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Background: Mumps is a viral infection mainly characterized by inflammation 
of the parotid glands. Despite of vaccination programs, infections among fully 
vaccinated populations were reported. The World Health Organization (WHO) 
recommends molecular surveillance of mumps based on sequencing of the small 
hydrophobic (SH) gene. The use of hypervariable non-coding regions (NCR) as 
additional molecular markers was proposed in multiple studies. Circulation of 
mumps virus (MuV) genotypes and variants in different European countries were 
described in the literature. From 2010 to 2020, mumps outbreaks caused by 
genotype G were described. However, this issue has not been analyzed from a 
wider geographical perspective. In the present study, sequence data from MuV 
detected in Spain and in The Netherlands during a period of 5  years (2015- March 
2020) were analyzed to gain insights in the spatiotemporal spread of MuV at a 
larger geographical scale than in previous local studies.

Methods: A total of 1,121 SH and 262 NCR between the Matrix and Fusion protein 
genes (MF-NCR) sequences from both countries were included in this study. 
Analysis of SH revealed 106 different haplotypes (set of identical sequences).

Results: Of them, seven showing extensive circulation were considered variants. 
All seven were detected in both countries in coincident temporal periods. A single 
MF-NCR haplotype was detected in 156 sequences (59.3% of total), and was 
shared by five of the seven SH variants, as well as three minor MF-NCR haplotypes. 
All SH variants and MF-NCR haplotypes shared by both countries were detected 
first in Spain.

Discussion: Our results suggest a transmission way from south to north Europe. 
The higher incidence rate of mumps in Spain in spite of similar immunization 
coverage in both countries, could be associated with higher risk of MuV exportation. 
In conclusion, the present study provided novel insights into the circulation of 
MuV variants and haplotypes beyond the borders of single countries. In fact, the 
use of MF-NCR molecular tool allowed to reveal MuV transmission flows between 
The Netherlands and Spain. Similar studies including other (European) countries 
are needed to provide a broader view of the data presented in this study.
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1. Introduction

Mumps is a vaccine-preventable disease caused by mumps virus 
(MuV), which is pleomorphic and has a single non-segmented 
negative sense RNA molecule as genome. Seven transcription units 
are encoded in it: the nucleoprotein (N), the V/phospo-/I proteins 
(V/P/I), the matrix protein (M), the fusion protein (F), the small 
hydrophobic protein (SH), the haemagglutinin-neuraminidase 
protein (HN) and the polymerase (L) (Rubin et  al., 2015). MuV 
belongs to the genus Orthorubulavirus of the family Paramyxoviridae 
(ICTV, n.d.).

MuV is transmitted human-to-human by direct contact through 
respiratory droplets and contaminated fomites. The main symptom is 
swelling of parotid glands (Lam et  al., 2020). In addition, other 
unspecific symptoms such as fever, headache, malaise or anorexia can 
occur. Orchitis, mastitis, oophoritis and pancreatitis are less frequent 
symptoms and encephalitis and aseptic meningitis can be  rare 
complications (Lam et al., 2020). In about a third of unvaccinated 
individuals and three quarters of vaccinated individuals, the infection 
with mumps virus does not result in recognized clinical signs (Philip 
et al., 1995; Dittrich et al., 2011).

Molecular surveillance is a useful tool to study the origin and 
routes of transmission of pathogens. World Health Organization 
recommends molecular surveillance of MuV based on sequencing of 
the SH gene (WHO, 2012). Based on genetic variation of the SH and 
HN gene sequence, 12 genotypes were identified: A, B, C (including 
former genotype E), D, F, G, H, I, J, K (including former genotype M), 
L and N (Jin et al., 2015). The use of hypervariable non coding regions 
(NCR) as additional molecular markers was proposed by different 
authors (Gavilán et al., 2018; Bodewes et al., 2020; Lam et al., 2020).

