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The ability of fungal species to produce a wide range of enzymes and metabolites, 
which act synergistically, makes them valuable tools in bioremediation, especially 
in the removal of pharmaceutically active compounds (PhACs) from contaminated 
environments. PhACs are compounds that have been specifically designed to treat 
or alter animal physiological conditions and they include antibiotics, analgesics, 
hormones, and steroids. Their detrimental effects on all life forms have become 
a source of public outcry due their persistent nature and their uncontrolled 
discharge into various wastewater effluents, hospital effluents, and surface waters. 
Studies have however shown that fungi have the necessary metabolic machinery 
to degrade PhACs in complex environments, such as soil and water, in addition 
they can be utilized in bioreactor systems to remove PhACs. In this regard, this 
review highlights fungal species with immense potential in the biodegradation 
of PhACs, their enzymatic arsenal as well as the probable mechanism of 
biodegradation. The challenges encumbering the real-time application of this 
promising bioremediative approach are also highlighted, as well as the areas of 
improvement and future perspective. In all, this paper points researchers to the 
fact that fungal bioremediation is a promising strategy for addressing the growing 
issue of pharmaceutical contamination in the environment and can help to 
mitigate the negative impacts on ecosystems and human health.
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1. Introduction

Pharmaceutical active compounds (PhACs) are a major class of emerging pollutants which 
comprise of small molecule pharmaceuticals (antibiotics, analgesics, diuretics, tranquilizers, 
psychiatric drugs, etc) as well as biologics (anti-toxins, blood products, hormones, interleukins, 
monoclonal antibodies, vaccines, etc.) (Rodrigues et al., 2023). They are key components of both 
human and veterinary medicine. However, PhACs are remarkably stable and not fully metabolized 
in both human and animal systems, thus, they eventually end up in the environment (González-
González et al., 2022). The removal of the released PhACs from the environment, especially from 
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wastewater, has been noted to be a very challenging task by various 
authors (Castiglioni et al., 2006; Papagiannaki et al., 2022; Rodrigues 
et al., 2023). This is borne out of the fact that PhACs have a low octanol/
water partition coefficient, which indicates their high solubility and 
polarity. In addition, they are highly mobile and are quite resistant to 
biodegradation under ambient conditions (Christensen et al., 2022). 
Consequently, these pollutants persist perpetually in various water 
bodies across the environment. In this regard, concentrations of PhACs 
ranging from ng/L–μg/L have been recorded in effluents from sewage 
treatment plants, sediments, surface water, ground water, and 
occasionally in drinking water supplies (Papagiannaki et al., 2022). For 
instance, in a recent study by He et  al. (2022), different levels of 
antibiotics including ciprofloxacin, erythromycin, ciprofloxacin, 
roxithromycin, sulfadiazine, sulfamethoxazole, tetracycline, and 
oxytetracycline, as well as analgesics, ibuprofen, naproxen were recorded 
in drinking water sources in a city in China.

The risk posed by the persistence of PhACs in the environment 
cannot be overemphasized. These risks range from development of 
antibiotic resistance, damage to the aquatic life, hormonal disruption, 
and bioaccumulation to low quality drinking water (Dos Santos et al., 
2021; He et al., 2022; Papagiannaki et al., 2022). Unfortunately, the 
efficiency of PhACs removal through conventional wastewater 
treatment techniques such as adsorption, membrane filtration, 
ozonation, photolysis, photocatalysis has been noted to be limited due 
to one or many reasons (Cai et  al., 2018). For instance, although 
membrane filtration via nanofiltration and reverse osmosis have been 
identified as effective in removing low molecular weight PhACs, the 
large-scale deployment of this technique is critically limited by 
membrane fouling which results in high operational cost (Cornelissen 
et al., 2021). Similarly, ozonation, which has high potential as a PhACs 
secondary treatment method is noted to be highly energy demanding 
and may also lead to the generation of oxidation products/intermediates 
with higher toxicity as recently established by Quaresma et al. (2021). In 
this regard, the search for environmentally friendly and effective 
treatment processes to remediate PhACs in the environment is critical 
(Narayanan et al., 2022).

Hence, various research efforts have been placed on remediating 
PhACs and other emerging contaminants from the environment using 
biological methods based on different prokaryotic and eukaryotic 
systems that have been identified with high with recoverability and 
reusability potential (Bilal et al., 2019). Generally, these organisms have 
rapid multiplication rates, short generational time, and flexible genetic 
machinery, which in all, enable them to evolve their metabolic capacity 
to allow the incorporation of new compounds into their metabolic 
pathways (Amobonye et al., 2021). Furthermore, their ability to adapt 
to the metabolism of novel anthropogenic compounds including 
PhACs is believed to be based on the natural selection of organisms 
which have developed the necessary degradative enzymes with less 
specific substrate-specificities and probably novel metabolic pathways 
(Amobonye et al., 2021). In this regard, organisms from all classes 
ranging from bacteria – Chryseobacterium taeanense, Rhizobium 
daejeonense, Pseudomonas moorei, Nitrosomonas europaea, etc. (Xu 
et al., 2016; Nguyen et al., 2019) to microalgae – Chlorella sorokiniana, 
Chlorella vulgaris, Chlamydomonas Mexicana, Microcystis aeruginosa, 
etc. (Xiong et  al., 2018; Zhou et  al., 2022) and fungi- Ganoderma 
lucidum, Phanerochaete chrysosporium, Trametes versicolor (Silva et al., 
2019; Del Álamo et al., 2022) have been highlighted to facilitate the 
bioremediation of PhACs as individuals or in consortia.

Fungal bioremediation has since been identified as an effective 
biotechnology tool in the removal of various pollutants from the 
environments, this is in addition to the application of fungal organisms 
in the food, pharmaceutical, textile, paper and construction industries, 
to mention a few. Various studies have shown that various fungi as 
well as their enzymes, are important agents in the removal of 
pharmaceutical compounds and other persistent pollutants in various 
aquatic systems (Ferrando-Climent et  al., 2015; Narayanan et  al., 
2022). Their effectiveness in this regard has been ascribed to their 
inherent ability to secrete a wide range of enzymes, including laccases, 
peroxidases, cytochrome P450 mixed function oxidases which 
transform the PhACs via reduction, oxidation, hydroxylation, 
dehalogenation, dehydrogenation, deamination, formylation, etc. 
(Ferrando-Climent et al., 2015; Narayanan et al., 2022). Recently, the 
abilities of Fomes fomentarius, Hypholoma fasciculare, Phyllotopsis 
nidulans, Pleurotus ostreatus, and Trametes versicolor to remove the 
cytostatic drugs, bleomycin and vincristine were described (Jureczko 
and Przystaś, 2021). Similarly, the biodegradation of ofloxacin along 
with some other medical chemicals in hospital wastewaters by 
T. versicolor was also demonstrated (Gros et al., 2014), while laccase 
enzyme from the same fungus was shown to degrade carbamazepine, 
diclofenac, sulfamethoxazole and trimethoprim (Alharbi et al., 2019).

