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Plant-associated microbes include taxonomically diverse communities of 
bacteria, archaebacteria, fungi, and viruses, which establish integral ecological 
relationships with the host plant and constitute the phyto-microbiome. The 
phyto-microbiome not only contributes in normal growth and development 
of plants but also plays a vital role in the maintenance of plant homeostasis 
during abiotic stress conditions. Owing to its immense metabolic potential, the 
phyto-microbiome provides the host plant with the capability to mitigate the 
abiotic stress through various mechanisms like production of antioxidants, plant 
growth hormones, bioactive compounds, detoxification of harmful chemicals 
and toxins, sequestration of reactive oxygen species and other free radicals. A 
deeper understanding of the structure and functions of the phyto-microbiome 
and the complex mechanisms of phyto-microbiome mediated abiotic stress 
mitigation would enable its utilization for abiotic stress alleviation of crop plants 
and development of stress-resistant crops. This review aims at exploring the 
potential of phyto-microbiome to alleviate drought, heat, salinity and heavy metal 
stress in crop plants and finding sustainable solutions to enhance the agricultural 
productivity. The mechanistic insights into the role of phytomicrobiome in 
imparting abiotic stress tolerance to plants have been summarized, that would 
be  helpful in the development of novel bioinoculants. The high-throughput 
modern approaches involving candidate gene identification and target gene 
modification such as genomics, metagenomics, transcriptomics, metabolomics, 
and phyto-microbiome based genetic engineering have been discussed in wake 
of the ever-increasing demand of climate resilient crop plants.
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1. Introduction

Climate change has lead to several perturbations in the environment such as extremes of 
heat and cold, drought, waterlogging, and changing weather patterns, which are responsible for 
adverse effects on crop production globally. Various environmental and anthropogenic factors 
pose abiotic stress on plants such as temperature, salinity, drought, heavy metals (Sandrini et al., 
2022), UV radiation (Shourie et  al., 2014), and pesticides (Yasmin and D’Souza, 2010). 
Temperature fluctuations, erratic rainfall and frequent droughts are also attributed to shifts in 
agricultural cycles. More than 50% of agricultural losses are caused due to heat, salinity, drought 
and heavy metal stresses, both qualitatively and quantitatively (Salam et al., 2023). It is worth 
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noting that a minor temperature increase of even 1°C can reduce the 
crop yield of various crops by 3–7% (Zhao et al., 2017). These aspects 
are also responsible for changes in the edaphic factors like pH, 
moisture, salinity, ion content, mineral availability and organic 
content, which directly affect the crop yield. Salinity and heavy metal 
accumulation in soil has significant impacts on plant health and crop 
productivity. Salt stress inhibits seed germination and disturbs the 
homeostasis at cellular and biochemical level. It affects water uptake, 
exerts osmotic stress and causes nutritional imbalance in plants. 
Similarly, heavy metals also cause detrimental effects on plants by 
imposing toxicity and hampering physiological processes that are vital 
for survival and growth of plants.

Plants adopt various strategies to survive under unfavorable 
environmental conditions and have remarkable capabilities of 
enduring and adapting to abiotic stresses through transient and stable 
gene expression mediated by stress signaling. The microorganisms 
present in the soil, rhizosphere, and phyllosphere of plants play a 
crucial role in the maintenance of environmental homeostasis and 
enable plants to survive under stress conditions (Barea, 2015; Ngumbi 
and Kloepper, 2016). A plant acquires its microbiome from the parent 
plant, the soil in which the seed is sown, and the environment to 
which it is exposed. Plants and their microbiome are in an exquisite 
symbiotic relationship and mutually promote growth, health, and 
development. Plant-associated microbes offer numerous benefits to 
plants such as fixing atmospheric nitrogen, enhancing the 
bioavailability of minerals, producing organic nutrients, detoxifying 
pesticides, harmful chemicals and toxins, mitigating plant diseases, 
and producing plant growth hormones and bioactive compounds 
(Sagar et  al., 2021). The rhizospheric occupants belonging to the 
genera Azotobacter (Sahoo et al., 2014), Azospirillum (Omar et al., 
2009), Rhizobium, Pantoea, Bacillus, Pseudomonas (Sorty et al., 2016), 
Enterobacter (Nadeem et al., 2007), Bradyrhizobium (Panlada et al., 
2013), Methylobacterium (Meena et al., 2012), Burkholderia (Oliveira 
et al., 2009), Trichoderma (Ahmad P. et al., 2015) and cyanobacteria 
(Joshi et  al., 2020) have been reported to contribute in growth 
promotion of several crop plants.

Plant microbiome offers an abiotic stress protection mechanism 
to the host as the metabolic potential of microbiome is immense and 
it supplements the metabolic capacity of the plants to acquire nutrition 
and develop tolerance against stress. The phyto-microbiome is 
dynamic and its organization is sculpted by the degree and duration 
of the abiotic stress. The plant and its associated microbiome 
synergistically respond to abiotic stress for mutual survival and 
growth (Javaid et  al., 2022). Under unfavorable environmental 
conditions, soil-dwelling microorganisms from the genera 
Achromobacter, Azospirillum, Variovorax, Bacillus, Enterobacter, 
Azotobacter, Aeromonas, Klebsiella, and Pseudomonas have been 
demonstrated to promote plant growth (Dardanelli et  al., 2008; 
Belimov et al., 2009; Ortiz et al., 2015; Kaushal and Wani, 2016; Sorty 
et al., 2016). Burkholderia phytofirmans strain PsJN has been found to 
reduce salt stress in Arabidopsis (Pinedo et  al., 2015) and maize 
(Naveed et al., 2014b), as well as drought stress in wheat (Naveed 
et al., 2014a).

The response of the phyto-microbiome to the abiotic stress largely 
influences the growth, tolerance, adaptation, and evolution of the host 
plant and microbes both. There is now mounting evidence that plant-
associated microbes may prove to be instrumental in the sustenance 
of agriculture in times of drastic impacts of climate change. The 

phyto-microbiome architecture could be better utilized for abiotic 
stress alleviation of plants and the development of stress-tolerant crop 
plants if the ecological relationships of the plant-associated microbial 
diversity and mechanisms of their interactions are deeply understood. 
The potential options for overcoming crop plants’ productivity 
constraints in stress-prone environments include the selection, 
screening, and application of stress-tolerant microorganisms. The 
application of beneficial microorganisms as bioinoculants can be a 
good alternative for promoting plant growth under various types of 
abiotic stresses.

In this review paper, the ecology of phyto-microbiome is 
summarized, focusing on the beneficial microbes and their role during 
abiotic stress conditions. The physiological and molecular responses 
of phyto-microbiome against major stressors drought, heat, salinity 
and heavy metal toxicity are discussed to determine the role of the 
microbiome in the stress alleviation of plants. Ascertaining the 
potential of microbes in the development of stress-resistant plants, the 
paper further emphasizes modern strategies like introducing novel 
bio-inoculants, application of multi-omics technologies for gene 
modification, and phyto-microbiome-based genetic engineering as 
sustainable solutions to enhance agricultural productivity.

2. Ecological structure and function of 
phyto-microbiome

The phyto-microbiome is composed of taxonomically diverse 
communities including bacteria, archaebacteria, fungi, and viruses, 
which establish various ecological relationships with the host plant 
such as symbiosis, mutualism, and parasitism (Chialva et al., 2022). 
Microbiomes associated with plants are either epiphytic or endophytic, 
and colonize both niches–the phylloplane (above ground part) and 
rhizoplane (below ground part) (Santos and Olivares, 2021). Various 
plant compartments in which the microbes form their niche and 
colonize are depicted in Figure  1. Rhizospheric microbiome is 
selectively attracted and recruited by the host plant though 
rhizodeposition in which root exudates containing compounds like 
amino acids, carbohydrates, organic acids, fatty acids, siderophores 
and flavonoids, are secreted. These root exudates act as signals to 
establish communication between plant and specific microbes. The 
type of root exudates varies with plant’s genotype, innate immunity, 
signaling pathways and response to environmental conditions. The 
root exudate composition is instrumental in shaping the structure of 
phyto-microbiome assembly in the rhizosphere. The epiphytic 
interactions in the rhizoplane and phylloplane provide oppuortunity 
to the microbes to enter the tissues, systematically spread through 
vascular system and colonize other compartments as endophytes. The 
endophytic community structure is mostly substrate-driven and 
depends upon the allocation of resources in different plant 
compartments. Besides plant-microbe interactions, the microbe-soil 
interactions and microbe-microbe interactions significantly affect the 
plant growth (Santoyo, 2022).