Mumps vaccination was introduced into childhood European 
Immunization Programs as part of the measles, mumps and rubella 
vaccine (MMR) during the 80s decade of the 20th century. 
Particularly, MMR was introduced into the Spanish vaccination 
schedule in 1981 [Centro Nacional de Epidemiología, CIBERESP, 
ISCIII (2023)], and into the Dutch National Immunization Program 
in 1987 (van den Hof et al., 2003). In both countries, the incidence 
of mumps rapidly decreased after achieving high vaccination 
coverages. In Spain, the incidence dropped from 211/100,000 
inhabitants in 1982 to 35/100,000 inhabitants in 1991 falling to 
3.5/100,000 in 2004 (López-Perea et al., 2017). In 2005, the formerly 
dominant genotype H was replaced by genotype G (Echevarría 
et  al., 2010). From this year to 2019, in Spain three different 
epidemic waves of MuV genotype G were observed with 5–6 years 
of periodicity (López-Perea et al., 2017). The last one started in 2015 
and was abruptly interrupted in March 2020 by the severe measures 
adopted for the control of the COVID-19 pandemic [Centro 
Nacional de Epidemiología, CIBERESP, ISCIII (2023)]. In The 
Netherlands, major outbreaks were reported among vaccinated 
students from 2009 to 2012 (Sane et al., 2014), while from 2013 to 
2020 only small local outbreaks and individual cases were reported 
(National Institute for Public Health, 2022). Similarly, MuV 
genotype G outbreaks were also detected among highly vaccinated 
populations in other countries (Brockhoff et al., 2010; Whelan et al., 
2010; Greenland et al., 2012; Sane et al., 2014; Gavilán et al., 2022). 
Waning of vaccine-induced immunity (Lam et al., 2020), incomplete 
genotype cross-reactivity (Nö Jd et al., 2001) and antigenic drift 
(Šantak et al., 2013) were suggested as explanations.

Although many articles reporting MuV strains causing outbreaks 
in different individual countries were published in recent years 
(Braeye et al., 2014; Nedeljković et al., 2015; Park, 2015; Indenbaum 
et al., 2017; Willocks et al., 2017; Veneti et al., 2018; Moghe et al., 2019; 
el Zarif et al., 2020), studies at larger geographic scales are absent. The 
aim of the present study was to compare the circulation patterns of 
MuV in Spain and The Netherlands in a period of 5 years, as a step 
forward toward the study of broader patterns at European level.

2. Materials and methods

2.1. Samples and study period

A total of 188 Dutch and 933 Spanish sequences of the SH gene 
obtained from MuV genotype G cases deposited in GenBank as part 
of studies previously published by the authors of this study (Gavilán 
et al., 2018; Bodewes et al., 2020; Shah et al., 2021) were investigated. 
A subset of 262 MuV were selected for sequencing of the NCR region 
between the M and F protein (MF-NCR) from associated samples. 
MF-NCR sequences were collected from 127 MuV cases detected in 
the Netherlands, while 135 were detected in Spain. Samples were 
selected to be  representative of the spatiotemporal distribution of 
mumps cases in both countries during the period of study, based on 
previous studies (Bodewes et  al., 2020; Gavilán et  al., 2022) and 
according to the availability of the samples. At least one case was 
selected for each location. When more than one case from a given 
location were available, they were selected to be representative of the 
whole period of circulation of the virus.

2.2. Nucleic acid extraction, genetic 
amplification and sequencing

For MuV detected from mumps cases in the Netherlands nucleic 
acids were extracted and the SH and MF-NCR region were amplified 
as described previously (Bodewes et  al., 2020). sequences 
PCR-amplified products were purified with ExoSAP-IT (GE 
Healthcare). Sanger sequencing was subsequently performed at 
BaseClear (Leiden, the Netherlands). Spanish MuV cases were 
amplified according to published protocol (Royuela et  al., 2011). 
Positive samples were purified by an enzymatic reaction using Illustra 
ExoProStar 1-Step (GE Health Care Life Science, Freiburg, Germany) 
and sequenced using the Sanger method with the ABI Big Dye 
Terminator Cycle Sequencing Kit (Applied Biosystems, Branchburg, 
NJ) using the corresponding forward and reverse primers (Gavilán 
et al., 2022).

2.3. Genetic and phylogenetic analysis and 
variant classification

All MuV sequences were edited and concatenated using Bioedit 
v.7.2.5 (Hall, 1999) and aligned using MAFFT v.7 (Katoh and Standley, 
2013). Phylogenetic analysis was performed by the maximum 
likelihood method (ML) with IQ-TREE software via the webserver 
(W-IQ-TREE) (Trifinopoulos et  al., 2016). Branch support was 
calculated using the ultrafast bootstrap approach (UFboot) (Hoang 
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et  al., 2018). Phylogenetic trees were edited using Figtree v.1.4.4.1 
UltrafastBootstrap values were shown when they were higher than 80. 
The MuVi/Sheffield.GBR/1.05/ SH variant phylogenetic tree was built 
using concatenated sequences with UPGMA (unweighted pair group 
method with arithmetic mean) and 1000 bootstrap replicates using 
BioNumerics version 7.6.3 (2016).2 Individual phylogenetic trees for 
each SH-variant (see below) are displayed in Figures 1–3 as indicated 
in the footnotes.