Therefore, this paper highlights the recent findings on the roles of 
fungi as well as their enzymes in the bioremediation of PhACs. 
Emphasis has also been placed on the elucidating PhACs as emerging 
contaminants, and the effectiveness of specific fungal species in the 
removal of PhACs from the environment. This paper also describes 
the fungal enzyme machineries involved in PhACs bioremediation 
together with a probable mechanism for fungal bioremediation of 
PhACs. Different fungal-based bioreactors for PhACs degradation 
were also discussed. In addition, the future areas of development 
regarding this technology were also highlighted. This paper is expected 
to be an important reference for researchers in charting a new course 
for the fungal war against PhACs bioaccumulation.

2. Pharmaceutical active compounds 
as emerging micropollutants

The increased demand in the use of pharmaceutical active 
products is positively correlated with their rate of disposal into the 
environment, consequently these products constitute a substantial 
proportion of emerging micropollutants, and their effect on human 
health and the general environment cannot be overestimated (Silva 
et al., 2015; Akerman-Sanchez and Rojas-Jimenez, 2021). Hence, the 
presence PhACs across different ecosystems is raising public concern, 
due to their abundance, diversity, and their persistence in the 
environment. It was noted that more than 70 PhACs were present in 
wastewater treatment plant effluents at micrograms concentrations, 
posing an extended risk to human health and aquatic life (Rosal et al., 
2010; Ramírez-Morales et al., 2020). PhACs are biologically active 
formulations that are broadly used as therapeutic agents in humans 
and livestock (Podolsky, 2018; Akerman-Sanchez and Rojas-Jimenez, 
2021). They are specifically designed to treat or alter animal 
physiological conditions and they include antibiotics, analgesics, anti-
inflammatories, antihypertensives, hormones, steroids, antipyretics, 
and stimulants. An overview of selected PhACs found in the 
environment as pollutants is given in Table 1. The excessive use of 
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TABLE 1 Properties of some pharmaceutical active compounds.

Pharmaceutical active 
compound

Average 
half-life h

Solubility DrugBank accession 
number

Reference

Analgesics

Aspirin 4.5 10 mg/mL DB00945 Izadi et al. (2020)

Acetaminophen 2.5 4.15 mg/mL DB00316 Izadi et al. (2020)

Diclofenac 2.0 2.37 mg/L DB00586 Mlunguza et al. (2019)

Fenoprofen 3.0 h NA DB00573 Tyumina et al. (2020)

Ibuprofen 1.6 h 21 mg/L DB01050 Mlunguza et al. (2019)

Indomethacin 4.5 0.0024 mg/mL DB00328 Tyumina et al. (2020)

Ketoprofen 1.2 51 mg/L DB01009 Mlunguza et al. (2019)

Naproxen 14.5 15.9 mg/L DB00788 Tyumina et al. (2020)

Antibacterial

Ampicillin NA 1.1 × 10−4 mg/L DB00415 Danner et al. (2019)

Amoxicillin 1.1 0.958 mg/mL DB01060 Kovalakova et al. (2020)

Azithromycin 68 0.514 mg/mL DB00207 Akhtar and Mannan (2020)

Cefalexin 0.83 10 mg/mL DB00567 Danner et al. (2019)

Chloramphenicol 2.5 2,500 mg/L DB00446 Gothwal and Shashidhar (2015)

Clarithromycin ~ 4 0.217 mg/mL DB01211 Kovalakova et al. (2020)

Clindamycin 3 3.1 mg/mL DB01190 Gothwal and Shashidhar (2015)

Danofloxacin NA 0.738 mg/mL DB11393 Gothwal and Shashidhar (2015)

Doxycycline 4 50 mg/mL DB00254 Gothwal and Shashidhar (2015)

Gentamicin 1.25 12.6 mg/mL DB00798 Gothwal and Shashidhar (2015)

Erythromytin 3.5 2 mg/mL DB00199 Kovalakova et al. (2020)

Levofloxacin 7.0 1.44 mg/mL DB01137 Zhang et al. (2023)

Metronidazole 8.6 5.92 mg/mL DB00916 Danner et al. (2019)

Norfloxacin 3.5 1.78 × 10−5 mg/L DB01059 Kovalakova et al. (2020)

Ofloxacin 9.0 28.3 mg/mL DB01165 Zhang et al. (2023)

Oleandomycin NA 0.41 mg/mL DB11442 An et al. (2023)

Oxytetracycline NA 313 mg/L DB00595 Kovalakova et al. (2020)

Rifamycin 3.0 0.0147 mg/mL DB11753 An et al. (2023)

Roxithromycin 12.0 0.0189 mg/L DB00778 Gothwal and Shashidhar (2015)

Sarafloxacin NA 0.105 mg/mL DB11491 Gothwal and Shashidhar (2015)

Sulfamethoxazole 10.0 h 610 mg/L DB01015 Gothwal and Shashidhar (2015)

Sulfapyridine 10.0 h 268 mg/L DB00891 An et al. (2023)

Tetracycline 9.0 h 231 mg/L DB00759 Kovalakova et al. (2020)

Trimethoprim 9.0 400 mg/L DB00440 Kovalakova et al. (2020)

Vancomycin 6.0 0.225 mg/mL DB00512 Gothwal and Shashidhar (2015)

Antifungal

Amphotericin B >24 h 750 mg/L DB00681 Chang and Gupta (2022)

Bifonazole 1.5 h 0.00245 mg/mL DB04794 Akhtar and Mannan (2020)

Caspofungin 10.0 0.367 mg/mL DB00520 Monapathi et al. (2021)

Clotrimazole NA 0.49 mg/L DB00257 Akhtar and Mannan (2020)

Flucytosine 3.6 1.5 × 10−4 mg/L DB01099 Assress et al. (2021)

Ketoconazole 8.0 9.31 × 10−3 mg/mL DB01026 Assress et al. (2021)

Miconazole 24 7.63 × 10−4 mg/mL DB01110 Assress et al. (2021)

(Continued)
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antibiotics and other PhACs, especially in livestock breeding and in 
aquaculture, has resulted into a significant increase in the levels of 
PhACs been released to the environment (Van Boeckel et al., 2015). 
According to Castiglioni et al. (2006), more than 50% of administered 
PhACs may be unmetabolized in the user and these are excreted in 
their original forms or as active metabolites into the environment via 
urine or/and stools. Although the major route of PhACs into the 
aquatic environment has been highlighted to be  via human and 
animal excretion, ther other routes, though less important, have  
been identified to include disposal of unwanted or expired drugs, 
landfill leachates, agricultural activities, manufacturing processes, 
concentrated animal feeding operations as well as and urban run-off 
(Papagiannaki et al., 2022). A schematic representation of the different 
routes of entry of PhACs into the environment is presented in 
Figure 1.