2.1. Rhizobacteria

The soil microenvironment of the root region is rich in microbes 
because it contains a wide range of nutrients, minerals, and 
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metabolites. The microbial colonization of the rhizosphere is 
significantly influenced by root exudates or substances that a plant 
root secretes (Kong and Six, 2012). Some microorganisms of the 
rhizosphere that aid in reducing abiotic stress include plant-growth-
promoting rhizobacteria (PGPRs), act as beneficial microorganisms 
that adopt several strategies to reduce abiotic stress, including the 
production of phytohormones, a decrease in ethylene oxide levels, 
an increase in the dehydration response, and the induction of genes 
encoding antioxidant enzymes (Yang et al., 2009). Further, these 
bacteria contribute to the production of plant growth regulators like 
indole-3-acetic acid (IAA), deaminase, and 1-aminocyclopropane-
1-carboxylic acid (ACC) that aid in enhancing plant growth (Glick, 
2014). It was observed that the genera Diazotrophicus, Bacillus, 
Pseudomonas, Azotobacter, Azospirillium, Rhizobium, Burkholderia, 
Gluconacetobacter and Serratia are the most important rhizospheric 
inhabitants that help plants mitigate a variety of abiotic stresses 
(Backer et al., 2018). In order to reduce stress in rice, Trichoderma 
harzianum was used to increase aquaporin, dehydrin, and 
malondialdehyde (Pandey et al., 2016). Additionally, T. harzianum 
was used to increase the oil yield from salinity affected Indian 
mustard (Brassica juncea) which enhanced antioxidant synthesis, 
decreased Na + uptake, and improved nutrient uptake in plants (Cho 
et  al., 2008). Rhizobacteria-induced drought endurance and 
resilience (RIDER) is defined as changes in the levels of 
phytohormones, defense-related proteins, enzymes, antioxidants, 
and epoxy polysaccharides on exposure to various stresses (Kaushal 
and Wani, 2016). These changes increase the plants’ resistance to 
abiotic stress (Raymond et  al., 2004). IAA and ACC-deaminase 
production in barley and oats appeared to be  improved using 
Pseudomonas sp. and Acinetobacter sp. (Lu et al., 2013). Pseudomonas 
sp. improved its ability to inhabit roots sideways is due to its capacity 
to produce exo-polysaccharides (EPS) stimulus, and increased 
salinity resistance in rice during germination (Rojas-Tapias et al., 
2012). Actinomycetes are known to promote plant growth and lessen 

the damage caused under abiotic stress. They are able to grow under 
harsh environment such as high salinity, drought and high 
temperature (Grover et  al., 2016). In the rhizosphere the 
Actinomycetes utilizes the nutrient and water more efficiently in the 
stressed soil as they possess the ability to cleave the rhizospheric soil 
particles and hence form strong bonds with the plants (Sandrini 
et  al., 2022). These bacteria follow several mechanisms such as 
changes in root and cell wall morphology, 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase activity, possess the ability to 
avoid oxidative damage, phytohormonal alterations, compatible 
solute production (glycine-betaine and proline) that promotes 
osmoregulation (Chukwuneme et al., 2020).

2.2. Phyllosphere bacteria

Phyllosphere is an ideal environment for microbes that harbors 
a huge variety of beneficial microbes belonging to bacteria, fungi 
and viruses. The performance of the plant is significantly influenced 
by the phyllospheric microbiome. These microbes also assist plants 
in purging contaminants. Additionally, they support the 
preservation of plant health and control the spread of plant 
pathogens. The long-distance transport process has a significant 
impact on the microbiota of plant parts that are distant from the soil 
or in other aerial parts of plants (Arun et  al., 2020). When rice 
plants were stressed by drought, inoculating the plants with the 
plant growth-promoting, drought-tolerant Bacillus altitudinis FD48 
increased relative water content, chlorophyll stability index, and 
membrane stability index compared to control (uninoculated 
plants) (Awasthy et al., 2017).

2.3. Fungi

Many fungi inhabiting the rhizospheric soil have remarkable 
potential of degradation of various pollutants, thereby protecting the 
plants from abiotic stress (Shourie and Vijayalakshmi, 2022). Some 
fungi like Arbuscular mycorrhizal fungi (AMF) are obligate 
mycorrhizal fungi that form symbiotic relationships with vascular 
plants including halophytes. AMFs can sporulate in the rhizosphere 
as well as form vesicles and hyphae in roots. Plant growth is increased 
because of the excellent access to the soil surface area provided by the 
hyphal network that AMFs create. Through the effective translocation 
of nutrients, AMFs contribute to an improvement in plant nutrition. 
Additionally, they aid in enhancing the health of plants and the soil 
(Compant et al., 2010). Plant productivity is typically reduced by 
drought stress, in which AMFs assist plants in retaining growth and 
increasing yield. AMFs aid in increasing water uptake as part of the 
drought mitigation mechanism and aid the plant in enhancing 
nutrient uptake, which enables plants to withstand stresses (Jiang 
et al., 2016). It was found that the plant biomass, fruit yield, and shoot 
content of P, K, Cu, Fe, and Zn increased when a tomato plant was 
inoculated with Funneliformis mosseae under saline conditions 
(Chandrasekaran et al., 2021). Wheat plants inoculated with AMFs 
performed well under salt stress and the oxidative damage to the 
plants is significantly reduced (Hayat et al., 2010). Extremely low and 
high temperatures, however, were reported to inhibit the development 
of the extra radical hyphal network and AMF fungal activity, and 

FIGURE 1

Structure of phyto-microbiome.
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decrease AMF fungal growth (Mathur and Jajoo, 2020). AMF helps 
plants grow their root system for water absorption at high 
temperatures to ensure high photosynthetic capacity and prevent 
damage to the photosynthetic apparatus. The inoculation of barley 
(Hordeum vulgare L.) with AMF led to improved growth, 
photosynthesis, osmotic homeostasis, and potassium uptake under 
low-temperature conditions, and Glomus versiforme was frequently 
more successful than Rhizophagus irregularis at boosting survival 
rates (Hajiboland et  al., 2019). Vesicular Arbuscular Mycorrhiza 
(VAM) also alters the physiological, functional, and biochemical 
makeup of plants in ways that increase their ability to withstand 
various abiotic stresses. AMF inoculation in vegetables has been 
shown to boost biomass production and increase yield (Haghighi 
et  al., 2015; Duc et  al., 2018). The uptake of greater amounts of 
nutrients, leaf water potential, and stomatal conductance are all 
significantly influenced by AMF inoculation (Khan et  al., 2013). 
When lettuce plants were inoculated with AMF, their abscisic acid 
(ABA) levels decreased, indicating that they were less stressed than 
uninoculated plants. Therefore, AMF inoculation modified the plant’s 
hormonal profile and physiology to make it more suited to saline 
conditions (Aroca et al., 2013).

2.4. Endophytes

Endophytes have symbiotic relationships with plants and live 
inside them for the entirety of their life cycles. Endophytes typically 
invade the seeds, roots, leaves, and stems of host plant, establish 
colonies in plant tissues and promote plant growth by enhancing 
nitrogen fixation, phytohormone secretion, and nutrient uptake. 
During periods of abiotic stress, endophytic microbes stimulate plant 
growth by various mechanisms such as osmolyte accumulation, 
induced systemic tolerance, production of phytohormones such as 
ABA, gibberellic acid (GA), cytokinins and IAA, ACC deaminase 
production for lowering ethylene. The endophytic Arthrobacter 
strains EZB4, EZB18, and EZB20 inoculation increased the proline 
content in Capsicum annum L. exposed to abiotic stress (Sziderics 
et  al., 2007). Salinity stress was alleviated by Bacillus firmus and 
Bacillus sp. in peanut, Curtobacterium sp. in soybean and rice, 
Enterobacter ludwigii, Bacillus cereus and Micrococcus yunnanensis in 
rice (Khan et  al., 2019, 2020; Pal et  al., 2021). The root fungal 
endophyte Piriformospora indica induced drought tolerance in 
Chinese cabbage (Sun et  al., 2010) and salt tolerance in barley 
(Baltruschat et al., 2008), by boosting the levels of antioxidants.

3. Physiological and molecular 
response of phyto-microbiome 
against abiotic stress

The responses of crop plants against abiotic stresses are manifested 
as altered phenotypes at morphological, physiological, and biochemical 
levels. Plants have developed complex signaling mechanisms to 
counteract stress conditions and enable survival. The plant microbiome 
further supplements the metabolic capacity of the plants to combat 
stress conditions. Here, the major stress factors (drought, heat, salinity 
and heavy metal) are discussed for their impact, plant response, and 
the role of the microbiome in combating stress.

3.1. Drought stress

Severe drought stress leads to wilting, yellowing, discoloration, 
and leaf burning in plants. Plants have the inherent capability to 
respond to drought stress and they try to control the damage by 
complex mechanisms. They respond and regulate the drought stress 
by closing stomata, decreasing the surface area of succulent leaves, and 
increasing the roots. However, prolonged drought stress is known to 
stunt plant growth with a reduction in leaf size, and stems, production 
of a greater number of roots, decrease in RubisCO activity and 
photosynthetic pigments, reduction in seedling vigor, and decrease in 
seed germination. It reduces membrane potential and increases the 
concentration of reactive oxygen species (ROS) causing free radical 
damage and disruption of ATP synthesis (Shaffique et al., 2022).