The haplotype and variant definitions were used as described 
previously (Gavilán et al., 2022) with slight modifications. Briefly, a 
haplotype is a set of identical sequences named with the name of the 
earliest detected MuV according to WHO nomenclature. Haplotypes 
defined by SH sequence that showed an extensive circulation were 
considered variants. Extensive circulation is defined as continuous 
detection for 6 months or more and/or spreading to 3 or more 
provinces or different countries. Haplotype names are preceded by the 
suffix SH or MF-NCR to indicate the sequence fragment from which 
they are derived.

2.4. Ethics statement

All the Spanish samples used in this study were collected in the 
context of the Mumps Microbiological Surveillance Programme of the 
CNM3 and used in accordance with the requirements of Spanish 
biomedical research law (Ley 14/2007 de Investigación Biomédica). 
The protocol was approved by the Comité de Ética de la Investigación 

1 http://tree.bio.ed.ac.uk/software/figtree/

2 Applied Maths NV. Aavailable at: http://www.applied-maths.com/

bionumerics

3 http://gesdoc.isciii.es/gesdoccontroller?action=downloa

d&id=08/02/2022-fc27d35665

del Instituto de Salud Carlos III (approval no. Reference code: CEI PI 
35-2015).

Molecular surveillance of mumps viruses, including this study, is 
part of the Public Health Act (BWBR0024705) in The Netherlands.4 
Therefore, no informed consent was required for this study using 
anonymized routine surveillance data.

3. Results

3.1. Analysis of SH sequences haplotypes 
and variants

Analysis of SH sequences from The Netherlands and Spain 
revealed 106 different haplotypes during the period of study 
(Supplementary Figure  1). Of them, seven were considered SH 
variants according to the aforementioned criteria, namely MuVs/
Tarragona.ESP/20.11/, MuVs/New_Jersey.USA/20.10/, MuVs/
NewYork.USA/45.15/, MuVs/Avila.ESP/11.16/, MuVs/Madrid.
ESP/50.16/2, MuVi/Sheffield.GBR/1.05. and MuVs/Minnesota.
USA/53.14/ (Supplementary Figure  1; Supplementary Table  1). 
Circulation periods of each variant were always coincidental in both 
countries, although they were all detected first in Spain.

3.2. Circulation of haplotypes and variants

To increase the molecular resolution of the phylogenetic analysis 
of MuV variants and haplotypes detected in both Spain and The 
Netherlands, SH sequences were concatenated with 
MF-NCR sequences.

4 https://wetten.overheid.nl/BWBR0024705/2021-02-22/0/informatie

FIGURE 1

Phylogenetic analysis of SH-MF-NCR concatenated sequences obtained from SH variants. (A) MuVs/NewYork.USA/45.15/ SH variant analysis. (B) MuVs/
Tarragona.ESP/20.11/ SH variant analysis. Phylogenetic trees were made using the maximum likelihood method in W-IQ-TREE, using HKY85 as 
substitution model. MuVi/Sheffield.GBR/1.05/ (ON148331) was used as outgroup. Underlined names correspond to Dutch concatenated sequences 
and italics bold names indicate the MF-NCR haplotype names.
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A single MF-NCR haplotype (MuVs/Murcia.ESP/46.14/) was 
present in 156 sequences (59.3%), and was shared by five of seven SH 
variants, being only absent from MuVs/Tarragona.ESP/20.11/ and 
MuVs/Minnesota.ESP/53.14/ SH variants. Only two sequences of 
MuVs/Zuid-Holland.NLD/5.20/ MF-NCR haplotype were shared by 
MuVs/Tarragona.ESP/20.11/ and MuVi/Sheffield.GBR/1.05/ SH 
variants (one each). The remaining 35 MF-NCR haplotypes were 
detected only in combination with a single SH variant. MuVs/Murcia.
ESP/46.14/ MF-NCR haplotype was also present in both countries 
during the period of study. Also MuVs/Navarra.ESP/29.19/ MF-NCR 
haplotype was detected in both countries in 2019, and MuVs/Madrid.
ESP/3.16/ MF-NCR haplotype in 2016 and MuVs/CiudadReal.
ESP/16.16/ MF-NCR haplotype in 2017. In concordance with SH 
variants, all shared MF-NCR haplotypes were detected first in Spain. 
Only three MF-NCR sequences belonged to MuVs/Minnesota.
ESP/53.14/ SH variant. Two of them were detected in Spain and one 
in The Netherlands. All of them share a characteristic nucleotide 
variation (C364T). Only MuVs/Murcia.ESP/46.14/ MF-NCR 
haplotype was detected in combination with the MuVs/New_Jersey.
USA/20.10/ SH variant.