It was noted that a significant amount of PhACs evade removal 
by conventional wastewater treatment plants (WWTPs) because 
these plants are basically designed for the removal of carbon and 
nutrients, in addition, the chemical nature of PhACs makes them 
recalcitrant to biological action (Vergili et  al., 2019). Ramírez-
Morales et al. (2020) was able to demonstrate high levels of PhACs 
in WWTP effluents which includes analgesics, antidiabetics, anti-
inflammatory agents and psychiatric agents in concentrations 
ranging from 0.001 to 57 μg/L. In a different study, ofloxacin, 
erythromycin, ciprofloxacin, and roxithromycin, all antibiotics, 
were also detected in WWTP in concentrations up to 6.7 μg/L 
(Verlicchi et al., 2012). Consequently, the inability of conventional 
WWTP to completely remove PhACs has resulted into the onward 

transportation and emergence of these active contaminants in 
surface waters and in ground waters (Mahmood et  al., 2019). 
Accumulation in the environment occurs to a point where PhACs 
are being detected in drinking water sources (Yang et al., 2017). 
This anomaly has been recorded in the most developed countries 
of the world, which are believed to be equipped with the latest 
technology in wastewater treatment, as well as in the less 
developed countries in the global south (Bexfield et  al., 2019; 
Kondor et  al., 2021). For instance, more than 120 PhACs, 
including carbamazepine, sulfamethoxazole, hydrocortisone, and 
meprobamate were recorded during the assessment of ~1,000 
principal aquifers across the United States (Bexfield et al., 2019). 
Various PhACs including ciprofloxacin, sulfamethoxazole and 
triclosan (antibiotics), dexamethasone and diclofenac (anti-
inflammatories), diazinon (antiparasitic drugs), primidone 
(antiepileptic), propranolol (beta-blockers), caffeine (psychoactive 
stimulants) were also detected in the range of < 0.03 to 21.39 ng/L 
in selected drinking water samples from Malaysia (Wee et  al., 
2020). Similarly in Nigeria, amoxicillin was detected in surface 
water, ground water and drinking water, at median concentrations 
of 1,614, 238, 358 ng/L, respectively, (Ebele et al., 2020). Varying 
concentrations of other PhACs including acetaminophen, caffeine, 
codeine, diclofenac glyburide, ibuprofen, naproxen and nicotine 
were also reported (Ebele et al., 2020). Thus, to further safeguard 
human health and the general environment, it has become 
imperative to consider the quantification of active pharmaceutical 
ingredients as critical components of water quality monitoring 
indicators (Figure 2).

TABLE 1 (Continued)

Pharmaceutical active 
compound

Average 
half-life h

Solubility DrugBank accession 
number

Reference

Natamycin NA 4,100 mg/L DB00826 Monapathi et al. (2021)

Nystatin NA 360 mg/L DB00646 Monapathi et al. (2021)

Hormones

Cortisol 2.15 320 mg/L DB00741 Ojoghoro et al. (2021)

Dexamethasone 4.0 89 mg/L DB01234 Ojoghoro et al. (2021)

Diethylstilbestrol NA 12 mg/L DB00255 Torres et al. (2021)

Estradiol 6.0 3.6 mg/L DB00783 Torres et al. (2021)

Estrone 19.0 760 mg/L DB00655 Morais et al. (2019)

Estriol NA 0.119 mg/mL DB04573 Morais et al. (2019)

Ethinyl estradiol 9.2 11.3 mg/L DB00977 Morais et al. (2019)

Levonorgestrel >24.0 2.05 mg/L DB00367 Lasich and Adeleke (2023)

Methyltestosterone 7.0 33.9 mg/L DB06710

Prednisone 2.5 h NA DB00635 Ojoghoro et al. (2021)

Progesterone NA 5.46 × 10−3 mg/mL DB00396 Lasich and Adeleke (2023)

Psychiatric

Carbamazepine 14.0 0.152 mg/mL DB00564 Akhtar and Mannan (2020)

Diazepam 72.0 50 mg/L DB00829 Adeola et al. (2022)

Chlorpromazine 30.0 2.55 mg/L DB00477 Escudero et al. (2021)

Risperidone 11.5 2.33 mg/mL DB00734 Escudero et al. (2021)

Haloperidol 25.3 14 mg/L DB00502 Cerveny et al. (2021)
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Generally, the chemical structural diversity of pharmacological 
actives is extensive, reflecting the complexity of the human body and 
the wide range of biological targets with which medications might 
interact. PhACs have diverse chemical structures that range from 
aliphatic structures to heterocyclic and to aromatic. A majority of 
these pharmaceuticals have however been noted to be composed of 
heterocyclic and aromatic rings with fewer linear structures (Olicón-
Hernández et  al., 2017). In this regard, the complex structural 
components of PhACs affect their solubility and confers 
low-solubilization on them which in turns leads to low bioavailability. 

In addition to low bioavailability, most PhACs have antimicrobial 
properties which impede their biotransformation especially by using 
bacteria. Furthermore, the wide range in chemical structure of PhACs, 
make it difficult to elucidate general pathways for their microbial 
degradation (Olicón-Hernández et al., 2017). Thus, the PhACs usually 
encountered in the environment can be structurally classified into the 
main classes; aliphatic, aromatic, glycosides, heterocyclic, peptides 
(proteins), lipids (steroids), and nucleic acids Table 2.

While the aromatic compounds such as aspirin, ibuprofen, and 
naproxen, are made up of aromatic rings, such as benzene, the 

FIGURE 1

Sources and pathway of pharmaceutically active compounds in the environment.

FIGURE 2

Mechanism of fungal bioremediation of Pharmaceutical Active Compounds.
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heterocyclic compounds which includes caffeine, morphine, and 
penicillin are characterized by the presence of non-carbon atoms 
(nitrogen, oxygen, or sulphur) in their ring structure. Aliphatic 
pharmaceuticals such as acetaminophen, aspirin and ibuprofen, are 
based on straight chain structures and they contain neither aromatic 
nor heterocyclic rings (Carey et al., 2006). The peptides and proteins 
are large polymers of amino acids, and they include insulin and many 
growth hormones. Similarly, nucleic acids are also polymers made up 
of nucleotides, the building blocks of DNA and RNA and they include 
antiviral medicines and chemotherapeutic treatments (Pradeep et al., 
2023). Glycoside pharmaceuticals are drug substances in which a 
sugar molecule is linked to a non-sugar molecule such as digitalis and 
heparin. On the other hand, lipids are characterized by their significant 
insolubility in water molecules that are crucial structural components 
of cell membranes, they include the steroids, cholesterol-lowering 
medications, and anti-inflammatory medications (Galán et al., 2019; 
Kumavath et al., 2021).