3.1.1. Drought stress response and signaling
Water scarcity is detected by the leaves and roots. However, the 

signals are transmitted majorly from roots to shoots. Plants sense and 
transmit water deficit through signaling activated by osmotic 
pressure, ROS and mechanical stresses, involving numerous sensing 
molecules. ABA is an important phytohormone that is produced in 
response to drought stress and plays a crucial role in adaptation to 
drought stress. ABA is mostly produced in vascular tissues and is 
transported via a transporter to various tissues. It induces stomatal 
closure and activation of stress-related genes that increase drought 
resilience (Kuromori et al., 2022). Water deficit induces the expression 
of enzymes of ABA biosynthetic pathway such as ZEP/ABA1, AAO3, 
cis-epoxy carotenoid dioxygenase (NCED3), and molybdenum 
cofactor sulfurase (MCSU/LOS5/ABA3). The binding of ABA with 
ABA receptor proteins PYR/ PYL/ RCAR initiates the ABA-dependent 
stomatal regulation pathway leading to the activation of Protein 
Phosphatases 2C (PP2C) and SNF1-Related Protein Kinases 2 
(SnRK2). The transcription factors such as ABF, MYC MYB, NAC, 
ERF, bZIP, and DREB/CBF are activated, and they bind to nuclear 
targets resulting in the expression of drought stress proteins (Ali 
S. et al., 2022; Aslam et al., 2022).

Drought stress causes a variety of biochemical changes inside the 
host, including an excessive build-up of reactive oxygen species 
(ROS), which can harm different tissues and cellular components like 
nucleic acids and other biomolecules, leading to programmed cell 
death (PCD) (Hasanuzzaman et al., 2020). In addition to altering 
biogeochemical cycles like the nitrogen and carbon cycles and slowing 
down the breakdown of organic matter, drought stress can also cause 
a considerable decrease in plant absorption and translocation of 
macronutrients (K, N, and P). Drought stress also reduces the 
absorption of cations (Ca2+, K+, and Mg2+) leading to the inhibition of 
several vital enzymes (Farooq et al., 2009).

3.1.2. Role of phyto-microbiome in drought 
stress

It has been discovered that plant-associated microbiomes secrete 
a variety of chemicals during drought, including phytohormones, 
osmolytes, and antioxidants, which increase plant drought tolerance. 
Apart from facilitating plant growth, phytohormones such as IAA, 
cytokinin, and gibberellins, can assist plants in coping with abiotic 
stresses. Interestingly, the primary mechanism of mitigation of 
drought stress by plant microbiome is by inducing drought stress-
responsive genes and regulating phytohormones (Iqbal et al., 2022).
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3.2. Heat stress

Heat stress leads to a decrease in cell water content, cell size, plant 
size, growth, and biomass. Severe heat stress leads to scorching and 
discoloration of leaves, fruits, and other plant parts. Heat stress also 
leads to the alteration of biomolecular composition. It has been seen 
that heat stress increases the concentration of amino acids while 
decreasing the concentration of starch, sugars, and lipids. Maltose 
concentration has been seen to be elevated (Dastogeer et al., 2022). At 
the molecular level, heat stress leads to protein denaturation and 
misfolding. The cell membrane fluidity is increased while membrane 
integrity is compromised (Sehar et al., 2022). The indirect effects are 
complex to decipher. The increase in temperature can cause previously 
unknown infections due to the growth of microbial pathogens and the 
emergence of newer more pathogenic strains (Velásquez et al., 2018). 
Continuous thermal stress can increase the deposition of reactive 
oxygen species (ROS) resulting in membrane depolarization and 
initiation of programmed cell death (Katano et al., 2018).

3.2.1. Plant defense against heat stress
Plants possess inherent thermal tolerance known as basal heat 

tolerance while thermotolerance can also be acquired. Plants resort 
to short-lived or long-term adaptation strategies to combat heat 
stress. Some plants have leaf and bud shedding, annual flowering, or 
regenerative stage completion in winter as an adaptation to high-
temperature habitats. Heat stress leads to the induction or activation 
of ion transporters, antioxidants, phytohormones and signal 
transduction elements. Late embryogenesis abundant (LEA) proteins 
are produced to protect against heat stress. To prevent acute heat 
injury and mortality, plants contain molecular stress memory states 
known as short-term acquired tolerance (SAT) and long-term 
acquired tolerance (LAT). Particularly, C4 and CAM plants adopt a 
variety of modifications to boost the process of photosynthesis  - 
under heat stress. Intensive transpiration from leaves can prevent 
damage by lowering the temperature of the leaves by several degrees 
(Hasanuzzaman et al., 2013).

Heat stress leads to the production of reactive oxygen species 
and in response the production of antioxidants such as peroxidase 
(POX), ascorbate peroxidase (APX), glutathione reductase (GR), 
superoxide dismutase (SOD), and catalase (CAT) is triggered in 
plants. The superoxide anion radical is changed by SOD into H2O2 
and O2, which are subsequently changed into water and oxygen by 
CAT and APX. In plant cells, GR plays a role in the regeneration of 
the reduced glutathione which is an essential antioxidant. These 
detoxification systems maintain cellular homeostasis and promote 
plant growth and development during heat stress (Zandi and 
Schnug, 2022). Plants activate a complex signaling system involving 
heat shock factors (HSFs) that control the transcription of heat 
shock genes, including the production of heat shock proteins 
(HSPs). HSPs help protect the plant by promoting the proper 
folding of proteins, preventing protein denaturation and 
aggregation, and facilitating the breakdown of defective proteins. 
Different types of HSPs are produced, such as Hsp60, Hsp70, 
Hsp90, Hsp100, and sHSPs, each has specific functions in 
maintaining cellular homeostasis and promoting thermotolerance. 
Overall, the synthesis and overexpression of HSFs and HSPs play a 
critical role in enabling plants to cope with high-temperature stress 
(Ul Haq et al., 2019).

3.2.2. Induction of thermotolerance
A brief pre-exposure to mild heat stress, also called priming, 

might cause plants to develop thermotolerance. This brief exposure 
builds a molecular stress memory which allows quicker and higher 
expression of heat stress transcription factors (HSFs) that control 
the production of heat shock proteins (HSPs) and antioxidant 
genes (Khan et  al., 2022). Under heat stress, HSPs work as 
molecular chaperones to preserve the structure and function of 
proteins (Jacob et al., 2017). As a result, stress memory enables 
primed plants to respond swiftly to heat stress and recover from the 
adverse effects of heat. Four isomers of HSFA1A, B, D, and E, are 
known as master regulators of heat stress. They trigger the 
expression of HSFA2. A group of heat stress response genes, known 
as memory genes are in turn amplified by HSFA2 (Friedrich 
et al., 2021).

3.2.3. Phyto-microbiome in combating heat 
stress.

Plant growth-promoting microorganisms (PGPM) can induce 
thermotolerance in plants by the production of heat shock proteins 
and induction of structural changes in plants. Moreover, 
phytohormone production, nutrient mobilization, and nitrogen 
fixation are brought about by the PGPM. Rhizospheric 
microorganisms produce and secrete phytohormones like IAA, 
gibberellins, and cytokinins. Endophytic microorganisms modulate 
the levels of abscisic acid, salicylic acid, and jasmonic acid under 
multiple stresses. Auxins are required for cell division and 
differentiation, growth of root and shoot, and seed germination, 
gibberellins regulate embryogenesis, stem growth, flowering, and fruit 
ripening, and abscisic acid regulates cell division and fruit ripening. 
Cytokines are involved in seed germination, root and shoot 
development, while ethylene is involved in abscission, senescence, and 
reproductive development. PGPM which produce gibberellins 
stimulate plant growth and stress tolerance (Hakim et al., 2021). Plant-
associated microorganisms known to secrete exopolysaccharide form 
a biofilm over the plant roots and make a protective barrier and 
facilitate nutrient supply. Exopolysaccharide-producing Bacillus cereus 
was found to increase root and shoot length, chlorophyll content, 
water-intake, flowering, and fruiting in tomatoes (Mukhtar 
T. et al., 2020).

3.3. Salinity stress

Salinity reduces nutrient and microbial diversity, organic matter, 
nitrogen, dissolved organic carbon, and microbial carbon biomass in 
soil. Additionally, it causes osmotic stress, disturbs the nutrient 
balance, reduces chlorophyll content, leaf area, and photosynthetic 
efficiency, and negatively impacts intracellular K+ influx. Salinity stress 
also affects several cellular enzymes involved in nitrogen metabolism 
and synthesis of amino acids and indirectly induces the accumulation 
of ROS, which could damage the plant cells.

3.3.1. Salinity stress response and signaling
Salinity stress is perceived by cell surface receptors relaying the 

signals through secondary messengers like inositol phosphates and 
ROS, and the activation of proteins like calcium-dependent protein 
kinase (CDPK) and mitogen-activated protein kinase (MAPK) that 
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regulate the expression and function of numerous genes. Transcription 
factors play a pivotal role in imparting resilience towards salinity stress 
through modulation of expression of the salinity stress genes 
(Hasanuzzaman and Fujita, 2022).