Of the five MF-NCR haplotypes derived from MuVs/NewYork.
USA/45.15/ SH variant, only MuVs/Murcia.ESP/46.14/ MF-NCR 
haplotype and MuVs/CiudadReal.ESP/16.16/ MF-NCR haplotype 
were detected in both countries (Figure  1A). Two of the four 
remaining MF-NCR haplotypes were detected only in Spain and 
one only in The Netherlands. Interestingly, all five MF-NCR 
haplotypes shared the same nucleotide variant (A66C, 
Supplementary Table 1), except MuVs/Murcia.ESP/46.14/ MF-NCR 
haplotype, which appear as the most basal in the tree. MuVs/
Murcia.ESP/46.14/ MF-NCR haplotype was not associated with 
MuVs/Tarragona.ESP/20.11/ SH variant (Figure  1B). All five 
MF-NCR haplotypes associated to this SH variant share the variant 
C352T. Four of them were present in The Netherlands and only one 
in Spain, which was, however, detected first. MuVs/Avila.ESP/11.16/ 
SH variant emerges associated to MuVs/Murcia.ESP/46.14/ 
MF-NCR haplotype on week 11 of 2016 in Spain and was detected 
sporadically in The Netherlands. On January of 2017 the change 
C60T was first detected in Spain (MuVs/Madrid.ESP/2.17/3 
MF-NCR haplotype), which maintained parallel circulation with 
MuVs/Murcia.ESP/46.14/ MF-NCR haplotype in Spain. In 2019 
(weeks 10–19) another MF-NCR haplotype with an additional 
change C313T (MuVs/Brummen.NLD/10.19/) was detected in The 
Netherlands, months after the last time MuVs/Avila.ESP/11.16/ SH 
variant was detected in Spain (Figure 2A). Five different MF-NCR 
haplotypes associated to MuVs/Madrid.ESP/50.16/2 SH variant 
were detected in Spain, together with MuVs/Murcia.ESP/46.14/ 
MF-NCR haplotype, which was the only one detected in The 
Netherlands (Figure 2B).

The only MF-NCR haplotype associated to the MuVs/New_
Jersey.USA/20.10/ SH variant was MuVs/Murcia.ESP/46.14/ 
MF-NCR haplotype (Figure 3B). Only one of 252 cases caused by 
this SH variant was detected in The Netherlands. This case was 
imported from Spain according to the epidemiological data. The 
MuVi/Sheffield.GBR/1.05/ SH variant was detected in both 
countries during the complete study period with the exception 
of time range mid-2016 to mid-2017  in both countries. Only 
MuVs/Murcia.ESP/46.14/ MF-NCR haplotype was detected in 
both countries, among a total of 17 haplotypes associated to 
this variant.

4. Discussion

In the present study, sequence data from MuV detected in Spain 
and The Netherlands were analyzed to gain insights in the 
spatiotemporal spread of MuV at a larger geographical scale than in 
previous local studies. During the period of study seven SH variants 
circulated in both countries. All of them have been described in 
previous works (Bodewes et  al., 2020; Shah et  al., 2021; Gavilán 
et al., 2022).

Analysis of MF-NCR and SH concatenated sequences in Spain 
and The Netherlands provided novel insights into mumps virus 
circulation improving the analysis of SH gene recommended by WHO 
for MuV genotyping. Molecular resolution can be improved by the use 
of additional NCRs as described previously (Gavilán et al., 2018). 
However, the added value is relatively limited (Gavilán et al., 2018). 
Furthermore, analysis of complete genomes is a step forward on the 
way to understand MuV circulation patterns (Bodewes et al., 2020; 
Lam et al., 2020). However, full genome sequencing of mumps viruses 
is only available in a few countries and the use of subgenomic markers 
obtained with classical methods will continue to play a role for mumps 
surveillance for some time.