PhACs have been associated with bioaccumulation and 
biomagnification, endocrine disruption, carcinogenicity, nervous 
system degradation, dermal pathologies, and anti-biotic resistance 
(Olicón-Hernández et  al., 2017). However, the effects of the 
re-introduction of these compounds into the human system have 
not been well delineated mainly because of the micro-level 
concentration of PhACs in the environment. On the other hand, 
many studies have described their detrimental effects on other life 
forms, especially on aquatic organisms and it is believed that 

findings from these studies could be used as basis to investigate 
human health effects upon environmental exposures (da Costa 
Araújo et al., 2019; Booth et al., 2020). PhACs with the potential 
to disrupt the endocrine system like synthetic oestrogen (excreted 
in urine and/or faeces as conjugates or unchanged parent 
compound) have been the subject of various scientific enquiry as 
they are excreted in urine and/or faeces either as a conjugate or 
unchanged as the parent compound. Subsequent to their 
metabolism in the environment, these estrogenic compounds 
become free biologically active PhACs in concentration which are 
believed to be  sufficient to elicit estrogenic in animals 
(Arcand-Hoy et  al., 1998). Various antibiotics have also been 
demonstrated to elicit various detrimental effects on organism in 
the aquatic environment which include growth inhibition, 
mutagenicity, oxidative stress, reproductive abnormalities, 
neurotoxicity and behavioural changes, to mention a few (Booth 
et  al., 2020). For instance, exposure of gilthead seabream to 
erythromycin at between 0.0002 and 200 μg/L resulted into 
increased gill histopathological index while chronic exposure to 
oxytetracycline at a concentration of 0.0004–400 μg/L escalated 
its pathological index (Booth et  al., 2020). Similarly, 30-day 
exposure of tadpoles to the anti-cancer pharmaceuticals, 
cyclophosphamide and 5-fluorouracil, at environmental 
concentrations of between 0.2 and 123 μg/L resulted in impaired 
visual acuity, mutagenicity and the development of melanocytes 
in gastrointestinal tract of tadpoles (Da Costa Araújo et al., 2019). 

TABLE 2 Fungal species with potential in Pharmaceutical Active Compound biodegradation.

S/N Names Source Classification PAM metabolized Reference

1 Aspergillus luchuensis Habitant is mainly in decay woods 

and close to fermentation site

Eurotiomycetes Diclofenac Dalecka et al. (2020)

2 Aspergillus niger Soil, water, vegetation and 

decomposing matter

Eurotiomycetes Diclofenac Kasonga et al. (2021)

3 Gymnopilus luteofolius Decay hardwood and conifers Basidiomycetes Lopromide, carbamazepine, 

diclofenac

Vasiliadou et al. (2016)

Trinitrotoluene TNT Anasonye et al. (2015)

4 Irpex lacteus Dwells mainly in Angiosperm 

branches especially rotten parts of the 

wood

Agaricomycetes Diclofenac, ibuprofen Marco-Urrea et al. (2009)

5 Mucor circinelloides Soil, dung and roots of some 

vegetables

Zygomycetes Diclofenac, ibuprofen Kasonga et al. (2019)

6 Penicillium oxalicum Soil, decay vegetables, compost, dried 

food stuff.

Eurotiomyctes Diclofenac Kasonga et al. (2019)

7 Rhizopus microspores Soil, Plant debris and food stuff Zygomycetes Carbamazepine, diclofenac, 

ibuprofen

Kasonga et al. (2023)

8 Stropharia 

rugosoannulata

Wood-chips beds and mulch mainly 

in garden areas

Carbamazepine, lopromide Anasonye et al. (2015)

9 Trametes versicolor Hardwoods such as beech and oak 

majorly as saprophytes

Agaricomycetes Carbamazepine Tormo-Budowski et al. (2021)

Trimethoprin Alharbi et al. (2019)

Sulfamethoxazole Stenholm et al. (2019)

10 Trametes polyzona Decayed wood and soil Agaricomyctes Diclofenac Kasonga et al. (2023)

11 Trichoderma 

longibrachiatum

Soil Sordariomycetes Diclofenac Kasonga et al. (2023)
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To further elucidate the environmental occurrence, fate, and risks 
of PhACs different models such as the Fugacity-based multimedia 
modeling, FATEMOD-Q, iSTREEM, LF2000-WQX are now being 
used (Booth et al., 2020).

3. Fungal species in PhACs 
bioremediation

The fungi kingdom is a ubiquitous group well known for their 
phylogenetic diversity, their chemoheterotrophic nature, and their 
symbiotic interactions. They are also notable for their versatility 
in nutrients cycling as well as their decomposition of organic 
matter in nature (Hurdeal et  al., 2021). These properties give 
fungal species a lot of edge over algae, actinomycetes and bacteria 
in bioremediative applications. As such, fungi’s biochemical and 
morphological attributes, especially the filamentous fungi, are 
being harnessed in the degradation of complex and emerging 
environmental pollutants like PhACs (Ferreira et  al., 2020). 
Among the filamentous fungi, three groups have been majorly 
associated with pollutants decomposition. These include members 
of the ascomycetes (sac fungi), basidiomycetes (club fungi), and 
zygomycetes (conjugated fungi) (Ferreira et al., 2020). Studies 
have further shown that the group most widely associated with 
bioremediation are the white rot fungi (majorly basidiomycetes). 
The white rot fungi can break down PhACs with the help of their 
relatively advanced enzymatic systems which includes the lignin 
modifying enzymes (LMEs; Rodríguez-Rodríguez et al., 2013). 
Basically, the utilization of fungi in bioremediation, which is 
referred to as mycoremediation, is possible due to the unique 
ability of fungi to metabolize various inorganic and organic 
xenobiotics (use them as carbon and energy source), with the 
subsequent release of harmless metabolites or their 
complete assimilation.

3.1. Ascomycetes

Fungi within the Ascomycetes group are highly adaptive and are 
able to carry out metal ions chelation, a useful pathway in xenobiotic 
detoxification (Tigini et al., 2014). They are also capable of resisting 
unfavourable conditions and they exhibit fast growth even at near 
alkaline pH (Harms et al., 2011). Ascomycetes within the Fusarium, 
Trametes genera were shown to be the key contributors to PhACs 
degradation in a bioreactor system which ran effectively for 7 days 
(Badia-Fabregat et al., 2017). Their degradative ability is believed to 
be significantly mediated by the intracellular cytochrome oxidases, as 
well as by the expression of unspecific peroxygenases which may have 
an essential role in extracellular hydroxylation (Badia-Fabregat et al., 
2017). Many of the species belonging to this phylum can also express 
the key lignin degrading enzymes. Pestalotiopsis sp. (IMI353656) was 
revealed to be involved in PhACs hydroxylation (Gonda et al., 2016), 
much like Epicoccum nigrum (IMI3542) which caused near total 
bioconversion of diclofenac to the 4-hydroxydiclofenac metabolite 
(Webster et  al., 1998). The entomopathogenic fungus, Beauveria 
bassiana, has also been demonstrated to bio-transform cinoxacin via 
decarboxylation to hydroxy-methyl with dioxolo ring cleavage 
(Parshikov et al., 2002).