3.3.2. Role of phyto-microbiome in salinity stress
Plant microbiome employs several strategies to survive salinity 

stress including production of osmolytes, synthesis of extracellular 
proteases, and activation of Na+/H+ antiporter. They induce the 
production of plant growth hormones auxins, cytokinins, and 
gibberellins. Under salinity stress, the hormone ABA production is 
stimulated which reduces salinity stress by promoting osmolyte 
build-up in root vacuoles and the uptake of Ca2+ and K+ (Chen et al., 
2022). Cytokinins maintain plant totipotent cells in the shoot and 
root apical meristems. Under abiotic stress, ethylene is known to 
accumulate in plants. Ethylene is an essential hormone and signaling 
molecule which plays key role in growth, seed germination and 
ripening, root hair elongation, and leaf senescence. However, high 
ethylene concentration has a detrimental effect on plants. Plant 
growth promoting bacteria (PGPB) produce ACC deaminase which 
lowers ethylene by converting ethylene precursor to ammonia and 
ketobutyrate. In response to abiotic stress, microorganisms develop 
biofilms, which cover the roots and keep them from drying out. They 
also foster optimal microenvironments for interactions between 
plants and microbes (Hakim et al., 2021).

Highly soluble organic substances such as sugars, sugar alcohols, 
glucosyl glycerol, betaines, amino acids, and tetrahydropyrimidine are 
produced or accumulated by bacteria. These osmolytes help in 
maintaining the osmotic pressure of the cells under salinity. At the 
same time, plant cells also assimilate osmolytes such as disaccharides, 
oligosaccharides, sugar, alcohols, glycine, betaine, proline, and 
glutamate which in turn help in the survival of plant microbiome 
during salinity stress (Kumar et al., 2020).

Salinity stress impacts the uptake of Nitrogen (N), Phosphorus (P), 
Potassium (K), and water, leading to huge reduction in crop yields. 
PGPB improve nitrogen uptake and bioavailability of phosphorus by 
acidification and chelation. Similarly, the bioavailability of microelements 
such as Cu, Fe, Mn, Zn is also increased. Potassium-solubilizing bacteria 
such as Burkholderia convert potassium into a bioavailable form. Salinity 
reduces iron availability and exacerbates iron deficiency in plants. Iron 
is essential for the activity of several plant enzymes and for the synthesis 
of chlorophyll (Teo et  al., 2022). Siderophore-producing PGPB 
contribute significantly to Fe accumulation in roots and to its 
transportation to leaves (Yasmin et  al., 2020; Sultana et  al., 2021). 
Endophytic Streptomycetes that produce siderophores have been shown 
to increase root and shoot biomass as a result of improved Fe supply. 
Siderophore-producing PGPB have been demonstrated to increase salt 
tolerance (Afzal et al., 2019; Saeed et al., 2021).

Trichoderma harzianum reduced salt stress in plants by upregulating 
monodehydroascorbate reductase generating ACC-deaminase, as 
supported by mutant experiments (Brotman et al., 2013). In salty soil, 
Pseudomonas sp. and Acinetobacter sp. were found to increase IAA and 
ACC-deaminase synthesis in barley and oats (Chang et  al., 2014). 
Streptomyces sp. strain PGPA39 was found to reduce salt stress and 
promote development in ‘Micro-Tom’ tomato plants (Palaniyandi et al., 
2014). Tolerance in rice was increased against salt stress by inoculation 
of Pseudomonas sp. (Sen and Chandrasekhar, 2014) and against salt and 
high boron stress by inoculation of Bacillus pumilus (Khan et al., 2016).

3.4. Heavy metal stress in plants

Heavy metals pollutants such as Mercury (Hg), Arsenic (As), 
Cobalt (Co), Manganese (Mn), Iron (Fe), Cadmium (Cd), Nickel 
(Ni), Zinc (Zn), Copper (Cu), Chromium (Cr) and Lead (Pb) are 
released into the environment thorugh anthropogenic activities like 
growing industrialization, intensive agriculture, and urbanization 
(Ayangbenro and Babalola, 2017; Kurniawan et  al., 2022). The 
uptake of an excessive amount of heavy metals by crop plants from 
the contaminated soil affects plant health due to toxicity and 
considerably reduces the yield.

Heavy metals impact the growth and physiological processes 
either directly by inhibiting cytoplasmic enzyme activity and inducing 
oxidative stress, or indirectly by altering the phyto-microbiome 
structure and functions (Dotaniya and Saha, 2016).

3.4.1. Heavy metal stress response and signaling
Plants have evolved various strategies to detect and respond to 

heavy metal stress in their environment through complex stress 
signaling processes that involve multiple pathways and mechanisms. 
The uptake and transportation of heavy metals in plants depend upon 
several transporters and proteins which help in their sequestration, 
intracellular or tissue compatrmentalization and detoxification. 
ATP-driven pumps HMA (Heavy Metal ATPases) are found on the 
plasma membrane and tonoplast (vacuolar membrane). They 
transport heavy metal ions such as such as Cu, Zn Cd and Pb across 
membranes and facilitate the sequestration of heavy metals into 
vacuoles or their extrusion from the cytoplasm. ZIP transporters 
(Zrt/Irt-like Protein) are involved in the uptake of essential metals 
such as Zn, Fe, Mn and Cu, but they can also transport toxic metals 
like Cd and Pb on exposure. ZIP transporters are located in the 
plasma membrane and are responsible for the uptake of these metals 
from the soil into the root cells. NRAMP transporters (Natural 
Resistance-Associated Macrophage Protein) are involved in the 
uptake and translocation of many divalent metal ions such as Fe, Mn, 
Zn and Cd. They are found in the plasma membrane and 
endomembranes of plant cells. NRAMP transporters have been 
shown to play a role in metal distribution within the plant and in 
metal detoxification processes. ABC transporters (ATP-Binding 
Cassette) constitute a large family of proteins involved in various 
cellular processes, including heavy metal transport. Some ABC 
transporters are known to transport heavy metals such as Fe, Cu and 
Zn. They are also present in the plasma membrane and other 
intracellular membranes.

It has been seen that initial abiotic stress signaling pathways are 
shared among the different types of abiotic stress. The heavy metal 
stress signaling involves production of Reactive Oxygen Species 
(ROS) such as superoxide radicals (O2−) and hydrogen peroxide 
(H2O2), in response to heavy metal induced cellular damage in 
plants. They act as secondary messengers in the signaling pathways. 
Mitogen-Activated Protein Kinase (MAPK) signaling pathway is 
one of the major pathways activated by heavy metal stress. MAPKs 
modulate the expression of stress-responsive genes, including those 
involved in metal detoxification and ROS scavenging. Phytochelatins 
(PCs) are small peptides synthesized in response to heavy metal 
stress by the enzyme phytochelatin synthase (PCS), which 
conjugates glutathione molecules to form PC complexes. PCs play 
a crucial role in heavy metal detoxification by chelating heavy 
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metals and sequestering them into vacuoles, preventing their 
toxicity. Metallothioneins (MTs), low molecular weight, cysteine-
rich proteins, are induced by heavy metal stress, which have a high 
affinity for heavy metals and can bind and sequester them, thereby 
reducing their toxicity. MTs are involved in metal homeostasis and 
play a protective role against heavy metal stress in plants. Heavy 
metal stress triggers changes in intracellular calcium (Ca2+) 
concentrations, leading to calcium signaling. Calcium ions act as 
secondary messengers and regulate Calcium-dependent protein 
kinases (CDPKs) are activated by increased calcium levels. CDPKs 
modulate the expression of stress-responsive genes. Heavy metal 
stress can also activate the abscisic acid (ABA) signaling pathway in 
plants, which promotes the expression of stress-responsive genes, 
thereby improving plant tolerance to heavy metals. Several 
transcription factors specifically AP2/ERF, MYB, WRKY, and NAC 
families are involved in regulating the expression of stress-
responsive genes under heavy metal stress and regulate the 
expression of heavy metal response genes (Tiwari and Lata, 2018; 
Keyster et al., 2020).

3.4.2. Role of phyto-microbiome in heavy metal 
stress

Phyto-microbiome plays a crucial role in heavy metal stress 
mitigation in plants. These microorganisms render the protection to 
plants from harmful effects of heavy metals through many ways, such 
as heavy metal sequestration or biosorption, nutrient mobilization 
and solubilization, heavy metal transformation and detoxification, 
induction of stress tolerance.

Microbes efficiently bind and sequester heavy metals, 
preventing their accumulation in plant tissues. They promote the 
immobilization and containment of heavy metals in the soil, 
reducing their bioavailability to plants. Microbial enzymes can 
mobilize and solubilize the essential nutrients in the soil, making 
them more accessible for plant uptake. They can convert insoluble 
compounds into soluble forms, increasing their bio- availability and 
reducing heavy metal toxicity. Microbes also transform and detoxify 
heavy metals through processes like reduction, oxidation, 
and methylation.

