.

The Vitamin B6 metabolic pathway takes effect in IBD.

Low serum levels of vitamin B6 were common in IBD patients

(MacMaster et al., 2021). Vitamin B6 deficiency could result in

hyperhomocysteinemia (Hhcy), an aggravated colon inflammation

in mice. Dietary supplementation of vitamin B6 could reduce the

inflammatory indexes of colitis in mouse models (Selhub et al.,

2013; Flannigan et al., 2014). 4-Pyridoxic acid (4-PA) is one of

the main metabolites of vitamin B6 (Stover and Field, 2015). In

humans, a high level of 4-PA in serum was positively correlated

with high colorectal cancer risk and high mortality in type 2

diabetes mellitus (T2DM) (Xu et al., 2022; Zhang et al., 2022).

Conspicuously, the high level of 4-PA has caused certain damage

to the intestine, but it was noteworthy that, after pretreatment

with BAA2573, the level of 4-PA was remarkably downregulated.

Therefore, the level of 4-PA may be an indicator of the severity of

IBD. Vitamin B6 supplement could be another research target when

we further explore the underlying mechanism.

According to the correlation analysis of microbes and

metabolites in our study, Alistipes tends to be the central positional

indicator. It was negatively correlated with isoflavones, including

glycitin and daidzin. In contrast, Veillonella was positively

correlated with isoflavones, which were both downregulated in

the B+DSS group. Previous studies reported that a diet with

isoflavones showed an anti-inflammatory effect in mice (Shrode

et al., 2022). Glycitin tended to inhibit inflammation via the

nuclear factor-kappa B (NFκB) or mitogen-activated protein kinase

(MAPK) pathway (Chen Y. et al., 2019; Wang et al., 2020). On

the contrary, isoflavones are structurally similar to 17-β-estradiol

and bind to estrogen receptors (ERα and ERβ), participating

in regulating the effects of estrogen in humans (Kim, 2021).

Bifidobacterium longum-a and Veillonella sp. strain EP were

reported to convert daidzin to daidzein and then transformed

daidzein to equol in the colon (Rafii, 2015). In the urine of

sporadic colorectal adenomas patients, the levels of equol were

significantly lower (Polimeno et al., 2020). We speculated that

isoflavones, such as daidzin and glycitin, may be degraded by

anaerobic bacteria in the colon (Park et al., 2011) and play anti-

inflammatory and hyperplasia-inhibiting roles. In summary, we

could further detect the production of equol for the elaboration of

specific mechanisms of isoflavones on IBD and its relationship to

gut flora.

To our knowledge, sphingosine could be transformed to

sphingosine-1-phosphate (S1P) by sphingosine kinase (Tsai and

Han, 2016). In active UC patients, the level of S1P in plasma

was upregulated, and higher enrichment of Klebsiella in fecal

revealed a positive connection with S1P (Sun et al., 2019).

Animal experiments had detected that disturbing the sphingolipid

metabolism could improve the colorectal tumormicroenvironment

and reduce the severity of UC in mice (Lv et al., 2019;

Jiang et al., 2021). Sphingosine kinase and S1P receptors may

become an emerging therapeutic target or predictive markers

of therapeutic response in IBD (Sukocheva et al., 2020; Elhag

et al., 2022). In the present study, the level of sphingosine,

which was positively correlated with the relative abundance of

Lachnospiraceae_NK4A136_group and Lachnospiraceae_UCG-006,

was downregulated after model establishment and reversed after

the intervention of BAA2573, indicating that BAA2573 possibly

inhibited the activity of sphingosine kinase and reduced the

level of S1P in the gut during the disease healing process.
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Further research will be conducted to fully understand the

mechanisms involved.

5. Limitations of this study

Our study has a few limitations. First, in this animal

experiment, we described the protective effect of pretreatment

of Bifidobacterium longum BAA2573 on DSS-induced colitis and

correlations between abundant microbiota and metabolites, which

did not provide sufficient causality verification. Therefore, further

in vivo or in vitro functional studies are needed to identify the

relationship between microbiota, metabolites, and the healing

of colitis. Second, as representative components of SCFAs and

the research emphasis in gut microbiota, substances like acetic

acid and butyric acid were not identified significant difference

in our study. Therefore, expanding the study by performing

targeted metabolomics analysis of urinal or serum samples may be

benefited by further in-depth study. Third, to better embody the

advantages of Bifidobacterium longum in the treatment of IBD, we

should pit single BAA2573 against BAA2573 combined with recent

medications on DSS-induced colitis mice, such as 5-aminosalicylic

acid or other single species of probiotics.

6. Conclusion

Our study presented functional insights of a single substance

from a widely used probiotic mixture by establishing an animal

model of colitis and introducing 16S rDNA sequencing and

non-targeted metabolomic profiling, which demonstrated that the

symptom of colitis was improved, the inflammation of the colon

was alleviated, and the gut microbiome and metabolites were

altered in the B+DSS group compared to the DSS group. The

application of Bifidobacterium longum BAA2573 as a new probiotic

deserves further research and clinical verification.
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