3.2. Basidiomycetes

Fungi within the Basidiomycete phylum possess oxidative 
enzyme systems which have been shown to be highly efficient in 
breakdown of pollutants (Naghdi et al., 2018). Their well-developed 
and non-specific lignin solubilizing enzymes enable their widened 
application for the degradation of PhACs and other emerging 
contaminants (Roccuzzo et  al., 2021). As part of their oxidative 
enzyme system, laccases and peroxidases catalyse the non-specific 
oxidation of phenol-based aromatics (Aruwa et al., 2021, 2022), this 
is quite notable as many PhACs are composed of one or more 
phenols rings, which may or may not be fused (Ijoma and Tekere, 
2017). Some Basidiomycetes that have been shown to possess the 
ability to bioremediate PhACs include Bjerkandera adjusta, 
Ceriporiopsis subvermispora, Ganoderma lucidum, P. chrysosporium, 
Irpex lacteus, Trametes versicolor, Trametes hirsuta and Pleurotus 
ostreatus (Mir-Tutusaus et al., 2018; Saibi et al., 2022). Furthermore, 
dye degrading fungi like Phlebia tremellosa, Inonotus hispidus, 
Hirschioporus larincinus, Coriolus versicolor are believed to play 
active roles in PhACs breakdown due to their LMEs (Deshmukh 
et  al., 2016). T. versicolor, a model fungus in bioremediation, 
expresses highly versatile extracellular LMEs and intracellular 
cytochrome P450 enzymes (Marco-Urrea et al., 2010), hence its wide 
use in degradation of PhACs such as ibuprofen (Marco-Urrea et al., 
2009), naxopren and carbamazepine (Rodríguez-Rodríguez et al., 
2010). Members of this group have also been shown to act 
synergistically. For instance, fluoxetine and citalopram anti-
depressants in wastewater effluents were efficiently degraded using a 
consortia of P. chrysosporium and B. adusta (Rodarte-Morales et al., 
2011). Similarly, ionic/polar nitrogen-containing PhACs (diclofenac, 
indomethacin, naproxen, etc.) degraded by whole T. versicolor 
culture, its laccase and other intracellular enzymes’ machinery (Tran 
et al., 2010).

3.3. Zygomycetes

The Zygomycetes phylum is a diversified fungal group known for 
aplanospores (asexual phase) and zygospores formation (sexual 
phase). Cunninghamella elegans is more commonly referred to as a 
model Zygomycetes when assessing their xenobiotics degradative 
ability (Kandhasamy et al., 2022). This notable potential is believed 
to be  linked to their capability of generating stereo- and regio-
selective transformation. For example, C. elegans initially transformed 
PhACs through oxidative, reductive, and hydrolytic pathways to 
produce sulfoxidated and hydroxylated compounds, which may 
further be  biotransformed to conjugated products (Kandhasamy 
et al., 2022). C. elegans also has been specifically shown to degrade a 
fibrate, gemfibrozil, a lipid regulating medication (Russell, 2004; 
Kandhasamy et al., 2022). Transformation of fluoroquinolones and 
carbamazepine by other Zygomycetes such as Mucor rammanianus 
and Umbelopsis ramanniana have also been reported (Kang et al., 
2008). In a related study, a member of the Zygomycota phylum, 
Mucor hiemalis was found to degrade significant levels of 
acetaminophen under optimized conditions and could also 
be coupled with other bioremediation systems (Esterhuizen-Londt 
et al., 2016). Although the Zygomycetes have shown potential for 
PhACs bioremediation, however, little has been done about 
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scaling-up these bioprocesses for real-time applications unlike the 
Basidiomycetes (Olicón-Hernández et al., 2017).

4. Fungal enzymes in PhACs 
bioremediation

Fungi, being one of the most important decomposers in nature, 
they are rich in different enzymes. Which catalyse the bioconversion 
of a variety of complex substrates. It was previously estimated that 
~50% of the industrial enzymes currently in use were produced by 
fungi and they have found important applications in diverse industrial 
processes and products such as food, animal feed, pharmaceutical, 
textile, detergents, pulp and paper as well as bioremediation (Kango 
et  al., 2019). Enzymes of fungal origin have been described with 
remarkable potential in the degradation of PhACs present in various 
waste streams under various conditions. As such, they thus offer a 
cost-effective and environmentally sustainable alternative to 
conventional treatment methods (Vaksmaa et  al., 2023). This 
remarkable ability has been ascribed to their robustness, which allows 
them to degrade complex chemical structures into simpler and less 
toxic compounds that can be  further metabolized by other 
microorganisms (Rathore et  al., 2022). Furthermore, the 
biodegradation of non-polar and poorly soluble PhACs and other 
xenobiotics in organic solvents has been shown to be facilitated by 
these fungal enzymes (Espinosa-Ortiz et al., 2022). These enzymes 
modify and detoxify these pharmaceuticals via reduction, oxidation, 
hydroxylation, dehalogenation, dehydrogenation, deamination, 
formylation, etc. (Ferrando-Climent et al., 2015; Narayanan et al., 
2022). In this regard a wide variety of fungal enzymes have been 
described for their roles in PhACs treatment, including laccases, 
peroxidases, cytochrome P450 mixed function oxidases, lipases, and 
esterases. However, the most studied fungal enzymes in PhACs 
biodegradation, viz., laccases, peroxidases and cytochrome P450 
mixed function oxidases will be discussed in detail in this section.

4.1. Laccases

Laccases (EC 1.10.3.2) are part of a superfamily of enzymes 
known as the multicopper enzymes; they were first described by 
Yoshida (1883), making them one of the earliest enzymes to 
be described. Most fungi have been shown to produce laccase, with 
laccases from Agaricus bisporus, P. ostreatus, T. versicolor, 
P. chrysosporium, and Coprinus cinereus being more prominent 
(Viswanath et al., 2014). Naturally laccases perform critical roles in 
lignin synthesis and in the degradation of plant cell walls as well as 
pathogenicity, stress responses and morphogenesis of fungal fruiting 
body. Fungal laccases have been noted to possess a broad substrate 
range, and thus have found applications in detoxification, wastewater 
treatment, and decolorization of industrial effluents. According to 
Shleev et al. (2004), the high redox potential (E°) of fungal laccases is 
one of the major factors responsible for their remarkable capability to 
oxidize substrates with high E° (E° > 400 mV), making them 
biocatalysts of special interest in the bioremediation of polycyclic 
aromatics, phenolic compounds as well as plastics. Thus, different 
studies have highlighted the biodegradation of PhACs by fungal 
laccases with the most remarkable results being recorded with laccases 

from the genus Trametes. For example, T. versicolor laccases was 
shown to bioremediate the antibiotics tetracycline, chlortetracycline, 
doxycycline and oxytetracycline (Suda et  al., 2012). Similarly, the 
enzyme sourced from another specie of the same genus, Trametes 
polyzona was also recorded to degrade tetracycline, and some 
β-lactam, and quinolone antibiotics under redox mediator-free system 
(Lueangjaroenkit et al., 2019). Fungal laccases working synergistically 
were also shown to degrade PhACs. For example, the enzyme sourced 
from T. versicolor, Myceliophthora thermophila successfully 
biodegraded steroid hormones including estrone, 17ß-estradiol, 
estriol and 17α-ethinyl estradiol even at low enzyme activity (Becker 
et al., 2017).