Plant-associated microorganisms induce systemic resistance and 
enhance the stress tolerance of plants. They can stimulate the 
production of plant growth-promoting hormones, antioxidants, and 
other protective compounds, which help plants to cope with heavy 
metal stress. It is important to note that the effectiveness of plant-
associated microorganisms in heavy metal stress mitigation can vary 
depending on the specific microorganism, plant species, and 
environmental conditions. Syed et  al. (2023) isolated strains of 
Pseudomonas fluorescence and Trichoderma spp. from heavy metal 
contaminated soil and improved the growth and yield of chickpea by 
lowering Cd uptake (; Oubohssaine et al., 2022; Syed et al., 2023) 
isolated rhizobacterial strains from heavy metal contaminated 
mining sites and studied their application on growth of Sulla 
spinosissima L. in a highly multi-polluted toxic soil. They observed 
that the strain LMR291 (Pseudarthrobacter oxydans), LMR340 
(Rhodococcus qingshengii), LMR249 (Pseudarthrobacter 
phenanthrenivorans), and LMR283 (Pseudomonas brassicacearum) 
substantially improved all the growth parameters of Sulla plants, their 
photosynthetic pigments, and their antioxidative enzymatic activities 
(Oubohssaine et al., 2022).

4. Bioinoculants for alleviating abiotic 
stresses

Bioinoculants are formulations of microorganisms which can 
be  inoculated in crop plants for facilitating growth and enhance 
production. These comprise of living or quiescent cells of specific 
microbial strains that benefit host plant by mechanisms such as 
facilitating nutrient acquisition, releasing plant growth hormones, and 
other biological activities like pest control. Additionally, bioinoculants 
may also be  used to mitigate the harmful effects of abiotic stress 
(Benidire et  al., 2020). Several theories have been proposed to 
elucidate the mechanisms of beneficial effects of bioinoculants 
including production of phytohormones, biofilm, EPS, and ACC 
deaminase (Tittabutr et al., 2013; Ansari et al., 2019; Goswami and 
Deka, 2020), production of antioxidants (Singh et  al., 2019), 
cryoprotectants, heat shock proteins, solubilization of minerals such 
as phosphorus (P), potassium (K), and zinc (Zn), nitrogen (N) 
fixation, production of siderophores (Ferreira et al., 2019), antibiotics 
(Jin et al., 2021), hydrolytic enzymes such as proteases, cellulases, 
chitinases, and β-glucanases (Veliz et  al., 2017), and volatile 
compounds (Harun-Or-Rashid and Chung, 2017). Some microbes 
also improve the induced systemic resistance (ISR) and systemic 
acquired resistance (SAR) and thereby help in alleviating multiple 
stresses in plants. Table  1 summarizes the effects of microbial 
inoculants on mitigation of abiotic stresses.

4.1. Bioinoculants for inducing salt stress 
tolerance in plants

In saline soils, plants experience two forms of stresses- nutrient 
stress and osmotic stress (Ashrafi et al., 2014). Salinity stress increases 
the production of ethylene hormone which is damaging and inhibits 
plant growth. Bioinoculants consist of microbes that produce ACC 
deaminase, which lowers ethylene concentration and maintain plant 
growth in saline conditions (Ansari et al., 2019). Numerous studies 
have shown that the ACC deaminase-producing microbes support 
plant growth in saline environments such as Bacillus cereus in Vigna 
radiate L. (mung bean) (Islam et al., 2016), Bacillus pumilus strain 
TUAT-1 in Oryza sativa L. (rice) (Win et al., 2022) and Enterobacter 
strain G in Cajanus cajan L. (Anand et al., 2021).

4.2. Bioinoculants for inducing drought 
stress tolerance in plants

Drought stress directly affects the water relations in plants and 
exters huge impacts on plant physiology. Bacterial IAA promotes the 
production of ACC deaminase, which dissociates one of the ethylene 
precursors and delays the onset of senescence in drought stressed 
plants (Uzma et al., 2022). Microbially produced ACC deaminase 
resists plant root drying by degrading ACC and reducing the level of 
ethylene in the plant cell (Ngumbi and Kloepper, 2016). Like auxin, 
cytokinin is another plant hormone that is important in preventing 
early leaf mortality during water shortages. Microbes also increase the 
synthesis of the endogenous stress hormone ABA, which is crucial for 
the plant’s drought resistance. Higher levels of endogenous ABA 
increase root-water conductivity by upregulating the expression of 
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aquaporins (Goswami and Deka, 2020). Microbial inoculation also 
increases the synthesis of antioxidant enzymes in the plant, which 
helps the plant to enhance drought tolerance by decreasing ROS and 
increasing the production of antioxidant enzymes. Batool et al. (2020) 
showed that inoculating potatoes with Bacillus subtilis HAS31 reduced 
ROS production and mono-dehydroascorbate (MDA) production 
while increasing catalase, peroxidase, superoxide dismutase, and total 
soluble sugar in drought-stressed environments.

4.3. Bioinoculants for inducing 
temperature stress tolerance in plants

Heat stress has an impact on plants at several growth stages, 
including seed germination and reproduction, on a physical, 
physiological, and biochemical level. During high-temperature stress, 
seed germination rate and stand establishment are reduced due to the 
disturbed activity of enzymes involved in the breakdown of starch and 

TABLE 1 Effects of various microbial inoculants in reducing abiotic stress and improving plant stress resistance.

Bioinoculants Target plants Effect on target 
plants

Effect on plant 
development

References

Salinity stress

Microbacterium oleivorans, 

Rhizobium massiliae

Capsicum annuum L. AA, ACC deaminase and 

siderophore production

Plant height, weight, and 

chlorophyll contents significantly 

enhanced

Hahm et al. (2017)

Bacillus pumilus Zea mays L. IAA, ACC deaminase activity, 

P-solubilization, EPS 

production and higher 

osmoprotectants and 

malondialdehyde production

Increased root and shoot dry 

weights

Mukhtar S. et al. (2020)

Azotobacter salinestris Sorghum bicolor L. increased ACC deaminase, 

salicylic acid, proline, and EPS 

production

Significant enhanced in growth 

parameters, chlorophyll, total 

carbohydrate, proline, and macro-

elements content

Omer et al. (2016)

Bacillus pumilus Oryza sativa L. IAA, ACC deaminase, 

P-solubilization, proline 

aggregation, and EPS 

production

increased plant height, plant fresh, 

and dry weight, chlorophyll and 

carotenoids content

Ben Mahmoud et al. (2020)

Drought stress

Trichoderma and Pseudomonas Oryza sativa L. the production of antioxidant 

enzymes such as peroxidase, 

glutathione peroxidase, 

ascorbate peroxidase, and 

glutathione

Promotes development of plants Singh D. P. et al. (2020)

Bacillus amyloliquefaciens 

(MMR04)

Pennisetum glaucum L. Reduced expressions of DREB-

1E (drought–responsive) and 

ERF-1B (ethylene-responsive)

Promotes growth of the plants Murali et al. (2021)

Temperature stress

Pseudomonas vancouverensis and 

Pseudomonas fredericksbergensis

Solanum lycopersicum L. Reduced ROS concentration, 

membrane damage and

Improved plant growth, and 

robustness in cold stress

Subramanian et al. (2015)

Bacillus amyloliquefaciens and 

Brevibacillus laterosporus

Oryza sativa L. Increased proline, chlorophyll. 

Decreased leaf MDA content 

and electrolyte leakage

Increased overall plant growth in 

cold stress

Kakar et al. (2015)

Lysinibacillus fusiformis YJ4 and 

Lysinibacillus sphaericus YJ5

Zea mays L. Raising the amount of total 

phenolic content, osmolytes, 

antioxidant enzyme, and 

phytohormones

Enhanced growth of plants Jha and Mohamed (2022)

Heavy metals stress

Enterobacter sp. Pisum sativum L. IAA, siderophore production Increased growth parameters, 

xanthophyll, carotenoid, and 

chlorophyll content

Naveed et al. (2020)

Klebsiella sp Zea mays L. IAA, EPS, catalase, phosphate 

solubilization

Increased shoot and root growth Ahmad I. et al. (2015)
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synthesis of ABA & GA (Begcy et al., 2018). High temperatures have 
a significant impact on the photosynthetic process because they cause 
thylakoid disorganization, grana swelling and loss, a decrease in the 
activity of the electron acceptor and donor sites of photo-system (PS) 
II, and a decrease in the activity of enzymes such as RuBisCO (Hassan 
et al., 2020). Several microbes that are utilized as bioinoculants can 
withstand extremely high and extremely low temperatures. The 
temperature stress tolerance mechanisms include synthesis of heat and 
cold shock proteins, biofilm formation, and production of osmo-
protective chemicals (Bruno et  al., 2020). Inoculating Solanum 
lycopersicum L. (tomato) under chilling stress with Trichoderma 
harzianum was shown to increase photosynthesis and growth rate by 
lowering lipid peroxidation, electrolyte leakage, reducing ROS 
concentration, increasing leaf water and proline concentration 
(Ghorbanpour et al., 2018).