Analysis of MF-NCR sequences revealed a major haplotype, 
MuVs/Murcia.ESP/46.14/, which was first detected associated with 
MuVi/Sheffield.GBR/1.05/ SH variant in late 2014 in Spain (Gavilán 
et al., 2018). This haplotype was associated with five of six subsequent 
SH variants in both countries along the period of study. Specific 
MF-NCR haplotypes associated to certain SH variants seemed to 
emerge in each country after the spread of the MuVs/Murcia.
ESP/46.14/ MF-NCR haplotype. Moreover, three other minor 
MF-NCR haplotypes were also shared in both countries: MuVs/
Navarra.ESP/29.19/, MuVs/Madrid.ESP/3.16/ and MuVs/CiudadReal.
ESP/16.16/. Interestingly, all of them were firstly detected in Spain as 
well as MuVs/Murcia.ESP/46.14/ MF-NCR haplotype. These results 
indicate a direction of spread from Spain to The Netherlands, which 
would be in agreement with the higher incidence rate of mumps in 
Spain in spite of similar immunization coverage. According to 
EUROSTAT, more than two million Dutch individuals visited Spain 
and more than three hundred thousand Spaniards traveled to The 
Netherlands each year before the COVID-19 pandemic. The exception 
to this model would be  MuVs/Tarragona.ESP/20.11/ and MuVs/
Minnesota.USA/45.15/ SH variants which were never detected 
associated with the MuVs/Murcia.ESP/46.14/ MF-NCR haplotype 
suggesting a different origin. In fact, results of our study suggest that 
MuVs/Minnesota.USA/45.15/ SH variant was not continuously 
circulating in Europe, since it was only sporadically detected during 
the study period.

The COVID-19 pandemic had a high impact on MuV circulation. 
The number of reported mumps cases in The Netherlands, Spain and 
various other European countries decreased sharply after 
extraordinary public health measures were implemented and is in 
spring 2023 still low. Of interest, the two first MuV genotype G SH 
haplotypes detected in The Netherlands in 2022 (MuVs/Zuid-Holland.
NLD/20.22/; ON792317) and in Spain in 2023 (MuVs/Madrid.
ESP/2.23/; OQ555726) had different SH sequences that grouped in 
different phylogenetic clade those described in this study (data 
not shown).

In conclusion, the present study provided novel insights into the 
circulation of MuV variants and haplotypes beyond the borders of 
single countries. In fact, the use of the MF-NCR molecular tool allows 
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FIGURE 2

Phylogenetic analysis of SH-MF-NCR concatenated sequences obtained from SH variants. (A) MuVs/Avila.ESP/11.16/ SH variant analysis. (B) MuVs/
Madrid.ESP/50.16/2 SH variant analysis. Phylogenetic trees were made using the maximum likelihood method in W-IQ-TREE, using TN93 as 
substitution model. MuVi/Sheffield.GBR/1.05/ (ON148331) was used as outgroup. Underlined names correspond to Dutch sequences. Italics bold 
names indicate the MF-NCR haplotypes.

FIGURE 3

Phylogenetic analysis of SH-MF-NCR concatenated sequences obtained from SH variants. (A) MuVs/Minnesota.USA/53.14/ SH variant analysis. 
(B) MuVs/NewJersey.USA/20.11/ SH variant phylogenetic tree. (C) MuVi/Sheffield.GBR/1.05/ SH variant analysis. Panel A and B: phylogenetic trees were 
made using the maximum likelihood method in W-IQ-TREE, using HKY85 as substitution model. MuVi/Sheffield.GBR/1.05/ original sequence 
(ON148331) was used as outgroup. Underlined names correspond to Dutch sequences. Italics bold names indicate the MF-NCR haplotypes. 
(C) Phylogenetic tree was made using BioNumerics versión 7.6.3. Years are represented by different colors; Dutch concatenated sequences are 
represented by light color and Spanish concatenated sequences by darker color. Circle sizes are according to number of sequences.
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to reveal MuV spread between The Netherlands and Spain. Similar 
studies including other (European) countries are needed to provide a 
wider scope to the data shown in the present study.
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SUPPLEMENTARY FIGURE 1

Phylogenetic analysis of SH variants and haplotypes. The phylogenetic tree 
was made using the maximum likelihood method in W-IQ-TREE, using 
HKY85 as substitution model. The MuV genotype G reference sequence used 
as outgroup was MuVi/Gloucester.GBR/32.96/ [G] (AF280799). Common 
variants in both countries are marked by blue squares. Dutch sequences are 
indicated by blue arrows.

SUPPLEMENTARY TABLE 1

Nucleotide differences of MF-NCR haplotypes. Data are shown according to 
the temporal and geographical distribution. MF-NCR nucleotide differences 
were identified using MuVi/Sheffield.GBR/1.05/ as reference (ON148331). 
Sequence name and MF-NCR haplotype name (name of the earliest available 
sequence) are indicated in two different columns.

SUPPLEMENTARY TABLE 2

GenBank accession numbers of MuV SH and MF-NCR sequences.
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