4.2. Peroxidases

Peroxidases (EC 1.11.1.X) are majorly classified into the 
ascorbate-, cytochrome c catalase-, lignin-, manganese- and versatile 
peroxidases (Basumatary et al., 2023). Peroxidases sourced from fungi 
are noted to possess wide substrate specificity which enables them to 
catalyse the transformation of various recalcitrant compounds that are 
resistant to conventional bioremediation which includes synthetic 
dyes, herbicides, pesticides, and PhACs, to mention a few (Saikia et al., 
2022). The various classes of peroxidases have been shown in different 
studies to biodegrade different PhACs. For example, T. polyzona 
manganese peroxidase was highlighted for its ability to degrade 
tetracycline, β-lactam, and quinolone classes with preferences for 
oxidizing dimethoxyl substituted phenol at the ortho-position 
(Lueangjaroenkit et al., 2019). A versatile peroxidase from Bjerkandera 
adusta was earlier recorded to degrade 100% diclofenac and 
oestrogens at very low enzyme concentration, in addition, the 
peroxidase also bioremediated 80% sulfamethoxazole and naproxen 
(Eibes et  al., 2011). The steroid hormones such as the synthetic 
estrogen 17 α-ethinylestradiol, were significantly degraded by 
manganese peroxidase from Pleurotus spp. (Santosa et  al., 2012). 
Similarly, in the study by Wen et al. (2009), lignin peroxidase sourced 
from P. chrysosporium was utilized in the in vitro degradation of 
tetracycline and oxytetracycline, achieving almost 100% removal rate 
within 5 min.

4.3. Monooxygenases

Fungal monooxygenases are important members of the 
superfamily of fungal oxidoreductases which have been demonstrated 
with the ability to catalyse biological oxidation/reduction reactions of 
various substrates. The fungal monooxygenases are quite ubiquitous 
in nature, and they generally facilitate different types of oxygen 
insertion reactions requiring two reductants, hence the nomenclature 
mixed function oxidases (Hussain et al., 2020). They have since been 
noted to be highly versatile with diverse applications in biotechnology, 
medicine, food and bioremediation including biodegradation of 
PhACs (Durairaj et al., 2016). Being the most effective fungal source 
of bioremediating enzymes, T. versicolor was shown to secrete a 
monooxygenase which remarkably degraded norfloxacin and 
ciprofloxacin (Prieto et al., 2011). Monooxygenases from other fungal 
species have also showed significant potential in the removal of 
PhACs. For instance, the biodegradation of the highly recalcitrant 
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drug, carbamazepine to the less toxic 10,11-epoxycarbamazepine by 
the monooxygenases sourced from P. ostreatus was previously 
described by Golan-Rozen et al. (2011). The study further showed that 
the bioremediating activity of the enzyme on carbamazepine was 
significantly enhanced by the activity of an accessory enzyme, 
manganese peroxidase, from the same fungus (Golan-Rozen et al., 
2011). More recently, a cytochrome P450 monooxyenase from 
Phanerochaete chrysosporium, another white-rot fungus catalysed the 
biodegradation of acetamiprid via N-adelkylation reaction mechanism 
(Mori et al., 2021). Fungal monooxygenases from various species have 
also been described to act in consortium for increased efficiency of 
PhACs removal. The monooxygenases from P. chrysosporium and 
Pycnoporus sanguineus which acted in synergy to remove 
ciprofloxacin, norfloxacin and sulfamethoxazole at a removal rate of 
98.5 96.4 and 100%, respectively (Gao et al., 2018).

5. Mechanism of fungal 
bioremediation of PhACs

The amount of PhACs that eventually ends up in the environment 
varies according to many factors including the route of administration, 
the mode of metabolism within the patient as well as the route of 
excretion. For example, the excreted amount of antibiotics such as 
β-lactams, fluoroquinolones and tetracyclines was noted to be more 
than half of the administered dose (Berkner et al., 2014). On the other 
hand, even though lower fraction of macrolides, such as 
erythromycin, clarithromycin, azithromycin, fidaxomicin were 
excreted, these classes of pharmaceuticals are relatively more stable 
and thus persist longer in the environment (Booth et al., 2020). While 
in the environment, these PhACs partition into various compartments 
dependent on their physio-chemical properties and may undergo 
further transformation by abiotic or biological processes (Berkner 
et al., 2014). This has informed the exploration of fungi, amongst 
many other approaches, as natural, eco-friendly, sustainable, and 
cost-effective alternatives for PhACs biodegradation (Tomasini and 
León-Santiesteban, 2019).

Generally, the mechanisms behind the fungal bioremediation of 
PhACs in the environment can be  summarized into four stages 
(Akerman-Sanchez and Rojas-Jimenez, 2021). These mechanisms/
stages may be deployed singly, in synergy or sequentially to achieve 
PhACs degradation. At the first stage, the fungi, with the aid of their 
hyphae absorbs PhACs from the environment and immobilizes them 
in the cell (Akerman-Sanchez and Rojas-Jimenez, 2021). The fungal 
hyphae provide the mechanical strength for substrate penetration, 
increases contact surface area and assimilation of compounds from 
the environment, and co-generation of necessary enzyme systems 
(Gómez-Toribio et al., 2009). The second mechanism involves reactive 
oxygen species production by the fungal cells, which include, 
superoxide, hydroxyl reactive radical species, and peroxides 
(Akerman-Sanchez and Rojas-Jimenez, 2021). The well-known 
Fenton reactions in fungi has been speculated to be linked to PhACs 
biodegradation as the high, non-specific redox potential of generated 
radicals in the pathway render them efficacious in breakdown of a 
range of PhACs (Gómez-Toribio et al., 2009). For instance, radicals 
from the Fenton reaction in Pleurotus eryngii were shown to enhance 
dismutation and laccase oxidation of aromatic aldehyde and 
hydroquinone (Gómez-Toribio et al., 2009).