4.4. Bioinoculants for inducing heavy metal 
toxicity tolerance in plants

Heavy metals are absorbed by plants from contaminated soil 
through roots and are translocated to aerial parts through xylem, 
where they are bioaccumulated and impose considerable toxicity. 
Bioinoculants alleviate heavy metal toxicity by producing microbial 
siderophores for metal chelation, and phytohormones that boost the 
antioxidative enzymes in plants (Nazli et al., 2020). PGPB that are 
heavy metal tolerant (HMT) not only lessen the harmful effects of 
heavy metals but also encourage plant development in such conditions. 
Inoculation with the HMT-PGPB consortium increased the growth of 
Sorghum bicolor L. plants while also lowering the bioavailability of 
heavy metals Cu, Cd, Pb and Zn (El-Meihy et  al., 2019). The 
inoculation of Mucor sp., Klebsiella pneumoniae, Bacillus pumilus, 
Klebsiella sp., and Enterobacter sp., also considerably reduced heavy 
metal contamination and improved plant growth (Ma et al., 2015; 
Karthik et al., 2016; Pramanik et al., 2017; Zahoor et al., 2017; Mitra 
et al., 2018).

5. Multi-omics approaches to mitigate 
abiotic stress in plants

Omics refers to the modern day technologies that give a deep 
insight into the metabolism, genomics and transcriptomics processes 
occurring in plants and hence the multi-omics approaches are 
advantageous in plant improvement against abiotic stresses. The 
understanding and sequencing of the whole plant genome in 
Arabidopsis thaliana L. have proved the potential benefits of omics 
tools. Various other plants such as rice, maize and soyabean possess a 
complicated genome, which have been fully sequenced by the use of 
omics technology (Ali A. et al., 2022). Numerous studies suggest that 
under abiotic stress not all genes are turned on or off at the same time, 
due to which the plant metabolism becomes complicated to 
understand and hence the phenotype cannot be determined by the 
genotype (Jha et  al., 2019; Singh N. et  al., 2020). Therefore, the 
amalgamation of proteomics, genomics transcriptomics, 
metabolomics, epigenomics, ionomics, interact omics, phenomics 
could help in identification of the candidate genes and improve the 
productivity of various crops under abiotic stress (Kumar et al., 2022).

The plant-microbe interactions are better understood due to the 
recent development in the various omics tools and sequencing 
technologies involving the regulation of gene expression and 
biodiversity (Sandrini et al., 2022). The characterization of beneficial 
microbes associated with plants and their functions along with the 
knowledge of rhizospheric science are possible due to the microbiome 
based multi-omics studies (White et al., 2017). The integrated omics 
approaches, computational and synthetic biology along with latest 
advances in high throughput culturing are providing significant 
knowledge about the structure and function of diverse natural 
microbiomes and providing avenues for artificially engineering the 
microbial communities and hence improving the crop growth, 
protection against pathogens and several abiotic stresses (Trivedi et al., 
2021). Plants’ regulatory networks function to induce protective genes 
while inhibiting the negative regulators activated by abiotic stress 
factors. These regulations are responsible for the restoration of cellular 
homeostasis during the stress phase of plant cells. Multi-omics 
approaches help to integrate cellular processes at different levels based 
on systems biology knowledge (Katam et al., 2022).

5.1. Transcriptomics in abiotic stress

Transcriptome studies are a novel approach to understand the 
response of plants to abiotic stresses. Next-generation sequencing 
(NGS) and parallel RNA sequencing (RNA-Seq) are the two most 
promising techniques that open a new dimension of biological 
research to identify the networks among genes that actually respond 
to stress (Janiak et al., 2016). The advent of high-throughput omics 
techniques and rapid advancement in post-genomic epoch, specifically 
the next-generation sequencing (NGS), molecular characterization 
and modeling have proved beneficial in improving the efficiency and 
resilience of crop plants under abiotic stress (Pandey et al., 2021). The 
benefits of plant associated microbes and their communities are well 
understood by the use of NGS on DNA extracted from soil and 
rhizosphere and hence lead to better knowledge of their diversity, 
structure, abundance and important microbes (Alawiye and Babalola, 
2019). Also the clustered regularly interspaced short palindromic 
repeats (CRISPR/Cas9) is an important technology and serves to 
knockout non-transgenic plant and microbe mutants, characterize 
symbiosis-related protein, plant traits that sustain beneficial 
microbiome, various genetic factors and identification of candidate 
genes responsible stress tolerance and further assigning them specific 
functions (Levy et al., 2018; Khatabi et al., 2019). The overexpression 
of transcription factors increases the expression of genes that encodes 
enzymes and chaperones associated with endoplasmic reticulum 
stress response, resulting in an increase in rate of photosynthesis and 
tolerance to drought-like abiotic stress (Wang et al., 2018).

Expressed sequence tags (ESTs), microarray, Affymetrix 
GeneChip technology, and serial analysis of gene expression (SAGE) 
have been used to elucidate the function of various genes associated 
with abiotic stress (Varshney et al., 2009; Deokar et al., 2011; Le et al., 
2012). Chickpea genotype microarray study shows 210 differentially 
expressed genes (DEGs) and numerous differentially expressed 
unigenes under drought stress (Wang et  al., 2012). Global 
transcriptome profiling of the root tissues of drought-stressed lentils, 
chickpeas, and ground nuts identified differentially expressed genes 
(DEGs) involved in different energy metabolism pathways like TCA 
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cycle, glycolysis cycles mediated by transcription factors like WRKY, 
zinc finger family protein, bHLH, NAC, AP2/ERF and MYB protein 
domain family (Brasileiro et al., 2015; Singh et al., 2017). Genomics 
studies showed that ZmWRKY40 and ZmNF-YB2 genes encode a 
transcription factor that helps in resistance to drought in maize plants 
(Nelson et al., 2007; Zhang et al., 2008; Gangola and Ramadoss, 2020). 
In Arabidospsis bZIP was identified and it was associated with drought, 
salt, and cold tolerance by increasing oxidative enzyme level (Zong 
et al., 2018).

5.2. Meta-transcriptomics and 
metaproteomics

Meta-transcriptomics helps in the assessment of expressed 
genes (Nilsson et al., 2019). Studies related to ecology of microbial 
communities were possible by the sequencing of transcripts 
(RNA-seq) (Marcelino et al., 2019). However, interpretation of 
RNA-seq results is a tedious process but the advancement of 
databases and the increasing availability of annotated 
transcriptomes in curated databases as well as development of a 
robust de novo RNA-seq assembler can help in making the 
explanation of the result easier (Kuske et  al., 2015). 
Metaproteomics provides functional data and suggests about the 
complex matrix such as specific soil sample. It emphasizes the 
study of proteins present in a biomass (Sandrini et al., 2022). It is 
an important phenomenon that helps in recognition of metabolic 
pathways, characterization of biological processes, plant-microbe 
interactions, their structure, function, significance, dynamics, and 
r egulation of symbiosis and molecular basis of cell communication 
(Khatabi et al., 2019).

5.3. MiRNA-omics in abiotic stress

Plant produces miRNAs (micro-RNAs) that are post-
transcriptional gene-expression regulators, which help them to survive 
under stress conditions (Zhang and Wang, 2015). By using 
computational tools like screening of small RNAs library, different 
drought stress-responsive miRNAs were identified from Arabidopsis, 
rice, and sugarcane (Liu et al., 2008; Zhou et al., 2010; Gentile et al., 
2015). Fourteen different stress-inducible miRNAs were identified 
from Arabidopsis and among them, miR168, miR171, and miR396 
responded to all of the different types of stresses (Liu et al., 2008). In 
rice 18 cold-responsive miRNAs were identified by (Lv et al., 2010) 
most of which were downregulated by the cold stress (4°C) and it was 
supposed that miRNAs were ubiquitous regulators in rice. While on 
the other hand, due to cold stress sharp increase in the expression of 
miR812q in rice plants was observed in starting of the reproductive 
phase (Jeong et al., 2011). High-throughput sequencing revealed that 
31 cold stress-induced genes were upregulated and 43 miRNAs were 
downregulated in tea (Camellia sinensis L.) (Zhang et al., 2014). In 
Arabidopsis roots enhanced expression of a few miRNAs like miR156g, 
miR157d, miR158a, miR159a, miR172a,b, miR391, and miR775 were 
observed, under low oxygen stress situations (Moldovan et al., 2010). 
In wheat Tae-miR6000, miR156, miR159, miR164, miR167a, miR171 
and miR395 were identified as UV-B responsive microRNAs (Wang 
et al., 2013).

The functions of miRNAs in response to abiotic stresses as well as 
plants’ development are determined by using artificial miRNAs 
(amiRNAs), which could be useful to design the strategies for silencing 
endogenous genes and inhibit the expression of target genes (Zhang 
F. et al., 2022). Technologies such as Real-Time Quantitative Reverse 
Transcription Polymerase Chain Reaction (qRT-PCR) and 
microarrays suggested that abiotic stress conditions induce miRNA 
expression profiles and are diverse among plant species (Begum, 2022).