In the third mechanism, an array of extracellular fungal enzymes 
is expressed, this could include phenol-oxidases (laccases) and 
peroxidases (versatile, lignin, manganese peroxidases), among others 
(Rodríguez-Rodríguez et  al., 2013). Interestingly, a recent study 
demonstrated the ability a dye decolorizing peroxidase 4 (DyP4), to 
efficiently breakdown PhACs like furosemide and paracetamol, with 
enhanced degradation of sulfamethoxazole, salicylic acid and methyl 
paraben in the presence of redox mediators (Athamneh et al., 2022). 
Although DyPs, a group of heme-containing peroxidases derivable 
from fungi, bacteria and archaea, they were first known for dye 
breakdown, however, their hydrolytic and oxidative capabilities are 
also believed to be closely linked to lignin degradation (Athamneh 
et  al., 2022). The fourth mechanism involves the deployment of 
intracellular enzymes, most especially, the cytochrome P450 (CyP) 
complex (Asif et  al., 2017). The CyP complex coupled with 
extracellular enzymes mediate the processes of hydroxylation, 
dehalogenation, deamination and dealkinalization, changing the 
structure of pollutants and enhancing mineralization (Asif et  al., 
2017). The CyP epoxide hydrolases, transferases and monooxygenases 
complex are of special relevance in PhACs bioconversion. Overall, 
both intra- and extra-cellular enzymes, hyphal mass branching and 
ROS generation are believed in many instances to work together for 
PhACs decontamination (Chandra and Chowdhary, 2015; Naghdi 
et al., 2018). Studies have shown the fungi Cunninghamella echinulate 
taking up the analgesic, paracetamol, and biotransforming it into 
N-acetyl-p-benzoquinoneimine through rearrangement and 
hydroxylation pathways (Kumari et al., 2009). Similarly, Aspergillus 
niger has been demonstrated to be capable of metabolizing naproxen 
into less harmful by-products via the hydroxylation mechanism (He 
and Rosazza, 2003). The utilization of decarboxylation (Parshikov 
et al., 2002) and metal ion chelation reactions have also been reported 
for certain ascomycete fungi in the genus Trichoderma and Fusarium 
(Tigini et al., 2014).

The production of fungal bio-surfactants has also been shown to 
play a role in the bioremediation of PhACs (Cicatiello et al., 2016). As 
amphiphilic surface-active compounds, fungal biosurfactants improve 
molecular interactions by decreasing the interfacial tension; these 
surfactants which are made up of various types of lipids, 
polysaccharides and protein-lipids complexes enhance bioremediation 
processes by increasing the bioavailability and mobility of PhACs 
(Olicón-Hernández et  al., 2017). As mechanistic pathways in 
mycoremediation of PhACs continue to evolve, it has been suggested 
that the process may need to be  merged with nanotechnology 
(coupling basidiomycete fungi or their enzymes with nano-materials 
in varied bioreactor designs), protein engineering strategies, 
physicochemical and ‘omic’ techniques (Meganathan et al., 2021).

6. Fungal bioreactors for PhACs 
degradation

Bioreactors are enclosed vessels where biological reactions take 
place and they have been identified as one of the most remarkable 
technologies for the treatment of a variety of wastewaters (Mishra 
et al., 2022). Within these vessels, microorganisms such as bacteria, 
fungi, or algae, consume and degrade the toxic pollutants in the 
effluent, converting them into less harmful derivatives and sometimes 
basic compounds such as carbon dioxide and water (Khalidi-idrissi 

https://doi.org/10.3389/fmicb.2023.1207792
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Amobonye et al. 10.3389/fmicb.2023.1207792

Frontiers in Microbiology 10 frontiersin.org

et al., 2023). Bioreactors have been noted to have various advantages 
over conventional methods of removing PhACs as they create less 
sludge, have lower energy demand and typically emit lower amounts 
of greenhouse gases (Dos Santos et  al., 2022). As a result of this, 
bioreactor, including those with fungi components, have become part 
of contemporary pharmaceutical wastewater treatment system and 
their potential to bioremediate PhACs have been the focus of many 
studies (Cruz-Morató et al., 2014; Tormo-Budowski et al., 2021; Dos 
Santos et  al., 2022). In this regard, different types of bioreactor 
configurations that have been noted for their efficiency in the 
treatment of PhACs using either the whole fungus or the enzyme (s); 
these include membrane bioreactors, sequencing batch reactors, 
fluidized bioreactors, etc. (Mishra et al., 2022). Although whole-cell 
fungal cultures have been employed for the removal of PhACs in both 
submerged and solid bioreactor conditions, it was observed that 
submerged whole-cell cultures have been more reported (Tiwari et al., 
2021). Typically, the operation of fungal bioreactors take place in 
continuous, semi-batch, batch systems, and under anaerobic or 
aerobic conditions. Systems involving submerged growth include the 
airlift, bubble column, packed bed, and stirred tank (most used with 
mechanical agitation, good aeration, and fluid mixture). Also, aerated 
suspended air-lift loop or fluidized-bed reactors are useful for growing 
fungal species that from pellets, enhancing fungi recoverability 
(Crognale et al., 2002). However, agitated reactors may also produce 
high energy requirements from increased agitation speed, and stressed 
environments with adverse effects on microbial growth. Unlike the 
stirred tank system, in cylindrical air-lift reactors where air, gas or 
oxygen is injected from the reactor base, less microbial stress is 
generated (Zhong, 2011).

In specific examples, the degradation of carbamazepine by 
T. versicolor took place in an air-pulsed fluidized myco-reactor, 
aqueous media and in both continuous and batch culture models (Jelic 
et  al., 2012). Likewise, P. chrysosporium also broke down 
carbamazepine in a continuous and batch plate bioreactor system, 
however, it was highly nutrient-dependent (Zhang and Geißen, 2012). 
Trickle filter and hollow fibre membrane bioreactor technologies 
based on immobilized T. versicolor were noted to be applicable as large 
scale, inexpensive options for continuous wastewater treatment. 
Generally, T. versicolor was observed to be a model fungus, serving as 
the biological component in many of these fungal bioreactors. This 
assertion is due to the fact that the fungal specie along with its various 
enzymes, is the most recurrent biological components utilized for the 
effective bioremediation of emerging contaminants, which is ascribed 
to their highly advanced enzymatic machinery (Cruz-Morató et al., 
2014). For example, T. versicolor was utilized in a fluidized bed 
bioreactor which effectively removed ~80% of the PhACs, including 
ciprofloxacin, clarithromycin, codeine, diclofenac, naproxen, 
ibuprofen, ketoprofen, ofloxacin, phenazone, and salicylic acid, in the 
hospital effluent within 8 days (Cruz-Morató et al., 2014). Earlier, this 
model fungus was shown in another fluidized bed bioreactor to 
degrade 70% of PhACs, mainly carbamazepine in the wastewater 
(Cruz-Morató et al., 2013). T. versicolor immobilized in a stirred tank 
bioreactor was also able to significantly eliminate 16 PhACs in 
synthetic wastewater and those naturally present in the hospital 
wastewater at a removal rate of 95.7 and 85.0%, respectively (Tormo-
Budowski et  al., 2021). However, many other fungi, besides 
T. versicolor have been successfully utilized in different bioreactor 
configurations for PhACs bioremediation. A notable example was 

demonstrated in the study by Zhang and Geißen (2012), where 
P. chrysosporium, another white rot fungus was employed in a plate 
bioreactor and operated in both sequence batch and continuous 
modes to eliminate carbamazepine at significant removal rates of 
between 60 and 80%. The study further noted that the bioreactor was 
effective while working continuously for close to 100 days. Apart from 
white-rot fungus, Penicillium oxalicum, an ascomycete, was used for 
the bioremediation of diclofenac in a bench bioreactor, with the 
activation of the cytochrome P450 enzymes playing prominent roles 
in its bioremediation effort (Olicón-Hernández et al., 2019).

Interestingly, fungal cultures working in consortium have also 
been demonstrated to achieve higher efficiency due to their synergistic 
bioremediative effects. In this regard, a fungal consortium containing 
Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, 
Trametes polyzona and Rhizopus microspores was applied in a stirred 
fluidized bioreactor for the simultaneous biodegradation of 
carbamazepine, diclofenac, and ibuprofen as well as their 
transformation metabolites (Kasonga et  al., 2020). Similarly, a 
trickle-bed bioreactor based on various fungal biomass immobilized 
on rice husks was recently shown to achieve an elimination of 88.6 and 
89.8% in synthetic and real wastewater, respectively, and it was also 
shown that adsorption was an important physical phenomenon in the 
PhACs elimination effectiveness of the trickle-bed bioreactor (Tormo-
Budowski et  al., 2021). However, the degradation of PhACs by 
bioreactor based on fungal organism has been noted to be significantly 
enhanced by external supplementation of nutrients and increased 
aeration (Badia-Fabregat et al., 2015).

In addition, successful attempts have been made at using 
enzymes rather than whole fungal organism as the biological 
component of the bioreactor (Khalidi-idrissi et  al., 2023). For 
instance, cross-linked enzymes aggregates of laccase and polysulfone 
hollow fiber membrane was developed for the elimination of 
acetaminophen, carbamazepine and mefenamic acid (Ba et  al., 
2014). However, a major challenge in fungal-based bioreactors for 
PhACs removal is bacterial contamination which reduces PhACs 
removal effectiveness as bacteria compete with fungi for growth 
substrates, disturb fungi growth, and destroy the mycelium (Shi 
et al., 2019). As a result, developing strategies for continuous fungal 
growth is critical. Some effective measures for avoiding bacterial 
contamination have been identified to include the lowering the pH 
of the reaction to an acidic range, immobilizing the fungus, limiting 
the nitrogen concentration in growth medium, the use of mild 
disinfectants, as well as pretreatment of wastewater, especially 
sterilization (Shi et  al., 2019). In other instances, however, the 
operation of bioreactors under unsterilized conditions has also been 
shown to be effective in the removal of PhACs, this was ascribed to 
the synergy between the bioremediative abilities of the fungi and 
natural bacteria population present in the wastewater (Yang et al., 
2013; Kasonga et al., 2020). For example, in a membrane bioreactor 
based on T. versicolor, operation under unsterilized conditions 
showed a removal rate of approximately 55 and 90% for diclofenac 
and bisphenol A at a loading rate of ~500 μg/L.d (Yang et al., 2013). 
This was also shown in a previous study in which a strain of 
Penicillium oxalicum removed significant amount of acetaminophen, 
acetylsalicylic acid, diclofenac, ibuprofen, ketoprofen, mefenamic 
acid, naproxen, trimethoprim with the aid of the natural bacterial 
consortium in the hospital wastewater (Olicón-Hernández 
et al., 2021).
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7. Conclusion and future directions

In this paper, the potential of fungi as promising tools for PhACs 
bioremediation, which is due to their versatile metabolic capabilities, 
has been established, however, there are still a lot of gaps to be filled 
in order to realize the full potential of this biotechnological 
approach. There remains the need for further research on enhancing 
the fungal bioremediative activity and scaling up of the process for 
industrial applications. It is believed that currently less than 10% of 
the total fungi on earth have been curated for their importance as 
tools in biotechnological field, thus signifying a gold mine for 
further exploration. In this regard, the identification of new fungi 
species with a high capability of degrading pharmaceutical 
compounds would go a long way in enhancing the efficiency of 
PhACs bioremediation. Similarly, the screening, identification, and 
characterization of novel enzymes for PhACs biodegradation is 
another possible avenue of advancing this field of biotechnology. 
Unraveling the metabolism of the various fungi is also key in 
understanding the downstream pathways for fungal bioremediation 
of PhACs and the mechanisms involved in the reactions. Gaining 
insights into key biodegradative pathways of environmentally 
important fungi has become more feasible with the advent of in 
Next-Generation sequencing as well as various databases like 
MetaCyc and the KEGG pathway database. Similarly, techniques 
such as metagenomics, meta-transcriptomics, meta-proteomics, and 
other omic methods can aid in gaining a better understanding of the 
interactions within microbial communities by elucidating the 
genomic organization of these communities and identifying the 
various genes that participate in bioremediation. As have been well 
demonstrated in other areas of biotechnology, the development of 
genetic tools for fungi can also enhance the engineering of fungi 
strains with enhanced bioremediation capabilities of PhACs. These 
tools can be deployed in the production of recombinant enzymes, 
manipulation of pathways, directed evolution of proteins as well as 
the mutation of fungi and their proteins amongst many other 
approaches. Gene editing is a fast-growing approach being currently 
employed to manipulate DNA with the aim of creating or modifying 
organisms that are better suited for definite bioprocesses, however, 
this has not been fully explored in fungal bioremediation. Currently, 
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic 
Repeats-CRISPR associated protein 9), ZFN (Zinc Finger Nuclease) 
and TALEN (Transcription Activator-Like Effector Nucleases) are 
the major gene editing tools, which if fully deployed, possess the 
capacity to improve the bioremediation processes in fungi. 

Optimization of key process parameters in any bioprocess has been 
noted to be critical in increasing efficiency and it can be achieved via 
the one factor at a time approach, and through statistical and 
mathematical approaches such as response surface methodology, 
neural networks, etc. While it is expedient to explore all of the 
possibilities highlighted above, it is even more important that the 
ecological impact of fungal bioremediation on the environment 
must be fully assessed to ensure the sustainability of this approach. 
Overall, the use of fungi and their enzymes for PACs degradation 
has great potentials to mitigate the environmental impact of 
pharmaceutical waste while contributing to sustainable waste 
management practices.
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