5.4. Metabolomics in abiotic stress

Metabolomics technology provides a chemical profile of 
thousands of compounds and involves the use of high-pressure liquid 
chromatography along with high resolution mass spectrometry (LC–
MS), gas chromatography and mass spectroscopy (GC–MS) and 
nuclear magnetic resonance (NMR) spectroscopy for characterization 
of stress induced metabolites (Crandall et al., 2020). The suitability of 
the selection of the technique depends on the speed, sensitivity, and 
accuracy of the method used (Ghatak et  al., 2018). Due to stress 
conditions plants can adapt to the stress or tolerate the stress. Mostly 
metabolomics studies focused on the comparative analysis of stress-
susceptible and stress-tolerant responses of plants. Along with amino 
acids other metabolites like sugar, phenolic compounds, and organic 
acid also play an important role in plant abiotic stress (Dawid and 
Hille, 2018; Ghatak et al., 2018). The metabolomics and other -omics 
technologies, allowed a detailed and in-depth analysis of plant stress 
as the result of the alteration of metabolites and gene expressions 
(Anzano et al., 2022). It was observed that under stress conditions 
plants activate high proline production but under the stress recovery 
phase, it undergoes proline catabolism (Krasensky and Jonak, 2012). 
Metabolomics was used to study phytohormone response against salt 
stress as a targeted approach in roots and shoots in Arabidopsis 
seedlings (Šimura et al., 2018) and non-targeted approach in maize 
(Richter et  al., 2015). Metabolomics revealed the contribution of 
overexpression of GmGSTU4, responsible for production of 
glutathione transferases (GSTs) and increase the glutathione 
biosynthesis under salt stress in transgenic tobacco (Kissoudis et al., 
2015). In mycorrhizal roots the variations in the metabolomics profile 
have been observed leading to the identification of potential primed 
compounds that are involved in improved stress tolerance in 
mycorrhizal plants (Rivero et  al., 2018; Bernardo et  al., 2019). 
Metabolomics play an important role in studying the exudates released 
by the roots in the rhizosphere which serve as a significant feed source 
for the microbes that are associated with the roots as compared to the 
surrounding soil that is poor in nutrients (Escudero-Martinez and 
Bulgarelli, 2019). A major issue in metabolomics is that a huge variety 
of potential metabolites are present in any given sample and due to the 
limited extent of public metabolite reference databases assigning a 
measured metabolite to a specific organism or condition, it becomes 
difficult to correlate the metabolite production to a particular stress 
(Khatabi et al., 2019).

5.5. Genomics in abiotic stress

Abiotic stress studies on plants include many cellular processes 
like sensing, signaling, transcription, transcript processing, translation, 
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and post-translational protein modifications. These studies ultimately 
boost crop productivity and agricultural sustainability through 
genetic, chemical, and microbial approaches (Zhang H. et al., 2022). 
The effect of different abiotic stress in plants was monitored 
quantitatively by using imaging technology along with the support of 
information technology. Various phenotypic expressions of plants are 
useful quantitative phenotypic tools, as genotypic changes lead to the 
expression of phenotypes. By using a combination of genomics and 
data science, we can analyze the plant stress responses under different 
combinations of environmental stress (Zandalinas and Mittler, 2022). 
In this method target sequences can be designed and introduced into 
the most appropriate vectors. DNA, RNA, or RNPs like genetic cargo 
is selected for further delivery by (i) modifying the targeted sequence, 
(ii) regenerating the edited calli, and (iii) producing the edited plants 
(Farooqi et al., 2022).

5.6. Metagenomics

Metagenomics identifies the genomic diversity and functions of 
microbial genes (Solden et al., 2016) and suggests about the relative 
abundance and taxonomic composition (Singer et  al., 2016). The 
plant-microbe complexity can be studied through next-generation 
DNA sequencing methods like 454 pyrosequencing and second and 
third generation sequencing platforms such as PacBio RSII Sequel, 
GridION, Illumina MiSeq, NovaSeq, GeneStudio, Oxford Nanopore 
MinION, PrometION, Ion Torrent PGM (Nilsson et al., 2019). Two 
key methods such as shortgun metagenomics and metabarcoding are 
employed to identify the microbial communities and compare them 
on the basis of composition, richness, evenness and assembly (Sharma 
et al., 2020).

5.7. Phenomics-manipulating plant 
root-associated microbiomes

The plant root-associated microbiome influences numerous plant 
traits, primary and secondary metabolites that act as growth substrate 
for few microbes and have antagonistic effect on the others, they act 
as signals that regulate the plant microbe interactions. Although few 
rhizospheric microbial species act as symbionts or growth promoting 
rhizobacteria are beneficial for the plants and helps in enhancing the 
plant pathogen defense and nutrition, few microbes may be parasitic 
and commensal (Lareen et al., 2016; Pascale et al., 2020; Chen et al., 
2021). Therefore the study and classification of the complex interaction 
of plant microbiome and soil rhizosphere is important for developing 
novel approaches towards crop resilence against pathogens and 
environmental stresses (Zenda et al., 2021).

6. Dynamic role of fauna in plant 
microbiome functions

Some of the useful fungi serve as plant parasitic nematode hunters 
such as A. avenae is effective against Ditylenchus (plant-parasitic 
nematode) propagation and is an active bio-controlling agent in many 
parasitic nematodes and pathogenic fungi (Haraguchi and Yoshiga, 
2020). Members of Protista are abundantly present in the plant 

rhizosphere and regulates various mechanism such as nutrient recycling, 
and interactions in the food web, promotes productivity (Hünninghaus 
et al., 2017), and lowers the total bacterial biomass (Krome et al., 2010). 
It also suppresses plant pathogens and boosts immunity of plants against 
various pathogens. They represent diverse modes of nutrition, wide 
range of prey interactions, and chemical communication (Mahmud 
et al., 2021; Solanki et al., 2022). Due to their numerous interactions, the 
protists cause significant changes in the structure and function of the 
microbiome. Also regulates auxin and cytokinin levels and hence 
possesses a significant effect on plant microbiome linked to several 
hormonal fluctuations (Krome et al., 2010). Earthworms also possess a 
strong impact on the soil microbiome. It is present in the soil 
rhizosphere and significantly adds to about 80% of the biomass in the 
soil macrofauna (Yasmin and D’Souza, 2010). Depending on the 
earthworm type and the micro-habitat, its impact can be  positive, 
negative, or neutral on the diversity and enrichment of the microbial 
population (Afridi et al., 2022b). The activities of microorganisms are 
activated due to the release of acutaneous mucus (glycoprotein) by the 
earthworm that enhances the interactions. Due to the significant 
interaction between the microorganisms and the earthworm, there is 
improved microbial activity in the soil, increased availability of nutrients 
and increased carbon turnover (Bedano et al., 2019).

7. Plant microbiome engineering to 
combat abiotic stress

Plant microbiome engineering (PME) is an important approach 
to promoting plant health, growth, and productivity under adverse 
environmental conditions (Afridi et al., 2022a). According to Parnell 
et al. (2016) soil microbiome is the next green revolution as it is 
serving as a promising tool that will meet the future global food 
demands. PME has been used to improve nitrogen use efficiency 
(NUE) in plants (Lau et al., 2022). Also, it is a beneficial technology 
in plants as it regulates the mechanism of hormones and specific 
antagonistic metabolite (rhizobitoxine) production that provides 
resistance against several pathogens, suppresses soil-borne diseases, 
and regulates nutrient availability in the rhizosphere (Rodríguez 
et al., 2020; Figure 2). Various approaches used for engineering the 
phyto-microbiome for developing abiotic stress tolerance in crop 
plants are summarized in (Table 2). The steps involved in engineering 
the plant microbiome include selection and engineering of the host-
mediated multi-generation microbiome, inoculation of microbial 
communities as bioinoculants in the rhizosphere, soil, seedling/ 
seeds, mixed strain inoculation, tissue atomization, and direct 
injection in the plant tissues.

7.1. Selection and engineering of the 
host-mediated multi-generation 
microbiome

The selection and engineering of the microbiome are important 
as it selects the microbial communities through the host and 
influences and modifies the traits of the host plant which further 
influences the microbiome (Mueller and Sachs, 2015). Hence there 
is a synergistic relationship between host-mediated microbial 
communities and contributes significantly to agricultural yield, 
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biodiversity, and food security (Kaul et  al., 2021). The “artificial 
selection of the ecosystem” was done to screen the plant biomass of 
Arabidopsis thaliana L.with the lowest (low selection lines) and 
highest (high selection lines) plant biomass which was earlier 
improved by the microbial community and their interactions with 
the plants for over 16 generations (Swenson et al., 2000). Different 
studies in Arabidopsis thaliana L. and Brassica rapa L. (Panke-Buisse 
et al., 2015) suggest a positive correlation between plant biomass and 
increase activity of microbial extracellular enzymes leading to soil 
nitrogen mineralization and suggesting the dynamic role of 
microbiomes to deal with numerous environmental and agronomic 
issues (Orozco-Mosqueda et al., 2018).

7.2. Inoculation of microbial communities 
as bioinoculants in the rhizosphere, soil, 
seedlings/seeds

Using microbial communities as bioinoculants finds wide 
applications such as plant growth, enhanced nutrient mobilization, 
stress resilience (Al Kahtani et  al., 2020; Alok et  al., 2020). The 
inoculation of different external strains from the rhizospheric soil can 
alter the structure of the microbiome. Different studies suggest their 
significant role. For example, the healthy oilseed crop was grown by 
using the bioinoculants on oil palm seedlings (Elaeis guineensis Jacq.), 
it modified the enzymatic and dynamic potential of rhizospheric 
microbes (Veeramachaneni and Ramachandrudu, 2020). Inoculation 
of Agrobacterium sp. 10C2 in Phaseolus vulgaris enhanced plant 
biomass and nodule formation by increasing antioxidant level, 
flavonoids, polyphenols, and phosphorus content in the beans, and 
also promoted colonization of beneficial rhizobacteria Brevibacterium, 
Paenibacillus koreensis, Bacillus pumilus and Actinomyces (Chihaoui 
et  al., 2015). A group of biocompatible microbial communities 
enhanced the growth of maize seedlings under a greenhouse with 
low-phosphorus soil. They are the group of engineered bacteria that 
were studied for biofilm formation, phosphate solubilization, and root 
colonization (Magallon-Servin et al., 2020). In orchids, the inoculation 
of Klebsiella oxytoca and Pseudomonas fluorescens into Dendrobium 

nobile Lindl. promoted the vigor, growth, germination, and 
adaptability (Pavlova et  al., 2017). Growth of tomato seedlings 
(Lycopersicon esculentum L. cv. Saladette) was significantly enhanced 
with the co-inoculation of two endophytic strains Pseudomonas 
stutzeri E25 and Stenotrophomonas maltophilia CR71 in the 
rhizosphere as compared to single inoculation (Rojas-Solís et al., 2018).

7.3. Mixed strain inoculation and tissue 
atomization

The significant effect of the microbiome depends upon its 
interaction, multiple mechanisms, and functions carried out by 
the microbial community. Mixed strain inoculation proved 
beneficial compared to single or no inoculation in Populus plants 
where additive incorporation of strains of Pseudomonas and 
Burkholderia isolated from Populus deltoids L. significantly 
improved the plant’s photosynthetic capacity and root biomass 
(Timm et  al., 2016). Also, the response was analyzed by 
transcriptomics, and specific genes for Pseudomonas and 
Burkholderia were turned on through inoculation of each strain 
and mixture including genes that encode for stress (temperature 
& salinity) and regulate plant hormone (ethylene). The mixed 
inoculation was studied in various other genes involved in the 
synthesis of lipids, sulfate, and thiamine and also the comparison 
of mixed and single inoculation was studied on the metabolic 
profiling of the leaf (Timm et al., 2016). The tissue atomization 
technique proved successful in improving plant development 
through the bioengineering of plant microbiomes without any 
genetic manipulation. This technique was exploited by using an 
endophytic bacterium Paraburkholderia phytofirmans PsJN in the 
flowers of dicot and monocot plants and significant improvements 
were observed in the seed microbiome by vertical inheritance as 
well as growth parameters (Mitter et al., 2017).

7.4. Direct injection in the plant tissues

This technique helped in incorporating the antimicrobial 
properties in the plants susceptible to attack by pathogens. For 
example, Manuka (Leptospermum scoparium L.), a medicinal plant 
produces anti-microbial oil that is having a potential effect against 
pathogenic bacteria (Pseudomonas syringae; Orozco-Mosqueda et al., 
2018). Bacteria were able to colonize and survive in the plant through 
direct inoculation of biocontrol agent and PGPB (Arthrobacter agilis 
UMCV2) which is given a direct injection in the stem of Medicago 
trancatula L. plant (Avilés-García et  al., 2016). More efficient 
colonization will occur depending on the bioavailability of nutrients 
(Avilés-García et al., 2016). Certain plants for example Zea mays L., 
and teocinte have shown direct injection techniques using bacterial 
endophytes (Johnston-Monje and Raizada, 2011).

8. Conclusion

Microbial interactions with plants have multifaceted functions; 
on one hand, microbes help plants to maintain their growth and 

FIGURE 2

Major applications of plant microbiome engineering (PME).
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development by fixing, mobilizing, and producing nutrients, 
hormones, and organic phyto-stimulant compounds, while on the 
other hand, they induce local or systemic stress alleviation response 
mechanisms in plants to survive under abiotic stress conditions. 
Phyto-microbiome essentially helps crop plants in their adaptation 
and survival on exposure to abiotic stress via induced systemic 
tolerance. It plays a key role in determining the varying levels of 
phytohormones, defense-related proteins, enzymes, antioxidants, and 
secondary metabolites, which mediate the stress-signaling processes. 
Growth-promoting microbes use various mechanisms to enhance 
plant growth under stress conditions, which include the production 
of plant growth regulators, iron and zinc sequestration, phosphorus 
and potassium solubilization, siderophore production, atmospheric 
nitrogen fixation, secondary metabolite production, as well as 
facilitation of uptake of other essential macro- and micronutrients 
from the soil. Microbial communities exhibit excellent resilience 
towards environmental challenges. The microbiome also displays 
functional redundancy by which, in the wake of environmental 
stresses, one microbial taxon can be replaced by another that can 
survive the stress. In addition to enhancing the microbial community 
structure, the introduction of advantageous stress-tolerant 
microorganisms can help improve plant and soil health when exposed 
to abiotic stress.

Recent agricultural practices have provided evidence that 
microbial bio-inoculants such as PGPRs not only aid in reducing 
environmental stresses but also increase the production of a variety of 
crop plants including rice, maize, barley, and soybean. The 
bio-inoculants not only enhance crop yield by bolstering the plant’s 
defense mechanism and protecting it from abiotic stress such as 
drought, and salinity, but they also improve soil health. Recently, the 
use of a consortium of microorganisms in crop production has been 
promoted because a single bioinoculant might not be sufficient to 
protect plants from various stresses. The development of a novel and 
effective bio-inoculant formulation must be centered on the selection 
of effective native strains for improved outcomes and the bioinoculants 
must be tested at multiple sites prior to commercialization to avoid 
failure at field level.

Multi-omics tools and technologies have revolutionized crop 
improvement research for the development of abiotic stress-tolerant 
varieties. The potential of multi-omics approaches can be utilized to 
decipher the stress tolerance mechanisms governed by phyto-
microbiome. Metagenomics and meta-transcriptomics offer huge 
potential to identify the complex microbial networks implicated in 
stress signaling and tolerance development. Genomics technologies 
enable high-throughput screening of beneficial microbes, leveraging 
gene modification and genetic engineering approaches for introducing 

TABLE 2 Phyto-microbiome engineering approaches for abiotic stress tolerance in crop plants.

Plant growth promoting 
microbes

Host plant Microbiome engineering approaches References

Brucella sp. PS4 Gossypium hirsutum L. Promotes pesticide degradation Ahmad et al. (2022)

B. subtilis PM32 Solanum tuberosum L. Biocontrol of fungal diseases Mehmood et al. (2021)

G. intraradices Cucumis sativus L. Improves biomass, regulates salinity stress, enhances the 

production of antioxidant enzymes

Hashem et al. (2018)

B. firmus SW5 Glycine max L. Regulates production of antioxidant enzymes, salinity tolerance El-Esawi et al. (2018)

B. subtilis GB03 Arabidopsis thaliana L. Monitors the import of sodium ions in root Wang et al. (2016)

Beauveria bassiana and Metarhizium 

brunneum BIPESCO5

Capsicum annuum L. Inhibit pathogenic Fusarium sp. Jaber and Alananbeh (2018)

A. pullulans 490 Solanum lycopersicum L. Biocontrol activity and helps in the production of biosurfactants Köhl et al. (2020)

B. pumilus JPVS11 Oryza sativa L. Regulates salt tolerance Kumar and Sharma (2020)

Bacterial endophytes (Bacillus and 

Brevibacillus)

Zea mays L. Enhances plant growth and development Al Kahtani et al. (2020)

Glomus mosseae Triticum aestivum L. Controls osmotic potential and drought stress, regulates 

production of antioxidant enzymes

Rani et al. (2018)

B. xiamenensis Saccharum officinarum 

L.

Improves the phytoremediation capacity Zainab et al. (2021)

P. geniculata, B. subtilis, B. siamensis, B. 

gelatini, B. ubonensis, B. territorii

Piper nigrum L. Antagonistic to soil-borne Fusarium solani Lau et al. (2020)

R. irregularis Triticum aestivum L. Regulates heat stress, allocation of nutrient and nutrient 

composition in roots

Cabral et al. (2016)

T. harzianum Thar DOB-31 Curcuma longa L Regulates production of Indole-3-acetic acid (IAA) and hydrogen 

cyanide

Vinayarani and Prakash (2018)

Halomonas sp. Avicennia marina L. Regulates heavy metal stress Mukherjee et al. (2019)

Endophytic diazotrophic bacteria Sarracenia species L. Helps in nitrogen fixation Sexton et al. (2019)

B. safensis SCAL1 Solanum lycopersicum L. Regulates heat stress Mukhtar et al. (2022)
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abiotic stress resistance in plants. Plant microbiome engineering could 
be immensely beneficial in the development of strategies to improve 
plant health, enhance crop productivity, improve resistance against 
abiotic and biotic stresses, and achieve sustainable agriculture in an 
eco-friendly manner.
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